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Abstract Multiple instance learning attempts to learn from a training set consists of labeled
bags each containing many unlabeled instances. In previous works, most existing algorithms
mainly pay attention to the ‘most positive’ instance in each positive bag, but ignore the other
instances. For utilizing these unlabeled instances in positive bags, we present a new multi-
ple instance learning algorithm via semi-supervised laplacian twin support vector machines
(calledMiss-LTSVM). InMiss-LTSVM, all instances in positive bags are used in themanifold
regularization terms for improving the performance of classifier. For verifying the effective-
ness of the presented method, a series of comparative experiments are performed on seven
multiple instance data sets. Experimental results show that the proposed method has better
classification accuracy than other methods in most cases.

Keywords Multiple instance learning · Semi-supervised classification · Laplacian twin
support vector machine · Pattern recognition · Machine learning

1 Introduction

Multiple instance learning (MIL) has received intense attention recently in the field of
machine learning. MIL was introduced in [1] when Dietterich et al. were investigating the
problem of binding ability of a drug activity prediction. In MIL framework, the training set
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is consisted of labeled bags, and each bag contains many unlabeled instances. A positive
training bag contains at least one positive instance, whereas a negative bag is consisted of
negative instances. Following the seminal work of Dietterich et al., a number ofMILmethods
were proposed, such as Diverse Density (DD) [2], EM-DD [3], mi-SVM [4], MI-SVM [4],
Citation-kNN [5], RELIC [6], ID3-MI [7], RIPPER-MI [7], DD-SVM [8], MI-Ensemble
[9], MI-Boosting [10], MI-LR [11], MI-NN [12], MICA [13], SVM-CC [14], MI-NPSVM
[15], MI-NSVM [16] and MBSTAR [17]. MIL can be used in many applications, such as
image retrieval [2,12,18], image categorization [19], text categorization [4,20], natural scene
classification [2] and web mining [21].

Semi-supervised learning (SSL) is another branch of machine learning. In SSL, there are a
small number of labeled training examples and abundant unlabeled instances, and the goal of
SSL is to exploit these unlabeled instances to help improving the performance of supervised
learning. Semi-supervised support vector machines have been studied by many researchers,
such as S3V M [22], V 3SV M [23] and CV 3SV M [23]. Semi-supervised support vector
machines attempt to maximize the margin on both labeled and unlabeled data, by assigning
unlabeled data to appropriate classes such that the resultingmargin is themaximum. LapSVM
[24] is a general framework for semi-supervised learning, which can classify data that become
available after the training process, without having to retrain the classifier or resort to various
heuristics. Following the seminal work of LapSVM,many SSLmethods were proposed, such
as Lap-TSVM [25], LTPMSVM [26] and Lap-STSVM [27].

In previous works, most existing MIL algorithms mainly pay attention to the ‘most pos-
itive’ instance in each positive bag, but ignore the other instances. However, these data
repository is available when the classifier is being built, so a SSL framework can be con-
sidered. Using SSL framework to deal with MIL problems is an interesting idea, for now
there are only few papers in this filed, such as MissSVM [28] and MISSL [29]. Recently,
the research of nonparallel classifiers have been a new hot spot [30], and inspired by the
success of Lap-TSVM, LTPMSVM and Lap-STSVM, in this paper we propose a new multi-
ple instance classifier named as Multiple Instance Semi-supervised Laplacian Twin Support
Vector Machines (Miss-LTSVM). The basic steps of the Miss-LTSVM algorithm are illus-
trated in Fig. 1. It is known that a positive bag may contain positive as well as negative
instances, hence, we divide each positive bag into two parts: the ‘most positive’ instance
and the ‘label unknown’ instances. In Miss-LTSVM, we regard all the instances in negative
bags as labeled negative instances, regard all the ‘most positive’ instances as labeled positive
instances, regard all the ‘label unknown’ instances as unlabeled instances. In our method,
the unlabeled instances are used in the manifold regularization terms || f1||2M and || f2||2M
for improving the performance of classifier.

