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Abstract This paper presents some theoretical results on dynamical behavior of complex-
valued neural networks with discontinuous neuron activations. Firstly, we introduce the
Filippov differential inclusions to complex-valued differential equations with discontinuous
right-hand side and give the definition of Filippov solution for discontinuous complex-valued
neural networks. Secondly, by separating complex-valued neural networks into real and
imaginary part, we study the existence of equilibria of the neural networks according to
Leray–Schauder alternative theorem of set-valued maps. Thirdly, by constructing appropri-
ate Lyapunov function, we derive the sufficient condition to ensure global asymptotic stability
of the equilibria and convergence in finite time. Numerical examples are given to show the
effectiveness and merits of the obtained results.

Keywords Discontinuous complex-valued Hopfield neural network · Global stability ·
Convergence in finite time · Differential inclusion · Filippov solution

1 Introduction

As applications of neural networks spread more widely, developing neural networks models
that can deal with complex numbers is desired in various fields, such as optoelectronics,
remote sensing, quantum devices, signal processing and electromagnetic [1–4]. Compared
with real-valued neural networks, complex-valued neural networks can explore new capabili-
ties and higher performance. For example, as Chakravarthy point out in [5], a complex-valued
Hopfield neural networks can exist in bothfixedpoint and oscillatorymodes. In thefixed-point
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mode, complex-valued neural network is similar to a continuous-time Hopfield network. In
oscillatory mode, when multiple patterns are stored, the network wanders chaotically among
patterns. On the other aspect, in the real-valued neural network, the activation function is usu-
ally chosen to be a smooth and bounded analytic function such as sigmoid function. However,
in the complex-valued domain, such condition is not suitable for complex-valued activation
function because of the Liouville’s theorem, which says every bounded and analytic function
in complex domain must be a constant function. In place of analytic function, discontinu-
ous complex-valued function becomes an important choice when we design complex-valued
neural networks.

In recent years, researchers have paid more attention on the dynamics of complex-valued
neural networks. To study the dynamical behavior, many methods are proposed, such as
Lyapunov method, synthesis method and matrix measure method [7–12]. In [7], the authors
studied the existence of energy function for complex-valued Hopfield neural networks and
proposed the stability condition using Lyapunovmethod. Based on delta differential operator,
global stability of complex-valued neural networks on time scales is studied using Lyapunov
method in [8,9]. The stability criteria of discrete complex-valued neural networks are derived
in [10] using synthesis method. In [11,12], the stability of complex-valued neural networks
is studied based on matrix measure theory. Compared with the above three methods, Lya-
punov method is easier to understand, but it is difficult to construct a Lyapunov function,
especially for discontinuous complex-valued neural networks. Synthesis method is usually
used to analyze discrete neural networks. The advantage of matrix measure method is to
avoid constructing Lyapunov function, but the proposed condition is difficult to verify. As
time delay is inevitable in real applications, the dynamics of complex-valued neural net-
works with time delay have attracted many researchers’ interest [13–25]. The stability and
bifurcation set in parameter plane for first-order complex delayed differential equations are
studied in [13]. The stability conditions of complex-valued recurrent neural networks with
time delay are derived in [14], and the stability of equilibria is further studied in [15] by sepa-
rating the real and imaginary parts. In [16], the authors improved the results in [14,15] using
complex-valued Lyapunov function. In [17,18], the authors researched the global stability
and boundedness for complex-valued recurrent neural networks on time scales. The authors
studied the exponential stability for delayed complex-valued neural networks in [23–25].
However, all these results are required the activation function satisfying Lipschitz condi-
tion or its real part and imaginary part have bounded partial derivatives. Obviously, these
assumptions are very strict in real application. As Hopfield point out in [26], discontinuous
character of activation function can not be negligible when we consider the dynamics of
neural networks.

As far as we know, there are few results on dynamics analysis of complex-valued neural
networks with discontinuous activation functions [27–30]. In [27], the multistability of
complex-valued recurrent neural networks with real–imaginary-type activation functions
is studied. In [28], the author studied the multiple μ-stability of complex-valued neural
networks. The author studied the dissipativity, passivity and passification condition of
memristor-based complex-valued recurrent neural net works in terms of LMIs in [29,30].
However, all the above results did not consider the dynamical behavior caused by discon-
tinuous character. If the equilibria are located on the boundaries of activation functions, the
methods in [27–30] can not used to analyze the dynamics of discontinuous complex-valued
neural networks.

In the past decades, real-valued neural networks with discontinuous activation functions
have been extensively studied via differential inclusion theory [31–39], which can analyze
the dynamical behavior of discontinuous neural networks successfully. However, the analysis
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of stability issues of discontinuous complex-valued neural networks is not a simple task and
there still lacks effect analysis methods. Such dynamical behavior analysis is faced with three
difficulties as follows:

(1) How to define Filippov differential inclusions and Filippov solution of discontinuous
complex-valued differential equation?

(2) How to ensure the existence of Filippov solution and equilibrium point for complex-
valued Hopfield neural networks with discontinuous activation functions?

(3) How to propose some sufficient conditions to ensure the stability and convergence of
equilibria for discontinuous complex-valued Hopfield neural networks?

As far as we know, the result on dynamics of discontinuous complex-valued neural net-
works using complex differential inclusion theory are not yet available. Motivated by the
above discussion, we study the dynamical behavior of discontinuous complex-valued Hop-
field neural networks in this paper. The structure of this paper is outlined as follows. In
Sect. 2, we introduce the Filippov differential inclusions for complex-valued differential
equations with discontinuous right-hand side and give some preliminaries and lemmas. Sec-
tion3 presents the main results, including the existence and uniqueness of equilibria, global
asymptotic stability and convergence in finite time. Numerical examples are given in Sect. 4
and some concluding remarks are made in Sect. 5.

Notation throughout this paper, R andC show the set of real numbers and the set of complex
numbers, respectively. Rn andCn show, respectively, the n-dimensional Euclidean space and
the n-dimensional unitary space. Rn×n and Cn×n are, respectively, the set of all n × n real
matrixes and the set of all n × n complex matrices. ‖ · ‖stands for the Euclidean vector norm
or the induced matrix 2-norm. If A ∈ Rn×n, AT shows the transpose of A, A > 0 (A < 0)
means that A is positive definite (negative definite), and λM (A) (λm(A)) shows themaximum
(minimum) eigenvalue of A. Given a set Q ∈ Cn (Q ∈ Rn), K [Q] denotes the closure of
the convex hull of Q. I is used to denote an identity matrix.

