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Abstract In the paper, synchronization problem for stochastic neural networks are studied
by impulsively controlling partial states. At each impulsive instant, only part of the states are
controlled to realize the synchronization of impulsively coupled stochastic neural networks.
By using the method of average impulsive interval, less conservative synchronization criteria
are derived. The derived sufficient conditions are closely related to the parameters of system
dynamics, impulsive gain, impulsive interval and the proportionof the controlled components.
Finally, numerical example is given to illustrate the effectiveness of our theoretical results.
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1 Introduction

Synchronization of coupled chaotic dynamical systems has recently received increasing inter-
est in the control and physical community due to its wide potential applications including
the secure communication and chemical reaction [7,27,35]. Some recent results concerning
chaotic synchronization and a review of relevant experimental applications of these tech-
niques and schemes have been reported in [2,25,28]. Synchronization can bemuch beneficial
in many practical applications [13]. Synchronization of coupled systems can be utilized to
the coordination of simultaneous threads to complete a task of obtaining a correct runtime
order while avoiding unexpected rate conditions for parallel computing [5].

Recently, dynamical behaviors of neural networks have been extensively investigated in
[3,32,37], and many applications have been found in different areas. Much attention has
been paid to the study of the stability and periodicity for neural networks [1,4,11,36], and
also the synchronization of coupled neural networks have been recently investigated [33,40]
since some neural networks need synchronous behavior for information transmission, pattern
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recognition et al. [10,29]. Many different kinds of control methods have been utilized to
control or synchronize chaotic dynamical systems, such as PC method [27], adaptive control
[20,31], impulsive control [15,26,38,39], delayed feedback control [9], and so on. Formost of
the obtained results, the full states’ information is necessary for the control or synchronization
of chaotic systems, and this is sometimes not easy to implement. Hence, in this paper we
will investigate the synchronization of chaotic neural networks by only controlling part of
the states.

Many practical systems can be well described by impulsive control systems. Examples
include the population control system of a kind of insects with the number of insects and
the natural enemies as state variables [15,17,38]. In recent years, impulsive systems and
impulsive control theory have been widely studied [8,19,21,23,24,34]. Some sufficient con-
ditions were derived to guarantee the asymptotic stability of impulsive control systems with
fixed time impulses in [15]. Impulsive synchronization of chaotic systems with time-varying
impulsive intervals was investigated in [30], and the results can be used to realize synchro-
nization of chaotic systems by only using small impulses generated by samples of the state
variables of the driving system at discrete time instants. In [12], Ji et al. studied the prob-
lem of robust adaptive-impulsive synchronization in chaotic delayed neural networks with
uncertainties. In [41], the synchronization of coupled switched neural networks with mode-
dependent impulsive effects was studied. By proposing a novel approach named “average
impulsive interval”, a unified synchronization criterionwas obtained for impulsive dynamical
networks in [22], and the result was simultaneously suitable for impulses with synchronizing
effects and desynchronizing effects. In [18], the exponential stability and L2-gain problem
was studied for a class of non-linear switched impulsive systems with time-varying distur-
bances. In [14], an impulsive controller is used to achieve the exponential synchronization
of chaotic delayed neural networks with stochastic perturbation.

Motivated by the above discussions, this paper intend to study the synchronization of
stochastic neural networks by only impulsively controlling partial states. The principle of
choosing the controlled states is obtained by referring to the sorting of the norms of the
synchronization errors. By using Lyapunov stability method for stochastic systems and com-
parison methods, an efficient criterion is derived for stochastic synchronization of coupled
chaotic neural networks. Instead of choosing the impulsive interval to be constant, we will
utilize the concept of average impulsive interval to describe the sequence of impulses, hence
further to make the obtained results less conservative. In the synchronization criterion, the
detailed relationship among the system dynamics, proportion of controlled components,
impulsive strength and impulsive interval will be presented. The proposed method can also
be extended to study the control of chaotic systems, and the impulsive strength can be different
at different impulsive instants. Numerical example is finally given to verify the effectiveness
of the obtained theoretical results.