The rest of the paper is organized as follows. Section 2 gives a brief review on the Lap-
TSVM. Section 3 proposes the Miss-LTSVM algorithm. Experiments and results analysis
are performed in Sect. 4. Conclusions are given in Sect. 5.

2 Lap-TSVM

Lap-TSVM can exploit the geometry information of the marginal distribution embedded in
unlabeled data to construct a more reasonable classifier.

Given a set of labeled data (1) and a set of unlabeled data (2)

T 1 = {(x1, y1), . . . , (xl , yl)} (1)

T 2 = {xl+1, . . . , xl+u} (2)
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Fig. 1 Block diagram for the proposed algorithm

where xi ∈ Rn, i = 1, . . . , l + u, yi ∈ {1,−1}, i = 1, . . . , l. Lap-TSVM seeks a pair of
nonparallel hyperplanes

(w1 · x) + b1 = 0, (w2 · x) + b2 = 0

by solving two primal problems:

min
w1,b1,ξ

1

2
||Aw1 + e1b1||22 + c1e

T
2 ξ + c2

2

(||w1||22 + b21
)

+ c3
2

(
wT
1 M

T + eTb1
)
L (Mw1 + eb1)

s.t. − (Bw1 + e2b1) + ξ ≥ e2, ξ ≥ 0, (3)

and

min
w2,b2,η

1

2
||Bw2 + e2b2||22 + c1e

T
1 η + c2

2

(||w2||22 + b22
)

+ c3
2

(
wT
2 M

T + eTb2
)
L (Mw2 + eb2)

s.t. (Aw2 + e1b2) + η ≥ e1, η ≥ 0. (4)

where A is consisted of all positive data, B is consisted of all negative data, e1, e2 and e
are vectors of one, ξ and η are slack vectors, M ∈ R(l+u)×n includes all of labeled data and
unlabeled data, L = D − W , D is a diagonal matrix with its i-th diagonal Dii = �l+u

j=1Wi j .
W is weight matrix defined by k nearest neighbors or graph kernels:
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Wi j =
{
exp(−||xi − x j ||22/2σ 2

1 ), i f xi , x j are neighbor;
0, Otherwise,

(5)

By using the Lagrangian multiplier method, the Wolfe dual forms of (3) and (4) can be
written as follows:

min
α

1

2
αTG

(
HTH + c2 I + c3 J

TL J
)−1

GTα − eT2α

s.t. 0 ≤ α ≤ c1e2, (6)

min
β

1

2
βTH

(
GTG + c2 I + c3 J

TL J
)−1

HTβ − eT1β

s.t. 0 ≤ β ≤ c1e1, (7)

where H = [A, e1], J = [M, e], G = [B, e2], and the augmented vectors v1 = [wT
1 , b1]T

and v2 = [wT
2 , b2]T are given by

v1 = − (
HTH + c2 I + c3 J

TL J
)−1

GTα, x (8)

v2 = (
GTG + c2 I + c3 J

TL J
)−1

HTβ. (9)

Once vectors v1 and v2 are obtained from (8) and (9), the separating planes

(w1 · x) + b1 = 0, (w2 · x) + b2 = 0

are known. A new data point x ∈ Rn is assigned to the positive class or negative class,
depending on which of the two hyperplanes it lies closest to, i.e.

f (x) = min{y1 = |wT
1 x + b1|, y2 = |wT

2 x + b2|}. (10)

3 Miss-LTSVM

Given a training set

{(B1, Y1), (B2, Y2), . . . , (Bp, Yp), (Bp+1, Yp+1), . . . , (Bp+q , Yp+q)} (11)

where Bi = {xi1, . . . , xini }, xi j ∈ Rn , j = 1, . . . , ni , i = 1, . . . , p + q; Bi , i = 1, . . . , p
are positive bags, i.e. Yi = 1, i = 1, . . . , p; Bp+i , i = 1, . . . , q are negative bags, i.e.
Yp+i = −1, i = 1, . . . , q; ni is the instance number of the bag Bi , i = 1, . . . , p + q .
Let m1 = n1 + n2 + . . . + n p be the number of all instances in positive bags, m2 =
n p+1 + n p+2 + . . . + n p+q be the number of all instances in negative bags, m = m1 + m2.
The subscripts set of Bi is expressed as:

J(i) = { j |x j ∈ Bi }.
3.1 Linear Miss-LTSVM

The goal of Miss-LTSVM is to construct two nonparallel hyperplanes

f1(x) = (w1 · x) + b1 = 0, (12)

and

f2(x) = (w2 · x) + b2 = 0, (13)
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such that, the hyperplane (12) is close to the ‘positive’ instances in positive bags and is far
from all the instances in negative bags, the hyperplane (13) is close to all instances in negative
bags and is far from the ‘positive’ instances in positive bags.

For the MIL algorithms based on TSVM, the ‘most positive’ instance of each positive bag
is the instance that closest to the hyperplane (12) and farthest from the hyperplane (13), so
the two primal problems of Miss-LTSVM are constructed as follows:

min
w1,b1,ξ

1

2

p∑

i=1

(
min
j∈J(i)

{(w1 · xi j
) + b1}

)2

+ c1e
T
2 ξ + c2

2

(||w1||22 + b21
)

+ c3
2

(
wT
1 M

T + eTb1
)
L (Mw1 + eb1)

s.t. −
(
B̂w1 + e2b1

)
+ ξ ≥ e2, ξ ≥ 0, (14)

and

min
w2,b2,η

1

2
||B̂w2 + e2b2||22 + c1e

T
1 η + c2

2

(||w2||22 + b22
) + c3

2

(
wT
2 M

T + eTb2
)
L(Mw2 + eb2)

s.t. max
j∈J(i)

{(w2 · xi j
) + b2} ≥ 1 − ηi , ηi ≥ 0, i = 1, . . . , p, (15)

where c1, c2, c3 are the pre-specified penalty parameters, B̂ ∈ Rm2×n is consisted of
all the instances belonging to the negative bags, M ∈ Rm×n includes all of the instances
belonging to the positive and negative bags, L is the graph Laplacian and the definition of
L can be found in Sect. 2, e1, e2 and e are the vectors of ones of appropriate dimensions,
ξ = [ξ1, ξ2, . . . , ξm2 ]T and η = [η1, η2, . . . , ηp]T are slack variables for the errors on the
instances of negative bags and positive bags, respectively.

For the ‘most positive’ instance of each positive bag, Mangasarian and Wild [30] show
that there exist convex combination coefficients set {λij | j ∈ J(i), i = 1, . . . , p}, such that
the ‘most positive’ instances can be represented as

∑

j∈J(i)

λij xi j , i = 1, . . . , p (16)

where λij ≥ 0 and
∑

j∈J(i)
λij = 1. Then the optimization problems (14) and (15) can be

rewritten as

min
w1,b1,ξ

1

2

p∑

i=1

⎛

⎝

⎛

⎝w1 ·
∑

j∈J(i)

λij xi j

⎞

⎠ + b1

⎞

⎠

2

+ c1e
T
2 ξ + c2

2

(||w1||22 + b21
)

+ c3
2

(
wT
1 M

T + eTb1
)
L (Mw1 + eb1)

s.t. −
(
B̂w1 + e2b1

)
+ ξ ≥ e2, ξ ≥ 0, λij ≥ 0,

∑

j∈J(i)

λij = 1, i = 1, . . . , p,

(17)
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and

min
w2,b2,η

1

2
||B̂w2 + e2b2||22 + c1e

T
1 η + c2

2

(||w2||22 + b22
) + c3

2

(
wT
2 M

T + eTb2
)
L (Mw2 + eb2)

s.t.