2 Problem Description and Some Preliminaries

Let us consider the following complex-valued Hopfield neural networks

żi (t) = −di zi (t) +
n∑

j=1

ai j f j
(
z j (t)

)+ ui , i = 1, 2, . . . , n,

or

ż(t) = −Dz(t) + A f (z(t)) + u, (2.1)

where z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Cn is the state vector, D = diag{d1, d2, . . . , dn}
with di > 0 is self-feedback connection weight matrix, A = [ai j ]n×n ∈ Cn×n means the
feedback connection weight matrix, f (z(t)) = [ f1(z1(t)), f2(z2(t)), . . . , fn(zn(t))]T ∈ Cn

denotes the complex-valued vector activation function and u = [u1, u2, . . . , un]T ∈ Cn

means the vector of constant neuron inputs.
The discontinuous neuron activations fi (zi ) are assumed to satisfy the following proper-

ties.
A(1) For each i = 1, 2, . . . , n, fi (zi ) is continuous in finite open domains Gk and

discontinuous at the boundary of Gk, which is composed by finite smooth curves. Gk, k =
1, 2, . . . , s satisfies

⋃s
k=1(Gk

⋃
∂Gk) = C and Gl

⋂
GK = ∅ for 1 � l �= k � s.
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A(2)For every k = 1, 2, . . . , s, the limitation limz→z0,z∈Gk fi (z) exists, where z0 ∈ ∂Gk .

A(3) There exist two nonnegative constants αi and βi such that

‖ fi (zi (t))‖ � αi ‖zi (t)‖ + βi . (2.2)

Remark 1 According to the Liouville’s theorem [6], every bounded entire function must
be a constant in the complex domain, that is to say, if f (z) is bounded and analytic for
all z ∈ C, f (z) is a constant function. When we design a complex-valued neural network
model, how to choose activation function becomes an important issue. Since the discontinuity
of complex-valued functionsmeans non-analytic, discontinuous activation functions are very
useful in constructing complex-valued neural networks.

Remark 2 Though the activation functions are discontinuous in [27,28], the authors did not
consider the case which the equilibria of neural networks are located on the boundaries of
discontinuous complex-valued activation functions. In this paper, we analyze the existence
and uniqueness of equilibria and study the dynamical behavior under the framework of
Filippov differential inclusion.

Remark 3 The assumption A(3) is less conservative than the existing results. If βi = 0,
assumption A(3) plays a similar role with Lipschitz condition, which is needed in [14–16].
If αi = 0, this means fi is a bounded function, which is required in [27].

Before giving the main results, we introduce the Filippov differential inclusions for
complex-valued differential equations with discontinuous right-hand side. Consider the fol-
lowing autonomous complex-valued differential equation:

ż(t) = f (z(t)), (2.3)

where f :Cn �→ Cn is measurable and essentially locally bounded.

Definition 2.1 Let E ∈ Cn, z �→ F(z) is called a set-valued map from E �→ Cn if to each
point z of a set E ∈ Cn, there corresponds a nonempty set F(z) ∈ Cn . A set-valued map
F with nonempty values is said to be upper semi-continuous at z0 ∈ E if for any open set
N containing F(z0), there exists a neighborhood M of z0 such that F(M) ⊂ N , where
F(M) = ⋃

y∈M F(y). F(z) is said to have a closed (convex, compact) image if for each
z ∈ E; F(z) is closed (convex, compact).

Definition 2.2 For system (2.3) with discontinuous right-hand side, a set-valued map
F :Cn �→ F(z) follows

F(z) =
⋂

δ>0

⋂

μ(N )=0

K [ f (B(z, δ)\N )], (2.4)

where K (E) denotes the closure of the convex hull of set E, f (B(z, δ)\N ) = ⋃
y∈(B(z,δ)\N )

f (y), B(z, δ) = {y|‖y − z‖ ≤ δ} is the ball with center at x and radius δ, and μ(N )

is Lebesgue measure of set N ∈ Cn . A solution in the sense of Filippov (or Filippov
solution) of Eq. (2.3) with initial condition z(t0) = z0 is an absolutely continuous vector-
value function z(t) on any compact subinterval of [t0, T ), which satisfies z(t0) = z0 and
differential inclusions:

ż(t) ∈ F(z), a.e. t ∈ [t0, T ) .

z(t) = z∗ is called an equilibria of system (2.3) if 0 ∈ F(z∗) holds for any t ∈ R.
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Remark 4 According to the definition of absolutely continuity for real function,we can define
the absolutely continuity for complex variable function as follows. Suppose z(t): t �→ C is
complex-valued function defined on [a, b]. z(t) is said to be absolutely continuous on [a, b]
if for any positive number ε > 0, there exist δ > 0, such that for any finite open intervals
(ai , bi ), i = 1, 2, . . . , n satisfying

∑n
i=1(bi − ai ) < δ,

∑n
i=1 ‖z(bi ) − z(ai )‖ < ε holds.

It is obvious that the absolutely continuity of z(t) on [a, b] is equivalent to that both x(t)
and y(t) are absolutely continuous on [a, b], where x(t) and y(t) are the real and imaginary
part of z(t), respectively.

Remark 5 The complex set-valued map F : [a, b] → Pf (Cn) is said to be measurable, if
for any z ∈ Cn, the R+−valued function t �→ dist(z, F(z)) = inf{‖z − v‖, v ∈ F(t)} is
measurable.

Definition 2.3 A vector function z(t) = [z1(t), z2(t), . . . , zn(t)]T is a state solution of
discontinuous system (2.1) on [t0, T ) if z(t) is absolutely continuous on any subinterval
[t1, t2] of [t0, T ) and there exists a measurable function γ (t) = [γ1(t), γ2(t), . . . , γn(t)]T
such that γ j (t) ∈ K [ f j (z j (t))] for a.e. t ∈ [t0, T ) satisfies:

żi (t) = −di zi (t) +
n∑

j=1

ai jγ j (t) + ui , for a.e. t ∈ [t0, T ) . (2.5)

The measurable γ (t) which satisfies (2.5) is called an output solution associated with state
solution z(t). With this definition, it turns out that the sate z(t) is a solution of system (2.1)
in sense of Filippov since it satisfies:

żi (t) ∈ −di zi (t) +
n∑

j=1

ai j K
[
f j
(
z j (t)

)]+ ui , for a.e. t ∈ [t0, T ) .