2 Model Formulation and Some Preliminaries

Consider a stochastic neural network as the drive system, described by

dx(t) = [−Cx(t) + B f̄ (x(t)) + I
]
dt + ḡ(t, x(t))dw(t), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector of the drive system
associated with the neurons, C = diag(c1, c2, . . . , cn) > 0 is a positive diagonal matrix,
B = (bi j )n×n is the connection weight matrix, I = (I1, I2, . . . , In)T ∈ Rn is a constant

123



Impulsive Synchronization of Stochastic Neural Networks… 61

external input vector, f̄ (x(t)) = ( f̄1(x1(t)), f̄2(x2(t)), . . . , f̄n(xn(t)))T ∈ Rn denotes the
activation functions of the neurons, ḡ : R+ × Rn → Rn×m is the noise intensity function
matrix satisfying ḡ(t, 0) = 0n×m with 0 being a vector or matrix with compatible dimension,
and w(t) ∈ Rm is an m-dimensional Brownian motion.

The response system corresponding to the master system (1) is constructed as follows

dy(t) = [−Cy(t) + B f̄ (y(t)) + I
]
dt + ḡ(t, y(t))dw(t) + u(t)dt, (2)

where u(t) ∈ Rn is the impulsive controller to be determined for the purpose of synchronizing
drive and response systems, y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn is the state vector of the
response system associated with the neurons, and the rest of the notations are the same with
that of the drive system.

Throughout this paper, we have the following two assumptions:

Assumption 1 The neuron activation function f̄ (·) satisfies the following the Lipschitz
condition: ‖ f̄ (y) − f̄ (x)‖ ≤ L‖y − x‖ for any x, y ∈ Rn , where L > 0 is called the
Lipschitz constant.

Assumption 2 The noise intensity function matrix ḡ : R+ × Rn → Rn×m is assumed to be
uniformly Lipschitz continuous in terms of the norm as follows:

trace

[(
ḡ(t, y) − ḡ(t, x)

)T · (
ḡ(t, y) − ḡ(t, x)

)]≤ ‖M(y − x)‖2, ∀x, y ∈ Rn, (3)

where M is a constant matrix with compatible dimensions.

Let e(t) = y(t) − x(t) be the error state of the drive-response systems (1) and (2). Then
subtracting (1) from (2) yields the following error dynamical system:

de(t) = [−Ce(t) + B f (e(t))]dt + g(t, e(t))dw(t) + u(t)dt, (4)

where f (e(t)) = f̄ (y(t)) − f̄ (x(t)) and g(t, e(t)) = ḡ(t, y(t)) − ḡ(t, x(t)).

Definition 1 The master-slave systems (1) and (2) are said to be globally exponentially
synchronized if there exist γ > 0, T > 0 and M0 > 0, such that for any initial values x(0)
and y(0),

‖y(t) − x(t)‖ ≤ M0e
−γ t

holds for all t > T .

To achieve the exponential synchronization of the drive-response systems (1) and (2), we
design the impulsive controllers u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn as follows:

u(t) = μ

+∞∑

k=1

D(t) · e(t) · δ(t − tk), (5)

where μ ∈ (−2, 0) is the impulsive strength, δ(·) is the Dirac delta function, the discrete
impulsive instant set {tk} satisfies 0 < t1 < · · · < tk < tk+1 < · · · and limk→∞ tk = +∞,
and D(t) = diag{d1(t), d2(t), . . . , dn(t)} with di (t) (i = 1, 2, . . . , n) being

di (t) =
{
1, i ∈ I(tk),
0, i /∈ I(tk)

(6)

Here I(tk) is the index set of the impulsively controlled states to be determined. Let #I(tk) :=
ρ denote the number of the elements of the index set I(tk).
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To determine the index set of D(tk), at time instant t = tk , we arrange the components
{e1(tk), e2(tk), . . . , en(tk)} of the error state vector e(tk) as follows:

‖ep1(tk )(tk)‖ ≥ · · · ≥ ‖epρ(tk )(tk)‖ ≥ ‖epρ+1(tk )(tk)‖ ≥ · · · ≥ ‖epn(tk )(tk)‖, (7)

where pi (tk) ∈ {1, 2, . . . , n}, i = 1, 2, . . . , n. If ‖epρ(tk )(tk)‖ = ‖epρ+1(tk )(tk)‖, then we
simply let pρ(tk) < pρ+1(tk). Now, we can determine the index set of the controlled states
at time instant t = tk as I(tk) = {p1(tk), p2(tk), . . . , pρ(tk)}.

After these discussions, we can obtain the following error dynamical system with impul-
sive controller:

{
de(t) = [−Ce(t) + B f (e(t))]dt + g(t, e(t))dw(t) + u(t)dt, t 	= tk, k = 1, 2, . . .
e(t+k ) = e(t−k ) + μD(tk)e

(
t−k

)
, t = tk .