⎛

⎝w2 ·
∑

j∈J(i)

λij xi j

⎞

⎠ + b2 ≥ 1 − ηi , ηi ≥ 0, λij ≥ 0,
∑

j∈J(i)

λij = 1, i = 1, . . . , p.

(18)

Obviously, problems (17) and (18) are not convex quadratic programming problems
(QPPs), an iterative method which includes two strategies of updating can be used to obtain
their approximate solutions.

(I) Fixing {λij | j ∈ J(i), i = 1, . . . , p}, update w1, b1 and w2, b2. For fixed λij , we can
obtain

x̂i =
∑

j∈J(i)

λij xi j , i = 1, . . . , p, (19)

where x̂i represents the ‘most positive’ instance of the bag Bi . Let Â = [x̂1, x̂2, . . . , x̂ p]T,
the optimization problems (17) and (18) turn to

min
w1,b1,ξ

1

2
|| Âw1 + e1b1||22 + c1e

T
2 ξ + c2

2

(||w1||22 + b21
)

+ c3
2

(
wT
1 M

T + eTb1
)
L (Mw1 + eb1)

s.t. −
(
B̂w1 + e2b1

)
+ ξ ≥ e2, ξ ≥ 0, (20)

and

min
w2,b2,η

1

2
||B̂w2 + e2b2||22 + c1e

T
1 η + c2

2

(||w2||22 + b22
)

+ c3
2

(
wT
2 M

T + eTb2
)
L (Mw2 + eb2)

s.t.
(
Âw2 + e1b2

)
+ η ≥ e1, η ≥ 0. (21)

Compare the problems (20)–(21) with the problems (3)–(4), we know that the problems
(20) and (21) amount to a standard Lap-TSVM problem when the ‘most positive’ instances
are known.

In summary, when Â is obtained,w1, b1, w2, b2 can be computed by solving the problems
(20) and (21). In addition, the unlabeled instances in positive bags are used in the manifold
regularization terms || f1||2M = (wT

1 M
T + eTb1)L(Mw1 + eb1) and || f2||2M = (wT

2 M
T +

eTb2)L(Mw2 + eb2) for improving the performance of classifier.
(II) Fixing w1, b1, w2, b2, update {λij | j ∈ J(i), i = 1, . . . , p}. For fixed w1, b2 and

w2, b2, the optimization problems (17) and (18) can be reduced to

min
λ

1

2

p∑

i=1

⎛

⎝

⎛

⎝w1 ·
∑

j∈J(i)

λij xi j

⎞

⎠ + b1

⎞

⎠

2

s.t. λij ≥ 0,
∑

j∈J(i)

λij = 1, i = 1, . . . , p, (22)
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and

min
λ,η

eT1 η

s.t.

⎛

⎝w2 ·
∑

j∈J(i)

λij xi j

⎞

⎠ + ηi ≥ 1 − b2,

ηi ≥ 0, λij ≥ 0,
∑

j∈J(i)

λij = 1, i = 1, . . . , p. (23)

Here (22) is a standard QPP, (23) is a linear programming problem (LPP), and problem (23)
can be reformulated as

min
γ

êT1 γ

s.t. [I, X̂w]γ ≥ ep − b2ep,

[0, Ê]γ = ep, γ ≥ 0, (24)

where êT1 = [1, . . . , 1, 0, . . . , 0] ∈ R(p+m1), and

γ =
[

η

λ

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

η1
...

ηp

λ1

...

λp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

η1
...

ηp

λ11
...

λ1n1
...

λ
p
1

...

λ
p
n p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R(p+m1),

X̂w =

⎡

⎢⎢⎢⎢
⎣

(
x̂1w

)T
0 · · · 0

0
(
x̂2w

)T · · · 0
...

...
. . .

...

0 0 · · · (
x̂ p
w

)T

⎤

⎥⎥⎥⎥
⎦

∈ Rp×m1 , Ê =

⎡

⎢⎢⎢
⎣

eTn1 0 · · · 0
0 eTn2 · · · 0
...