For an initial value problem (IVP) associated to the complex-valued neural networks
model (2.1), we give the following definition.

Definition 2.4 A absolutely continuous function z(t) = [z1(t), z2(t), . . . , zn(t)]T associ-
ated with a measurable function γ (t) = [γ1(t), γ2(t), . . . , γn(t)]T is said to be a solution of
the IVP for system (2.1) on [t0, T ) with initial value z(t0) = z0, if the following condition
holds for all i = 1, 2, . . . , n,

{
żi (t) = −di zi (t) +∑n

j=1 ai jγ j (t) + ui , for a.e. t ∈ [t0, T ),

γ j (t) ∈ K [ f j (z j (t))], for a.e. t ∈ [t0, T ).

Definition 2.5 z∗ is said to be an equilibrium point of set-valued map F(z) if 0 ∈ F(z∗).
Particulary, z∗ is said to be an equilibrium of system (2.1) if there exists γ ∗ ∈ K [ f (z∗)] such
that

−Dz∗ + Aγ ∗ + u = 0,

and γ ∗ is said to be an output equilibrium point of system (2.1) corresponding to z∗.

Definition 2.6 Assume z∗ is an equilibrium point of system (2.1). z∗ is said to be globally
asymptotically stable if it is stable in the sense of Lyapunov and global attractive, where
global attractiveness means that every trajectory z(t) tends to z∗ as t → ∞.
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Definition 2.7 If γ : [a, +∞) �→ Cn is a measurable function, γ ∗ is said to be a limit of
γ (t) in measure if ∀ε > 0, ∃tε > 0 such that μ{t ∈ [tε, +∞): ‖γ (t) − γ ∗‖ > ε} < ε as
t → +∞. In this case, we writeμ− limt→+∞ γ (t) = γ ∗, i.e., output solution γ (t) converge
to γ ∗ in measure.

Definition 2.8 The system (2.1) is said to be globally convergent in finite time if the following
conditions hold,

(i) Discontinuous system (2.1) has a unique equilibriumpoint z∗ and aunique corresponding
output equilibrium point γ ∗,

(ii) For each z0 ∈ Cn and any solution z(t) of system (2.1) with z(t0) = z0, there exists
t̃ > 0, such that z(t) = z∗ for t > t̃ .

In this paper, as in [12,17,21,27], we choose the following real–imaginary-type function
as activation functions in system (2.1),

fi (zi ) = f Ri (Re (zi )) + f Ii (Im (zi )) , (2.6)

where f Ri (Re(zi )) and f Ii (Im(zi )) are discontinuous functions. In order to study the
stability of system (2.1), we separate it into its real and imaginary parts. Let zi (t) =
xi (t) + iyi (t), ai j = aR

i j + iaI
i j , fi (zi (t)) = f Ri (xi (t)) + i f Ii (yi (t)) and u = uR + iuI ,

where i shows the imaginary unit, i.e., i = √−1. Denote x = [x1, x2, . . . , xn]T ∈ Rn and
y = [y1, y2, . . . , yn]T ∈ Rn, then system (2.1) can be separated into its real and imaginary
parts as follows:

{
ẋ = −Dx + AR f R(x) − AI f I (y) + uR,

ẏ = −Dy + AI f R(x) + AR f I (y) + uI ,
(2.7)

where AR = [aR
i j ], AI = [aI

i j ], f R(x) = [ f R1 (x1), f R2 (x2), . . . , f Rn (xn)]T, uR =
[uR

1 , uR
2 , . . . , uR

n ]T, f I (x) = [ f I1 (y1), f I2 (y2), . . . , f In (yn)]T anduI = [uI
1, u

I
2, . . . , u

I
n]T.

From A(1) and A(2), it is easy to know that f Ri (xi ) is discontinuous with some points
xki and f Ii (yi ) is discontinuous with some points yki . According to A(2), for every i =
1, 2, . . . , n, the limitations limx→x0 f Ri (x) = f Ri (x0) and limy→y0 f Ii (y) = f Ii (y0) exist
where (x, y) ∈ Ḡk and (x0, y0) ∈ ∂Ḡk . Based on above analysis and real-valued set value
mapping, we can choose a special way to define the complex set valued maps for (2.6) as
follows:

F(z) =
⋂

δ>0

⋂

μ(N )=0

K
[
f R(B(x, δ)\N )

]
+ i

⋂

δ>0

⋂

μ(N )=0

K
[
f I (B(y, δ)\N )

]
, (2.8)

where f R(B(x, δ)\N ) = ⋃
x̄∈(B(x, δ)\N ) f R(x̄), B(x, δ) = {x̄ |‖x̄−x‖ ≤ δ} is the ballwith

center at x and radius δ, f I (B(y, δ)\N ) = ⋃
ȳ∈(B(y, δ)\N ) f I (ȳ), B(y, δ) = {ȳ|‖ȳ− y‖ ≤

δ} is the ball with center at y and radius δ and μ(N ) is Lebesgue measure of set N ∈ Rn .

Remark 6 Compared with Definition2.2, it follows that
⋂

δ>0

⋂

μ(N )=0

K [ f (B(z, δ)\N )] ⊆
⋂

δ>0

⋂

μ(N )=0

K
[
f R(B(x, δ)\N )

]

+ i
⋂

δ>0

⋂

μ(N )=0

K
[
f I (B(y, δ)\N )

]
, (2.9)
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Fig. 1 Complex differential inclusion of f (·) at z = 0 in Definition2.2

where f (z) = f R(x) + i f I (y). For example, let

f (z) =

⎧
⎪⎪⎨

⎪⎪⎩

−0.2 − 0.1i, x < 0 and y < 0,
−0.1 + 0.1i, x < 0 and y > 0,
0.1 − 0.1i, x > 0 and y < 0,
0.2 + 0.1i, x > 0 and y > 0.

⋂
δ>0

⋂
μ(N )=0 K [ f (B(z, δ)\N )] and

⋂
δ>0

⋂
μ(N )=0 K [ f R(B(x, δ)\N )] + i

⋂
δ>0⋂

μ(N )=0 K [ f I (B(y, δ)\N )] at point z = 0 are shown in Figs. 1 and 2, respectively. It
is easy to see the correction of formula (2.9).