(8)

where the elements of matrix D(tk) is defined as in (6), e(t+k ) = limt→t+k
e(t), and e(t−k )

= limt→t−k
e(t). Here, we assume that e(t) is left-hand continuous at t = tk , i.e., e(tk)

= e(t−k ). Then, all solutions of error system (8) are left-hand continuous at t = tk .
With respect to the impulsive sequence, the method of average impulsive interval will be

used to describe our impulsive sequence to make the obtained results less conservative.

Definition 2 [22] (average impulsive interval) The average impulsive interval of the impul-
sive sequence ζ = {t1, t2, . . .} is less than Ta , if there exist a positive integer N0 and a positive
number Ta , such that

Nζ (T, t) ≥ T − t

Ta
− N0, ∀T ≥ t ≥ 0, (9)

where Nζ (T, t) denotes the number of impulsive times of the impulsive sequence ζ in the
time interval (t, T ).

In order to derive our main result about the synchronization of stochastic neural networks,
we need to present the following lemma [16].

Lemma 1 [16] Consider the following stochastic system with impulses:
{
dx(t) = φ(t, x(t))dt + η(t, x(t)) dw(t), t ≥ t0, t 	= tk,
x

(
t+k

) − x
(
t−k

) = Ik
(
x

(
t−k

))
, k ∈ N.

(10)

Assume that there exist a Lyapunov function V (t, x(t)), and functions ϕ, ψk with ϕ(t, 0)
= ψk(0) = 0 for any t ≥ 0, k ∈ N, such that:

(i) There exist positive constants c1 and c2 such that for all t ≥ t0, c1‖x(t)‖ ≤ V (t, x(t))
≤ c2‖x(t)‖;

(ii) There exists continuous function ϕ : R
+ × R

+ → R, and ϕ(t, s) is concave on s for
each t ∈ R

+, such that LV (t, x) ≤ ϕ(t, V (t, x)), where the operator L is defined as
LV (t, x) = Vt (t, x) + Vx (t, x)φ(t, x) + 1

2 trace[ηT (t, x)Vxxη(t, x)];
(iii) There exist continuous and concave functions ψk : R

+ → R
+, k ∈ N, such that

V (t+k , x(t+k )) ≤ ψk(V (t−k , x(t−k )));

then exponential stability of the trivial solution of comparison system (11)
⎧
⎨

⎩

ω̇(t) = ϕ(t, ω(t)), t ≥ t0, t 	= tk;
ω

(
t+k

) = ψk
(
ω

(
t−k

))
, k ∈ N;

ω(t0) = E(V (t0, x0));
(11)

implies exponential stability of the trivial solution of stochastic impulsive system (10).
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In this paper, some standard notations will be used. In means the identity matrix of order
n. For any random variable ζ , E(ζ ) denoted the expectation value of ζ .

3 Main Results

In this section, we will derive our main results concerning the synchronization of stochastic
neural networks by impulsively controlling part of the states. Let λM be the largest eigenvalue
of the symmetric matrix −2C + BBT + MT M and α = [n + ρμ(μ + 2)]/n with ρ being
the number of the elements of the index set I(tk).

Theorem 1 Suppose that Assumptions 1 and 2 hold, and that the average impulsive interval
of the impulsive sequence {t1, t2, . . .} is less than Ta. If the following condition

ln α + (λM + L2)Ta < 0 (12)

holds, then the globally exponential synchronization in mean square between the drive-
response neural networks (1) and (2) is realized by the impulsive controller (5) acted on
partial components.

Proof Consider the following Lyapunov function:

V (e(t)) = 1

2
eT (t)e(t). (13)

When t ∈ (tk−1, tk), according to Assumptions 1 and 2, we can obtain that

LV (e(t))

= eT (t)[−Ce(t) + B f (e(t))] + 1

2
trace[gT (t, e(t))g(t, e(t))]

= −eT (t)Ce(t) + eT (t)B f (e(t)) + 1

2
trace[gT (t, e(t))g(t, e(t))]

≤ −eT (t)Ce(t) + 1

2
eT (t)B · (eT (t)B)T + 1

2
f T (e(t)) f (e(t)) + 1

2
‖Me(t)‖2

≤ −eT (t)Ce(t) + 1

2
eT (t)BBT e(t) + 1

2
L2eT (t)e(t) + 1

2
eT (t)MT Me(t)

= 1

2
eT (t)[−2C + BBT + MT M]e(t) + 1

2
L2eT (t)e(t)

≤ 1

2
(λM + L2)eT (t)e(t)

= (λM + L2)V (e(t)). (14)

Since e(t+k ) = e(t−k ) + μD(tk)e(t
−
k ), we have ei (t

+
k ) = (1 + μ)ei (t

−
k ) for i ∈ I(tk), and

ei (t
+
k ) = ei (t

−
k ) for i /∈ I(tk).