...
. . .

...

0 0 · · · eTn p

⎤

⎥⎥⎥
⎦

∈ Rp×m1

where x̂ iw = [(w2 · xi1), . . . , (w2 · xini )]T, i = 1, . . . , p.
From above, we know that {λij | j ∈ J(i), i = 1, . . . , p} can be obtained by solving

the problem (22) or (24). For simplicity, we only use the optimization problem (24) to
update {λij | j ∈ J(i), i = 1, . . . , p}. In problem (24), only w2, b2 are used, hence, our
algorithm can be divided into two steps. The first step is to obtain the optimum solution
w2, b2, λij by iteratively solving the problems (21) and (24). The second step is to get the
optimum solution w1, b1 by solving the problem (20) with the obtained optimum solution
{λij | j ∈ J(i), i = 1, . . . , p}. The specific process of our method is described as follows.
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Algorithm 1. Linear Miss-LTSVM

1. Initialization. Let t = 0, ε > 0 small enough, choose appropriate penalty parameters c1, c2, c3 > 0 and
take λij (t) = 1

ni
, j ∈ J(i), i = 1, . . . , p.

2. Calculate w2, b2. Solve the Wolef dual problem of (21) with λij = λij (t), j ∈ J(i), i = 1, . . . , p and get
the optimal solution w2(t), b2(t).
3. Update {λij | j ∈ J(i), i = 1, . . . , p}. Solve the problem (24) with w2 = w2(t), b2 = b2(t) and get the

optimal solution λij (t + 1), j ∈ J(i), i = 1, . . . , p.

4. Update w2, b2. Solve the Wolef dual problem of (21) with λij = λij (t + 1), j ∈ J(i), i = 1, . . . , p and get
the optimal solution w2(t + 1), b2(t + 1).
5. If ‖λij (t + 1) − λij (t)‖ < ε, ‖w2(t + 1) − w2(t)‖ < ε, j ∈ J(i), i = 1, . . . , p or the maximum number of

iterations is achieved, stop iteration and take λi∗j = λij (t +1),w∗
2 = w2(t +1) and b∗

2 = b2(t +1); otherwise,
put t ← t + 1 and return to step 2.
6. Calculate w1, b1. Solve the Wolef dual problem of (20) with λij = λi∗j , j ∈ J(i), i = 1, . . . , p and get the

optimal solution w∗
1 , b∗

1.
7. Construct the decision functions f1(x) = (w∗

1 · x) + b∗
1 = 0 and f2(x) = (w∗

2 · x) + b∗
2 = 0.

8. For a new input instance x̃ , its label yx̃ can be obtain by yx̃ = arg min
i=1,2

| fi (x̃)|||wi ||2 , and further assign a new

bag to the class.

3.2 Nonlinear Miss-LTSVM

Similar to the linear case, the goal of nonlinear Miss-LTSVM is to construct two nonparallel
hyperplanes

f1(x) = (w1 · ϕ(x)) + b1 and f2(x) = (w2 · ϕ(x)) + b2 (25)

where ϕ(·) : X → H is a feature mapping from feature space to reproducing kernel
hilbert space (RKHS). We consider w1, w2 in the subspace span{ϕ(x1), ϕ(x2), . . . , ϕ(xm)}
of H, then w1 = ϕT(M)u1, w2 = ϕT(M)u2, where uT1 = [u11, u12, . . . , u1m], uT2 =
[u21, u22, . . . , u2m], ϕ(M) = [ϕ(x1), . . . , ϕ(xm)]T, the nonparallel hyperplanes (25) turn to

f1(x) = uT1 K (x, M) + b1 and f2(x) = uT2 K (x, M) + b2 (26)

where K (x, M) = [k(x, x1), . . . , k(x, xm)]T.
Similar to problems (17) and (18), the two nonparallel hyperplanes in (26) are constructed

by solving the following two optimization problems

min
u1,b1,ξ

1

2

p∑

i=1

⎛

⎝
∑

j∈J(i)