According to A(3), there exist αR
i , ηR

i and α I
i , ηI

i satisfying
{
supγ R

i ∈K [ f Ri (xi )] |γ R
i | ≤ αR

i |xi | + ηR
i ,

supγ I
i ∈K [ f Ii (yi )] |γ I

i | ≤ α I
i |yi | + ηI

i ,
(2.10)

where

K
[
f Ri (xi )

]
=
[
min

{
f R−
i (xi ) , f R+

i (xi )
}

, max
{
f R−
i (xi ) , f R+

i (xi )
}]

,

and

K
[
f Ii (yi )

]
=
[
min

{
f I−i (yi ) , f I+i (yi )

}
, max

{
f I−i (yi ) , f I+i (yi )

}]
.

According to Definition2.3, that z(t) = x(t) + iy(t) is a solution of system (2.1) is
equivalent to that [xT(t), yT(t)]T is a solution of system (2.7), i.e.,

{
ẋ(t) ∈ −Dx(t) + ARK [ f R(x)] − AI K [ f I (y)] + uR,

ẏ(t) ∈ −Dy(t) + AI K [ f R(x)] + ARK [ f I (y)] + uI .
(2.11)

Now denote

w(t) =
[
x(t)
y(t)

]
, D̄ =

[
D 0
0 D

]
, Ā =

[
AR −AI

AI AR

]
,
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Fig. 2 Complex differential inclusion of f (·) at z = 0 in the special way of (2.7)

K [ f (w(t))] =
[
K [ f R(x(t))]
K [ f I (y(t))]

]
, ū =

[
uR

uI

]
.

Equation (2.11) can be rewritten as

ẇ ∈ −D̄w + ĀK [ f (w(t))] + ū. (2.12)

According to Definition2.4, we can give the definition of the IVP associated to system
(2.7) as follows.

Definition 2.9 A absolutely continuous functions [xT, yT]T associated with a measurable
functions [(γ R)T, (γ I)T]T is said to be a solution of the IVP for system (2.7) on [t0, T ) with
initial value x(t0) = x0, y(t0) = y0, if the following condition holds,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −Dx(t) + ARγ R(t) − AI γ I + uR, for a.e. t ∈ [t0, T ),

ẏ(t) = −Dy(t) + AI γ R(t) + ARγ I + uI , for a.e. t ∈ [t0, T ),

γ R
j (t) ∈ K [ f R(x)], for a.e. t ∈ [t0, T ),

γ I
j (t) ∈ K [ f I (x)], for a.e. t ∈ [t0, T ),

where x(t) = [x1(t), x2(t), . . . , xn(t)]T, y(t) = [y1(t), y2(t), . . . , yn(t)]T, γ R(t) =
[γ R

1 (t), γ R
2 (t), . . . , γ R

n (t)]T and γ R(t) = [γ I
1(t), γ I

2(t), . . . , γ
I
n(t)]T.

According to Definition2.5, z∗ = x∗ + iy∗ is an equilibrium point of system (2.1) if and
only if [(x∗)T, (y∗)T]T is an equilibrium point of system (2.7). That is to say, there exist
γ R∗ = [γ R∗

1 , γ R∗
2 , . . . , γ R∗

n ]T and γ I ∗ = [γ I ∗
1 , γ I ∗

2 , . . . , γ I ∗
n ]T, such that

{
0 = −Dx∗ + ARγ R∗ − AI γ I ∗ + uR,

0 = −Dy∗ + AI γ R∗ + ARγ I ∗ + uI ,
(2.13)
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holds, where γ R∗
i ∈ K [ f Ri (x∗

i )] and γ I ∗
i ∈ K [ f Ii (y∗

i )]. Therefore, we can analyze the
existence and global stability of equilibrium point for system (2.7) through analyzing the
equilibrium point of (2.12).

Before giving the stability analysis on the equilibrium point of system (2.1), we present
four important lemmas, which will be used later.

Lemma 2.10 (Leray–Schauder alternative theorem [40]) If X is a Banach space, E ⊂ X is
nonempty convexwith 0 ∈ E andG: E �→ Pkc(E) is an upper semi-continuousmultifunction
which maps bounded set into relatively compact sets, then one of the following statements is
true:

(i) the set 
 = {x ∈ E: x ∈ λG(x), λ ∈ (0, 1)} is unbounded;
(ii) the G(·) has a fixed point in E, i.e., there exists x ∈ E such that x ∈ G(x). Here Pkc(E)

denotes the collection of all nonempty, compact, convex subset of E .

Lemma 2.11 [31,33] If V (x): Rn → R is C-regular, and x(t) is absolutely continuous on
any compact subinterval of [0, +∞). Then, x(t) and V (x(t)): [0, +∞) → R are differen-
tiable for a.a. t ∈ [0, +∞) and

d

dt
V (x(t)) = γ (t)T ẋ(t), ∀t ∈ ∂cV (x(t)),

where ∂cV (x(t)) is the Clark generalized gradient of V at x(t) and γ (t) is an measurable
function.

Lemma 2.12 [41] Assume that there exists a continuous, differentiable almost everywhere,
positive definite and radially unbounded function V : Rn �→ R, such that:

(i) V̇ ≤ 0 for all x ∈ Rn;
(ii) The origin is the only invariant subset of the set E = {x ∈ Rn: V̇ = 0}.
Then the equilibrium x = 0 of system (2.1) is globally asymptotically stable on Rn .

Lemma 2.13 [14] For any vectors x, y ∈ Rm and positive matrix P ∈ Rm×m, the following
matrix inequality holds:

2xTy ≤ xTQx + yTQ−1y.

3 Dynamical Behavior Analysis

The goal of this section is to investigate the dynamical behavior of system (2.1). Firstly, we
investigate the viability, namely, there exists at least one solution of system (2.1) on [0, +∞].

Lemma 3.1 [36] If a set-valued map F: E �→ Rn, (E ∈ Rn) is upper semi-continuous in
Rn with nonempty bounded closed convex values and there exist nonnegative constants p
and q such that ‖F(x)‖ ≤ p‖x‖+q, then the maximal interval of existence of each solution
with initial condition x(t0) = x0 of the differential inclusion ẋ ∈ F(x) is [t0, +∞).

Theorem 3.2 Suppose A(1)–A(3) are satisfied, then system (2.1)with initial value z(0) = z0
has at least a solution z(t) on [0, +∞).
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Proof Based on the detailed discussions in Sect. 2 and formula (2.12), the set-valued map
w(t) �→ −D̄w(t) + ĀK [ f (w(t))] + ū is upper-semi-continuous with nonempty compact
convex values, and the local existence of a solution w(t) of system (2.12) can be guaranteed
[37].