When t = tk , it follows that

V
(
e
(
t+k

)) = 1

2
eT

(
t+k

)
e
(
t+k

)

= 1

2

∑

i∈I(tk )

e2i
(
t+k

) + 1

2

∑

i /∈I(tk )

e2i
(
t+k

)

= 1

2
(1 + μ)2

∑

i∈I(tk )

e2i (tk) + 1

2

∑

i /∈I(tk )

e2i (tk). (15)
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Let m(tk) = min{|ei (tk)| : i ∈ I(tk)} and M(tk) = max{|ei (tk)| : i /∈ I(tk)}. According to
(7), we can conclude that 0 ≤ M(tk) ≤ m(tk). Considering α = [n + ρμ(μ+ 2)]/(1−α) ∈
(0, 1), we have n − ρ = ρ[α − (1 + μ)2]/n ≥ 0, and hence one obtains that

∑

i /∈I(tk )

e2i (tk) ≤ (n − ρ)M2(tk)

≤ (n − ρ)m2(tk)

= α − (1 + μ)2

1 − α
ρ · m2(tk)

≤ α − (1 + μ)2

1 − α

∑

i∈I(tk )

e2i (tk). (16)

Further, we have

(1 − α)
∑

i /∈I(tk )

e2i (tk) ≤ [
α − (1 + μ)2

] ∑

i∈I(tk )

e2i (tk). (17)

Then, one can conclude that

(1 + μ)2
∑

i∈I(tk )

e2i (tk) +
∑

i /∈I(tk )

e2i (tk) ≤
⎡

⎣α
∑

i∈I(tk )

e2i (tk) + α
∑

i /∈I(tk )

e2i (tk)

⎤

⎦

= α

n∑

i=1

e2i (tk)

= 2αV (e(tk)), (18)

which follows from (15) that

V
(
e
(
t+k

)) ≤ αV (e (tk)) . (19)

Combining (14) and (19) gives the following comparison system
⎧
⎨

⎩

ω̇(t) = (λM + L2)ω(t), t ≥ t0, t 	= tk, k = 1, 2, . . . ;
ω

(
t+k

) = αω
(
t−k

)
, α ∈ (0, 1);

ω(t0) = E(V (e(t0))).
(20)

Let Nζ (t, t0) denote the number of impulses in the time interval (t0, t). Solving the differential
equation (20) gives that, for any t ∈ [t0,+∞),

ω(t) = E(V (e(t0))) · e(λM+L2)(t−t0) · αNζ (t,t0). (21)

According to the definition of average impulsive interval, we have that

ω(t) ≤ E(V (e(t0))) · e(λM+L2)(t−t0) · α
t−t0
Ta

−N0

= α−N0E(V (e(t0))) · e(λM+L2)(t−t0) · e lnα
Ta

(t−t0)

= α−N0E(V (e(t0))) · e
[
(λM+L2)+ lnα

Ta

]
(t−t0)

. (22)

The exponential stability of the trivial solution of (20) can be concluded from the condition
of ln α + (λM + L2)Ta < 0. Hence, by the comparison theorem, we can conclude that
the globally exponential synchronization in mean square between the drive-response neural
networks (1) and (2) can be realized by the impulsive controller (5) acted on partial states.
The proof is completed.
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Remark 1 In [12,14], the synchronization problemof neural networkswas studied by design-
ing impulsive controllers, and in both papers, all the states of the response neural networks
should be controlled. From the aspect of practical application, our method is required to
only control part of the states, and hence would be more easy and less cost to implement in
practical systems.

Remark 2 Moreover, in [6,12,14], the lower or upper bound of the impulsive intervals was
used to describe the impulsive sequence and further derived the main results. According to
the analysis presented in [22], our result is related to the average impulsive interval, which
can allow the upper bound of the impulsive intervals very big and hence would make our
result less conservative.