λij u
T
1 K (xi j , M) + b1

⎞

⎠

2

+ c1e
T
2 ξ + c2

2

(
uT1 KMu1 + b21

)

+ c3
2

(
uT1 KM + eTb1

)
L (KMu1 + eb1)

s.t. −
(
K

(
B̂, M

)
u1 + e2b1

)
+ ξ ≥ e2, ξ ≥ 0, λij ≥ 0,

∑

j∈J(i)

λij = 1, i = 1, . . . , p,

(27)
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and

min
u2,b2,η

1

2
||K

(
B̂, M

)
u2 + e2b2||22 + c1e

T
1 η + c2

2

(
uT2 KMu2 + b22

)

+ c3
2

(
uT2 KM + eTb2

)
L (KMu2 + eb2)

s.t.
∑

j∈J(i)

λij u
T
2 K

(
xi j , M

) + b2 ≥ 1−ηi , ηi ≥ 0, λij ≥0,
∑

j∈J(i)

λij = 1, i = 1, . . . , p,

(28)

where

KM =

⎡

⎢⎢⎢
⎣

k(x1, x1) k(x1, x2) · · · k(x1, xm)

k(x2, x1) k(x2, x2) · · · k(x2, xm)

...
...

. . .
...

k(xm , x1) k(xm , x2) · · · k(xm , xm)

⎤

⎥⎥⎥
⎦

∈ Rm×m , K (B̂, M)=

⎡

⎢⎢⎢
⎣

KT(x1, M)

KT(x2, M)

...

KT(xm2 , M)

⎤

⎥⎥⎥
⎦

∈ Rm2×m .

Like the linear case, we also use the iteration strategy to solve the two nonconvex QPPs.
(I) For the fixed λij , substitute (19) into (27) and (28), respectively.

min
u1,b1,ξ

1

2
||K

(
Â, M

)
u1 + e1b1||22 + c1e

T
2 ξ + c2

2

(
uT1 KMu1 + b21

)

+ c3
2

(
uT1 KM + eTb1

)
L (KMu1 + eb1)

s.t. −
(
K

(
B̂, M

)
u1 + e2b1

)
+ ξ ≥ e2, ξ ≥ 0, (29)

and

min
u2,b2,η

1

2
||K

(
B̂, M

)
u2 + e2b2||22 + c1e

T
1 η + c2

2

(
uT2 KMu2 + b22

)

+ c3
2

(
uT2 KM + eTb2

)
L (KMu2 + eb2)

s.t. K
(
Â, M

)
u2 + e1b2 + η ≥ e1, η ≥ 0, (30)

where

K ( Â, M) =

⎡

⎢⎢⎢
⎣

KT(x̂1, M)

KT(x̂2, M)
...

KT(x̂ p, M)

⎤

⎥⎥⎥
⎦

∈ Rp×m .

The Wolfe dual forms of (29) and (30) are:

min
α

1

2
αTQ

(
PTP + c2U + c3F

TLF
)−1

QTα − eT2α

s.t. 0 ≤ α ≤ c1e2, (31)

min
β

1

2
βTP

(
QTQ + c2U + c3F

TLF
)−1

PTβ − eT1β

s.t. 0 ≤ β ≤ c1e1, (32)
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where P = [K ( Â, M), e1], Q = [K (B̂, M), e2], F = [KM , e],U =
[
KM 0
0 1

]
, then we get

[
u1
b1

]
= − (

PTP + c2U + c3FTLF
)−1

QTα, (33)

[
u2
b2

]
= (

QTQ + c2U + c3FTLF
)−1

PTβ. (34)

(II) Using the fixed u2, b2, the optimization problem (28) can be reduce to

min
γ

êT1 γ

s.t. [I, X̃w]γ ≥ ep − b2ep,

[0, Ê]γ = ep, γ ≥ 0, (35)

where

X̃w =

⎡

⎢⎢⎢⎢
⎣

(
x̃1w

)T
0 · · · 0

0
(
x̃2w

)T · · · 0
...