From A(3) and formula (2.10), there exist two nonnegative constants ᾱ, β̄ satisfying

‖K [ f (w(t))]‖ ≤ ᾱ‖w(t)‖ + β̄. (3.1)

It follows that

‖ − D̄w(t) + ĀK [ f (w(t))] + ū‖
≤ ‖D̄‖‖w(t)‖ + ‖ Ā‖(ᾱ‖w(t)‖ + β̄) + ‖ū‖
= (‖D̄‖ + ᾱ‖ Ā‖)‖w(t)‖ + (β̄‖ Ā‖ + ‖ū‖)
= ¯̄α‖w(t)‖ + ¯̄β,

(3.2)

where ¯̄α = ‖D̄‖ + ᾱ‖ Ā‖ and ¯̄β = β̄‖ Ā‖ + ‖ū‖.
According to (2.12), for the fixed w, we have

w(t) ∈ w(0) +
∫ t

0
[−D̄w(s) + ĀK [ f (w(s))] + ū]ds.

It follows that

‖w(t)‖ ≤ ‖w(0)‖ +
∫ t

0
‖ − D̄w(s) + ĀK [ f (w(s))] + ū‖ds

≤ (‖w(0)‖ + ¯̄βt) + ¯̄α
∫ t

0
‖w(s)‖ds.

By the Gronwall inequality, one obtains

‖w(t)‖ ≤ (‖w(0)‖ + ¯̄βt)e ¯̄αt .

Hence, since w(t) remains bounded for positive times, it is defined on [0, +∞), i.e., x(t)
and y(t) are existed on [0, +∞). Let z(t) = x(t) + iy(t), then z(t) exists on [0, +∞) and
satisfies:

ż(t) ∈ −Dz(t) + AK [ f (z)] + u.

This completes the proof of Theorem3.2. ��
Theorem 3.3 There exists at least one equilibrium of system (2.1) if A(1)–A(3) are satisfied
and the following two assumptions hold
A(4) For any (u1, v1) ∈ R2 and (u2, v2) ∈ R2, there exist two constant numbers LR

i and
L I
i , such that

γ R
i − ζ R

i

u1 − u2
≥ −LR

i
γ I
i − ζ I

i

v1 − v2
≥ −L I

i , (3.3)

for ∀γ R
i ∈ K [ f Ri (u1)], ζ R

i ∈ K [ f Ri (u2)], γ I
i ∈ K [ f Ii (v1)] and ζ I

i ∈ K [ f Ii (v2)].
A(5) There exists P = diag{p1, p2, . . . , pn} with pi > 0 such that P AI =

(AI )TP, PAR + (AR)TP < 0, and

Li pi (‖AR(AR)T + AI (AI )T‖)
dmλm

<
1

4
, (3.4)

where dm = min1≤i≤n{di }, λm = −λM {PAR + (AR)TP} and Li = max{LR
i , L I

i }.
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Proof Let �(w) = w − D̄w + ĀK [ f (w)] + ū, then that w∗ is an equilibrium of (2.12) is
equivalent to say that w∗ is a fixed point of�(·), i.e., w∗ ∈ �(w∗). It is clear that �: R2n �→
Pkc(R2n) is an upper semi-continuous multifunction whichmaps bounded sets into relatively
compact sets under the assumptions A(1)–A(3). In order to solve the fixed point problem
w∗ ∈ �(w∗), it is sufficient to show that the set 
 = {w ∈ R2n :w ∈ θ�(w), θ ∈ (0, 1)} is
bounded. Let

�(w, θ) = −(1 − θ)w + θ [−D̄w + ĀK [ f (w)] + ū], (3.5)

then 
 = {w ∈ R2n : 0 ∈ �(w, θ), θ ∈ (0, 1)}. Rewrite (3.5) as
�(w, θ) = −(1 − θ)w + θ [−D̄w + ĀK [ f̃ (w)] + ˜̄u], (3.6)

where f̃ (w) = f (w) − η̃, η̃ ∈ K [ f (0)] is a constant vector, and ˜̄u = Āη̃ + ū.

From A(5), if Li > 0, we can choose a positive number c such that

2‖(AR)TAR + (AI )TAI ‖
dmλm

< c <
1

2Li pi
. (3.7)

If Li < 0, we can choose a positive number c such that

2‖(AR)TAR + (AI )TAI ‖
dmλm

< c. (3.8)

For any s ∈ �(w, θ), there exits γ̂ ∈ K [ f̃ (w)] such that s = −(1−θ)w+θ [−D̄w+ Āγ̂ +
˜̄u],where γ̂ = [(γ̂ R)T, (γ̂ I )T]T, γ̂ R ∈ K [ f̃ R(x)], f̃ R(x) = f R(x)−η̃R, η̃R ∈ K [ f R(0)]
and γ̂ I ∈ K [ f̃ I (y)], f̃ I (y) = f I (y) − η̃I , η̃I ∈ K [ f I (0)]. From the assumption A(4),
we can obtain that for any (xi , yi ) ∈ R2 and γ̂ R

i ∈ K [ f̃ Ri (xi )], γ̂ I
i ∈ K [ f̃ Ii (yi )], it follows

that

γ̂ R
i

xi
≥ −LR

i ≥ −Li
γ̂ I
i

yi
≥ −L I

i ≥ −Li .

(3.9)

Therefore,

x2i + 2c
(
γ̂ R
i

)
pi xi ≥ (1 − 2cpi Li ) x

2
i , y2i + 2c

(
γ̂ I
i

)
pi yi ≥ (1 − 2cpi Li ) y

2
i .

(3.10)

Since di > 0, one obtains

di x
2
i + 2c

(
γ̂ R
i

)
pidi xi ≥ (1 − 2cpi Li ) di x

2
i , di y

2
i + 2c

(
γ̂ I
i

)
pidi yi

≥ (1 − 2cpi Li ) di y
2
i .

(3.11)

It follows that

−
(
xTDx + 2c

(
γ̂ R
)T

PDx

)
≤ −εdmx

Tx,

−
(
yTDy + 2c

(
γ̂ I
)T

PDy

)
≤ −εdm y

Ty, (3.12)

where ε = min1≤i≤n(1 − 2cpi Li ) > 0.
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Since PAI = (AI )TP, it is easy to get (γ̂ R)TPAI γ̂ I = (γ̂ I )TPAI γ̂ R, which will be
used in (3.13).