Remark 3 In this paper, the parameters of drive and response systems are exactly the same,
and the complete synchronization problem problem is studied. In fact, the results can be
extended to the models of coupled systems with non-identical parameters, and the synchro-
nization with errors can be well studied using our method.

Recalling the symbols in (12), we can observe that λM and L come from the dynamics of
neural networks, α = 1+ ρ

n μ(μ+2) is determined by the proportion of the controlled states
ρ
n and impulsive strength μ, and Ta determines the impulsive frequency of the impulsive
sequence. From this observation, Theorem 1 presents an explicit relationship among these
key factors affecting the synchronization of neural networks.

If only one state is impulsively controlled, that is ρ = 1, then we can figure out Ta by
using (12) to guarantee the synchronization. Following please find a corollary to present this
idea.

Corollary 1 Suppose that Assumptions 1 and 2 hold, and the average impulsive interval of
the impulsive sequence {t1, t2, . . .} is less than Ta. The drive-response neural networks (1)
and (2) can be synchronized in mean square by single impulsive controller (5) acted on one
component, if the following condition is satisfied:

Ta < − ln

(
1 + μ(μ + 2)

n

) /(
λM + L2) . (23)

Remark 4 The synchronization problem of chaotic systems with uncertain bounded parame-
ters and/or delays has been widely studied. The main idea in this paper can be used to handle
that kind of synchronization problem to further reduce the conservativeness and also reduce
the cost. In this paper, the impulsive strength is assumed to be the same at each time instant
just for simplicity. In fact, we can similarly derive some interesting results that the impulsive
strength could be different at different instants.

4 Numerical Example

In this section, numerical examples are presented to illustrate our theoretical results. A chaotic
neural network [42] is used for illustration, and its dynamic is described by the following
stochastic differential equation:

dx(t) = [−Cx(t) + B f̄ (x(t)) + I
]
dt + ḡ(t, x(t))dw(t), (24)
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Fig. 1 Impulsive sequence acted on the response neural network
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Fig. 2 The error state e(t) of the drive and response neural networks under impulsive controller

where x(t) ∈ R3, and C = diag{1.2, 1.2, 1.2}, B =
⎛

⎝
1.16 −1.5 −1.5
−1.5 1.16 −2.0
−1.2 2.0 1.16

⎞

⎠, the activation

function is f̄ (x(t)) = (tanh(x1), tanh(x2), tanh(x3))T , I = (0, 0, 0)T , and the noise intensity
function matrix is ḡ(t, x(t)) = 0.5 · ‖x(t)‖ · I3. Then Assumptions 1 and 2 are satisfied
with parameters’ values being L = 1 and M = 0.5I3. Simple computation gives that
λM = 10.8253.

The response neural network with impulsive controllers is described by the following
equation:

dy(t) = [−Cy(t) + B f̄ (y(t)) + I
]
dt + ḡ(t, y(t))dw(t) + u(t)dt, (25)
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Fig. 3 The subscript of the controlled component at the impulsive instant

where u(t) ∈ R3 is the impulsive controller determined by (5). In this example, we assume
that only one component is controlled at each impulsive instant and the impulsive control
gain isμ = −0.8. Following Corollary 1, one can conclude that the drive and response neural
networks can be synchronized in mean square if Ta < 0.0326. In the numerical example, we
choose an impulsive sequencewith Ta = 0.03, which is presented in Fig. 1. By randomly uni-
formly choosing the initial values from [−5, 5], Fig. 2 displays the synchronization behavior
of impulsively coupled neural networks. The subscript of the controlled component at the
impulsive instant is shown Fig. 3. It can be observed from the numerical simulations that our
proposed impulsive controllers acting only on part of the components are very effective.

5 Conclusion

In this paper, the synchronization problem between drive and response neural networks is
studied. New impulsive controllers are designed to synchronize the drive and response neural
networks by only controlling part components of the state at discrete instants. Sufficient
and efficient criterion is derived to guarantee synchronization, and the criterion is closely
related to these factors including system dynamics itself, the proportion of the controlled
components, impulsive frequency, and impulsive gain. The relationship among these factors
is explicitly and clearly presented. We finally present a numerical example to illustrate our
main theoretical results. Further, effective impulsive control strategy will be considered for
the synchronization and control of chaotic systemswith time delay and parametersmismatch.
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