...
. . .

...

0 0 · · · (
x̃ p
w

)T

⎤

⎥⎥⎥⎥
⎦

,

x̃ iw = [uT2 K (xi1, M), . . . , uT2 K (xini , M)]T, i = 1, . . . , p, and the definitions of êT1 , γ, Ê
are the same as the linear case.

In summary, the nonlinear Miss-LTSVM is an extension of linear case by using the kernel
function, such as the RBF kernel k(x1, x2) = exp(−||x1−x2||2/σ 2)where σ is a real param-
eter. Through the above discussion, we can obtain u1, b1, u2, b2, λ by iteratively solving the
problems (33), (34) and (35), respectively. The detail algorithm of nonlinear Miss-LTSVM
is roughly the same as the linear case.

4 Experiments

In this section, in order to demonstrate the capability of our algorithms, we perform some
comparison experiments with MICA [13], mi-SVM [4], MI-SVM [4], MI-NPSVM [15],
MI-NSVM and MI-TSVM [16]. We use the same datasets and roughly the same test method
as the ones in [31]. All the experiments are implemented in MATLAB (R2012b) running
on a PC with system configuration Intel (R) Core (TM) i3 (2.53GHz) with 2GB of RAM.
The ‘quadprog’ and ‘linprog’ functions in Matlab are used to solve the related optimization
problems in this paper, 10% samples of the data are randomly taken from our datasets as
testing samples and the rest are used as training samples. All the experiments running 10
times. The regularization parameters c1, c2, c3, RBF kernel parameter σ and weight matrix
parameter σ1 are all selected from the set {2i |i = −5, . . . , 5}, the K-nearest neighbor param-
eter k is selected from 1 to 11, all the parameters are selected by tenfold cross validation on
the tuning set comprising of random 20% of the training data. For simplicity, set c2 = c3,
we firstly fixed k = 2, σ1 = 2, search the optimal parameter c1, c2 and σ (only for nonlinear
case), then fixed the selected parameter c1, c2 and σ search k and σ1, repeat this until conver-
gence. Figure 2 shows an example of the iterative steps, from it we can see that the proposed
algorithm converges very quickly. Set ε = 10−3, the maximum number of iterations is 100.
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Fig. 2 The iterative steps of searching optimal parameters on three data sets

Table 1 Description of the datasets used in the experiments

Data set Features +Bags +Instances −Bags −Instances

Musk1 166 47 207 45 269

Musk2 166 39 1017 63 5581

Elephant 230 100 762 100 629

Fox 230 100 647 100 673

Tiger 230 100 544 100 676

TST1 6668 200 1580 200 1644

TST2 6842 200 1715 200 1629

Seven datasets are used in this paper, two of them come from the UCI machine learning
repository [32], and five from [4,33]. The UCI datasets ‘Musk1’ and ‘Musk2’ involve bags of
molecules and their activity levels, which are commonly used inmulti-instance classification.
‘Elephant’, ‘Fox’ and ‘Tiger’ datasets come from an image annotation task whose goal is to
determine whether or not a given animal is present in an image. ‘TST1’ and ‘TST2’ data sets
come from the OHSUMED data and the task is to learn binary concepts associated with the
Medical Subject Headings of MEDLINE documents. The detailed information about these
data sets can be seen from Table 1.