Note that for any s ∈ �(w, θ),

(2w + 2cP γ̂ )Ts = (2w + 2cP γ̂ )T[−(1 − θ)w + θ(−D̄w + Āγ̂ + ˜̄u)]
= −2(1 − θ)xTx − 2(1 − θ)c

(
γ̂ R
)T

Px − 2θxTDx − 2cθ
(
γ̂ R
)T

PDx

+ θ
[
2xT

(
AR γ̂ R − AI γ̂ I

)]
+ 2θc

(
γ̂ R
)T

P
(
AR γ̂ R − AI γ̂ I

)

+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR − 2(1 − θ)yTy − 2(1 − θ)c
(
γ̂ I
)T

Py

− 2θyTDy − 2cθ
(
γ̂ I
)T

PDy + θ
[
2yT

(
AR γ̂ I + AI γ̂ R

)]

+ 2θc
(
γ̂ I
)T

P
(
AI γ̂ R + AR γ̂ I

)
+ θ

(
2y + 2cP γ̂ I

)T ˜̄uI

≤ − 2(1 − θ)xTx − 2(1 − θ)c
(
γ̂ R
)T

Px − θxTDx − 2cθ
(
γ̂ R
)T

PDx

− θ

⎡

⎣
(
D

1
2 x√
2

− √
2D− 1

2 AR γ̂ R

)T (
D

1
2 x√
2

− √
2D− 1

2 AR γ̂ R

)⎤

⎦

− θ

[(
1√
2
D

1
2 x + √

2D− 1
2 AI γ̂ I

)T ( 1√
2
D

1
2 x + √

2D− 1
2 AI γ̂ I

)]

+ 2θ
(
γ̂ R
)T (

AR
)T

D−1AR γ̂ R + 2θ
(
γ̂ I
)T (

AI
)T

D−1AI γ̂ I

− θc
(
γ̂ R
)T (

P
(
−AR

)
+
(
−AR

)T
P

)
γ̂ R − 2(1 − θ)yTy

− 2(1 − θ)c
(
γ̂ I
)T

Py − θyTDy − 2cθ
(
γ̂ I
)T

PDy

− θ

[(
1√
2
D

1
2 y − √

2D− 1
2 AR γ̂ I

)T
(
D

1
2 y√
2

− √
2D− 1

2 AR γ̂ I

)]

− θ

⎡

⎣
(
D

1
2 x√
2

− √
2D− 1

2 AI γ̂ I

)T (
D

1
2 y√
2

− √
2D− 1

2 AI γ̂ R

)⎤

⎦

+ 2θ
(
γ̂ I
)T (

AR
)T

D−1AR γ̂ I + 2θ
(
γ̂ R
)T (

AI
)T

D−1AI γ̂ R

− θc
(
γ̂ I
)T (

P
(
−AR

)
+
(
−AR

)T
P

)
γ̂ I

+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR + θ
(
2y + 2cP γ̂ I

)T ˜̄uI

≤ − (1 − θ)xTx − 2(1 − θ)c
(
γ̂ R
)T

Px − θxTDx − 2cθ
(
γ̂ R
)T

PDx

+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR − θ
(
γ̂ R
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̂ R

− 2(1 − θ)yTy − (1 − θ)c
(
γ̂ I
)T

Py − θyTDy − 2cθ
(
γ̂ I
)T

PDy
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+ θ
(
2y + 2cP γ̂ I

)T ˜̄uI − θ
(
γ̂ I
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̂ I

≤ − (1 − θ)εxTx − θεdmx
Tx − (1 − θ)εyTy − θεdm y

Ty

+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR + θ
(
2y + 2cP γ̂ I

)T ˜̄uI

= −(1 − θ)εwTw − θεdmwTw − 2θ(2w + 2cP γ̂ )T ˜̄u
≤ −(1 − θ)εwTw − θεdmwTw + 2 (1 + cpM ᾱ) ‖ ˜̄u‖‖w‖ + 2cpM β̄‖ ˜̄u‖
≤ −α‖w‖2 + M‖w‖ + N , (3.13)

where α = min{ε, εdm}, M = 2(1 + cpM ᾱ)‖ ˜̄u‖, N = 2cpM β̄‖ ˜̄u‖ and pM =
max1≤i≤n{pi }.

If R0 is big enough, then

(2w + 2cP γ̂ )Ts < 0, (3.14)

for ‖w‖ > R0, which means that 0 /∈ �(w, θ) as ‖w‖ > R0, i.e., 0 ∈ �(w, θ) only
if ‖w‖ ≤ R0, so 
 is bounded. According to Lemma2.10, there exists w∗ ∈ R2n such
that w∗ ∈ �(w∗). By Definition2.2 in [34], w∗ is an equilibrium of system (2.12), i.e.,
w∗ = [(x∗)T, (y∗)T]T is an equilibrium of system (2.7). From (2.13), we can obtain the
existence of an output equilibrium [(γ R∗

)T, (γ I ∗
)T]T corresponding to [(x∗)T, (y∗)T]T. Let

z∗ = x∗ + iy∗ and γ ∗ = γ R∗ + iγ I ∗
, then z∗ is an equilibrium of system (2.1) and γ ∗ is an

output equilibrium corresponding to z∗. ��

Remark 7 In many papers, such as [14,21,24,25], the activation functions are assumed to
satisfy Lipschitz condition. In this paper, this assumption is removed. Since the continuity
of the activation function implies the assumption A(4), our result is less conservative.

To simplify the proof of global stability of system (2.1), we shall shift the equilibrium
point z∗ = x∗ + iy∗ of (2.1) to the origin. Let z̃ = z − z∗ and γ̃ = γ − γ ∗. Then we have

˙̃z = −Dz̃ + Aγ̃ , (3.15)

where γ̃ ∈ K [ f̃ (z(t))] and f̃i (zi (t)) = fi (z̃i (t) + z∗i ), i = 1, 2, . . . , n. Obviously, f̃
satisfies A(1)–A(3) and 0 ∈ K [ f̃ (0)]. Separated (3.15) with its real and imaginary part, it
follows that

{ ˙̃x = −Dx̃ + AR γ̃ R − AI γ̃ I ,
˙̃y = −Dỹ + AI γ̃ R + AR γ̃ I ,

(3.16)

where x̃ = x − x∗, ỹ = y − y∗, γ̃ R ∈ K [ f̃ R(x)], f̃ Ri (xi ) = f Ri (x∗
i + x̃i ) and γ̃ I ∈

K [ f̃ I (y)], f̃ Ii (yi ) = f Ii (y∗
i + ỹi ). Clearly, from the assumption A(4), we can obtain that

for any (x̃i , ỹi ) ∈ R2 and γ̃ R
i ∈ K [ f̃ Ri (x̃i )], γ̃ I

i ∈ K [ f̃ Ii (ỹi )], it follows that
γ̃ R
i

x̃i
≥ −LR

i
γ̃ I
i

ỹi
≥ −L I

i . (3.17)

Theorem 3.4 (Global Asymptotic Stability) Assume the assumptions A(1)–A(5) are satis-
fied, then for any input vector u ∈ Cn, system (2.1) has a unique equilibrium point z∗, which
is globally asymptotically stable.
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Proof Let us consider the Lyapunov function

V [z̃, γ̃ ] = x̃T x̃ + ỹT ỹ + 2c
n∑

i=1

pi

∫ x̃i

0
f̃ Ri (ρ)dρ + 2c

n∑

i=1

pi

∫ ỹi

0
f̃ Ii (ρ)dρ, (3.18)

where c is defined in (3.7) or (3.8).
From (3.16) and with the similar analysis in [38], it is easy to obtain V [z̃, γ̃ ] ≥ 0, V (0) =

0. In addition, it is obvious thatV [z̃, γ̃ ] isC-regular, continuous, positive definite, and radially
unbounded.

By Lemma2.11, we calculate and estimate the derivative along system (3.16) as follows

V̇ [z̃, γ̃ ] =
(
2x̃ + 2cP γ̃ R

)T [−Dx̃ + AR γ̃ R − AI γ̃ I
]

+
(
2 ỹ + 2cP γ̃ I

)T [−Dỹ + AR γ̃ I + AI γ̃ R
]

≤ −x̃TDx̃ − 2c
(
γ̃ R
)T

PDx̃ − ỹTDỹ − 2c
(
γ̃ I
)T

PDỹ

−
[(

1√
2
D

1
2 x̃ − √

2D− 1
2 AR γ̃ R

)T ( 1√
2
D

1
2 x̃ − √

2D− 1
2 AR γ̃ R

)]

−
[(

1√
2
D

1
2 x̃ + √

2D− 1
2 AI γ̃ I

)T ( 1√
2
D

1
2 x̃ + √

2D− 1
2 AI γ̃ I

)]

+ 2
(
γ̃ R
)T (

AR
)T

D−1AR γ̃ R + 2
(
γ̃ I
)T (

AI
)T

D−1AI γ̃ I

− c
(
γ̃ R
)T (

P
(
−AR

)
+
(
−AR

)T
P

)
γ̃ R (3.19)

−
[(

1√
2
D

1
2 ỹ − √

2D− 1
2 AR γ̃ I

)T ( 1√
2
D

1
2 ỹ − √

2D− 1
2 AR γ̃ I

)]

−
[(

1√
2
D

1
2 x̃ − √

2D− 1
2 AI γ̃ I

)T ( 1√
2
D

1
2 ỹ − √

2D− 1
2 AI γ̃ R

)]

+ 2
(
γ̃ I
)T (

AR
)T

D−1AR γ̃ I + 2
(
γ̃ R
)T (

AI
)T

D−1AI γ̃ R

− c
(
γ̃ I
)T (

P
(
−AR

)
+
(
−AR

)T
P

)
γ̃ I

≤ −x̃TDx̃ − 2c
(
γ̃ R
)T

PDx̃ − ỹTDỹ − 2c
(
γ̃ I
)T

PDỹ

−
(
γ̃ R
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̃ R −

(
γ̃ I
)T

×
[
cλm − 2‖(AI )TAI + (AR)TAR‖

dm

]
γ̃ I

≤ −εdm x̃
T x̃ − εdm ỹ

T ỹ − ρ
(
γ̃ R
)T

γ̃ R − ρ
(
γ̃ I
)T

γ̃ I (3.20)

where ρ = cλm − 2‖(AR)TAR+(AI )TAI ‖
dm

> 0. Therefore, V̇ is negative definite. From
Lemma2.12, it follows that 0 is globally asymptotically stable, i.e., 0 is an equilibrium point
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of (3.15). Therefore, the equilibrium z∗ = x∗ + iy∗ of system (2.1) is globally asymptotically
stable. From (3.20), there exists exactly one equilibrium z∗ of system (2.1). ��

From (3.20), we have V̇ [z̃, γ̃ ] ≤ −ρ(γ̃ I )Tγ̃ I and V̇ [z̃, γ̃ ] ≤ −ρ(γ̃ R)Tγ̃ R . It follows
that

V [z̃, γ̃ ](t) − V [z̃, γ̃ ](0) ≤ −ρ

∫ t

0

(
γ̃ R(s)

)T
γ̃ R(s)ds

and

V [z̃, γ̃ ](t) − V [z̃, γ̃ ](0) ≤ −ρ

∫ t

0

(
γ̃ I (s)

)T
γ̃ I (s)ds.

Therefore, one obtains
∫ t
0 (γ̃ R(s))Tγ̃ R(s)ds ≤ V [z̃, γ̃ ](0)

ρ
and

∫ t
0 (γ̃ I (s))Tγ̃ I (s)ds ≤

V [z̃, γ̃ ](0)
ρ

.

For any σ > 0, let ER
σ =

{
t ∈ [0, +∞): ‖γ̃ R(t)‖ > σ√

2

}
and E I

σ = {
t ∈ [0, +∞):

‖γ̃ I (t)‖ > σ√
2

}
, we have

V [z̃, γ̃ ](0)
ρ

≥
∫ t

0

(
γ̃ R(s)

)T
γ̃ R(s)ds ≥

∫

ER
σ

(
γ̃ R(s)

)T
γ̃ R(s)ds ≥ σ 2

2
μ
(
ER

σ

)
,

V [z̃, γ̃ ](0)
ρ

≥
∫ t

0

(
γ̃ I (s)

)T
γ̃ I (s)ds ≥

∫

E I
σ

(
γ̃ I (s)

)T
γ̃ I (s)ds ≥ σ 2

2
μ
(
E I

σ

)
.

Therefore, μ(ER
σ ) < ∞ and μ(E I

σ ) < ∞. Since Eσ = {t ∈ [0, +∞): ‖γ̃ (t)‖ > σ } ⊆{
t ∈ [0, +∞): ‖γ̃ R‖ > σ√

2

}⋃{
t ∈ [0, +∞): ‖γ̃ I (t)‖ > σ√

2

}
, where γ̃ = γ̃ R + iγ̃ I .