Table 2 shows the classification accuracies of all methods on the linear and nonlinear
case, respectively, where the best results are boldfaced and the results for MICA, MI-TSVM
and MI-NSVM on all datasets are taken from [16], the results for mi-SVM and MI-SVM
are taken from [4], and the results for MI-NPSVM on all datasets are taken from [15]. In
terms of classification accuracy, linear Miss-LTSVM has the best correctness on the data sets
of ‘Elephant’, ‘Fox’, ‘Tiger’ and ‘TST2’, nonlinear Miss-LTSVM gets the best correctness
on ‘TST1’ data set. Hence, our methods have the best recognition rate on most cases, and
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Table 2 Classification accuracy of different methods (mean; %)

Data sets MICA mi-SVM MI-SVM MI-TSVM MI-NPSVM MI-NSVM Linear
Miss-LTSVM

Nonlinear
Miss-LTSVM

Elephant 80.5 82.2 81.4 83.5 83.6 81.5 85.5 79.3

Fox 58.7 58.2 57.8 62.5 59.8 58.4 62.8 58.5

Tiger 82.6 78.4 84.0 79.0 82.1 82.6 84.0 70.8

Musk1 84.4 87.4 77.9 94.6 92.8 95.6 90.2 91.6

Musk2 90.5 83.6 84.3 88.2 92.3 93.1 91.5 92.7

TST1 94.5 93.6 93.9 90.5 94.8 93.4 93.7 94.9

TST2 85.0 78.2 84.5 86.3 87.2 87.2 87.2 85.1
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Fig. 3 Positive and negative classification accuracy of our method

the results on data sets ‘Musk1’ and ‘Musk2’ are comparable with the best correctness of
other methods. We also find that the five twin based methods perform better than mi-SVM
and MI-SVM, this means that twin based methods are more suitable for multiple instance
classification. For the results on ‘Musk1’ and ‘Musk2’ data sets, our classification accuracies
are lower than MI-TSVM, MI-NPSVM and MI-NSVM, this may be because our optimal
parameters found by iteration method are locally optimal solution.

Figure 3 shows the positive and negative classification accuracy of our method on the first
five data sets. The positive classification accuracy is higher than negative accuracy on the
data sets of ‘Musk1’, ‘Fox’ and ‘Tiger’, this means that more instances in negative bags are
misclassified. On ‘Musk2’ and ‘Elephant’ data sets, it has little difference between positive
accuracy and negative accuracy.

From the results on ‘Musk1’ and ‘Musk2’ data sets, we find that our methods couldn’t
outperform other methods. We concluded that this is because our optimal parameters found
by iterative method are local optimal solution. In order to verify this deduction and increase
the classification accuracy, a new Laplacian matrix constructor [34] is introduced:
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Table 3 Classification accuracy of different methods on two data sets (mean; %)

Data sets MICA mi-SVM MI-SVM MI-TSVM MI-NPSVM MI-NSVM Linear
Miss-LTSVM

Nonlinear
Miss-LTSVM

Musk1 84.4 87.4 77.9 94.6 92.8 95.6 93.3 94.6

Musk2 90.5 83.6 84.3 88.2 92.3 93.1 92.1 93.5

Wi j =
{ ei,k+1−ei j

kei,k+1−∑k
h=1 eih

, j ≤ k

0, j > k
(36)

where ei j = ||xi − x j ||22 is the distance between instances xi and x j . For Eq. (36), only one
parameter is involved: the number of neighbors k. The experimental results on ’Musk1’ and
‘Musk2’ data sets are shown in Table 3, where the best results are boldfaced.

From Table 3, we find that using the new method both two algorithms we proposed have
achieved better classification accuracies. This means that our deduction is right.

5 Conclusions

In this paper, we proposed a new multiple instance learning algorithm via semi-supervised
laplacian twin support vector machines (called Miss-LTSVM). In this method, all instances
of positive bags are used in the manifold regularization terms to improve the performance
of classifier. In order to verify the effectiveness of Miss-LTSVM, some comparative experi-
mentswithMICA,mi-SVM,MI-SVM,MI-NPSVM,MI-NSVMandMI-TSVMon ‘Musk1’,
‘Musk2’, ‘Elephant’, ‘Fox’ , ‘Tiger’, ‘TST1’ and ‘TST2’ seven data sets are performed.
Experiment results show that Miss-LTSVM has better classification accuracies than other
methods in most cases. In this issue, there are lots of works to do, such as, generalization of
modeling, improvement of algorithms and so on.
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