Therefore, μ(Eσ ) < ∞. From Proposition 2 in [31], one can see that γ̃ (t) converge to
zero in measure, that is to say μ − limt→∞ γ̃ (t) = 0 and μ − limt→∞ γ (t) = γ ∗. In view
of Definition2.7, the output solution γ (t) = γ R(t) + iγ I (t) of system (2.1) converges to
γ ∗ = γ R∗ + iγ I ∗

.

If we let the imaginary parts of all the variables and parameters be zero, system (2.1)
becomes the neural network model in [39], which can be described as follows

ẋ(t) = −Dx(t) + A f (x(t)) + u. (3.21)

With the similar analysis, we can get the following corollary, which is the result of Theorem
2 in paper [39].

Corollary 3.5 Suppose the following assumptions are satisfied:

A′(1) For each i = 1, 2, . . . , n, fi (xi ) is continuous at finite points xki , k = 1, 2, . . . , s.
A′(2) For every k = 1, 2, . . . , s, the limitations limx→xk+i

fi (x) = fi (x
k+
i ) and

limx→xk−i
fi (x) = fi (x

k−
i ) exist.

A′(3) For each i = 1, 2, . . . , n, there exist nonnegative constants αi and βi such that

‖ fi (xi (t))‖ � αi ‖xi (t)‖ + βi .

A′(4) For each i = 1, 2, . . . , n, there exists a constant number Li , such that for any u ∈ R
and v ∈ R, ∀γi ∈ K [ fi (u)], ζ ∈ K [ fi (v)],

γi − ζi

u − v
≥ −Li .
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A′(5) There exists P = diag{p1, p2, . . . , pn} with pi > 0 such that P A + ATP < 0 and

Li pi‖ATA‖
dmλm

<
1

4
,

where dm = min1≤i≤n{di }, λm = −λM {PA + ATP}.
Then there exists at least one equilibrium of system (3.21). Furthermore, the equilibrium

point is globally asymptotically stable.

In Theorems3.3 and 3.4, the condition of PAI = (AI )TP is not satisfied for many
complex-valued neural networks. Therefore, we proposed the following theorem.

Theorem 3.6 Suppose A(1)–A(4) are satisfied and the following assumption holds: Ā(5)
There exists P = diag{p1, p2, . . . , pn} with pi > 0 such that Q = PAR + (AR)TP + P +
(AI )TPAI < 0 and

Li pi‖(AR)TAR + (AI )TAI ‖
dmλm

<
1

4
, (3.22)

where dm = min1≤i≤n{di }, λm = −λM {Q} and Li = max{LR
i , L I

i }.
Then system (2.1) has an unique equilibrium point z∗. Moreover, z∗ is globally asymptot-

ically stable and the output solution γ converge to γ ∗ in measure.

Proof Since θ > 0 and c > 0, using Lemma2.13, one obtains

θc
(
γ̂ R
)T

PAI γ̂ I ≤ θc

((
γ̂ R
)T

P γ̂ R +
(
γ̂ I
)T (

AI
)T

PAI γ̂ I
)

and

θc
(
γ̂ I
)T

PAR γ̂ I ≤ θc

((
γ̂ I
)T

P γ̂ I +
(
γ̂ R
)T (

AI
)T

PAI γ̂ R
)

.

Submitting the above inequalities into (3.13) and (3.20), we can get

(2w + 2cP γ̂ )Ts ≤ −2(1 − θ)xTx − 2(1 − θ)c
(
γ̂ R
)T

Px − θxTDx − 2cθ
(
γ̂ R
)T

PDx

+ 2θ
(
γ̂ R
)T (

AR
)T

D−1AR γ̂ R + 2θ
(
γ̂ I
)T (

AI
)T

D−1AI γ̂ I

+ θc
(
γ̂ R
)T (

PAR +
(
AR
)T

P

)
γ̂ R + θc

((
γ̂ R
)T

P γ̂ R +
(
γ̂ I
)T (

AI
)T

PAI γ̂ I
)

− 2(1 − θ)yTy − 2(1 − θ)c
(
γ̂ I
)T

Py − θyTDy − 2cθ
(
γ̂ I
)T

PDy

+ 2θ
(
γ̂ I
)T (

AR
)T

D−1AR γ̂ I + 2θ
(
γ̂ R
)T (

AI
)T

D−1AI γ̂ R

+ θc
(
γ̂ I
)T (

PAR +
(
AR
)T

P

)
γ̂ I + θc

((
γ̂ I
)T

P γ̂ I +
(
γ̂ R
)T (

AI
)T

PAI γ̂ R
)

+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR + θ
(
2y + 2cP γ̂ I

)T ˜̄uI

≤ −(1 − θ)xTx − 2(1 − θ)c
(
γ̂ R
)T

Px − θxTDx − 2cθ
(
γ̂ R
)T

PDx
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+ θ
(
2x + 2cP γ̂ R

)T ˜̄uR − θ
(
γ̂ R
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̂ R

− 2(1 − θ)yTy − (1 − θ)c
(
γ̂ I
)T

Py − θyTDy − 2cθ
(
γ̂ I
)T

PDy

+ θ
(
2y + 2cP γ̂ I

)T ˜̄uI − θ
(
γ̂ I
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̂ I

≤ −α‖w‖2 + M‖w‖ + N ,

and

V̇ [z̃, γ̃ ] ≤ −x̃TDx̃ − 2c
(
γ̃ R
)T

PDx̃ − ỹTDỹ − 2c
(
γ̃ I
)T

PDỹ

+ 2
(
γ̃ R
)T (

AR
)T

D−1AR γ̃ R + 2
(
γ̃ I
)T (

AI
)T

D−1AI γ̃ I

+ c
(
γ̃ R
)T (

PAR +
(
AR
)T

P

)
γ̃ R +

((
γ̂ R
)T

P γ̂ R +
(
γ̂ I
)T (

AI
)T

PAI γ̂ I
)

+ 2
(
γ̃ I
)T (

AR
)T

D−1AR γ̃ I + 2
(
γ̃ R
)T (

AI
)T

D−1AI γ̃ R

+ c
(
γ̃ I
)T (

PAR +
(
AR
)T

P

)
γ̃ I +

((
γ̂ I
)T

P γ̂ I +
(
γ̂ R
)T (

AI
)T

PAI γ̂ R
)

≤ −x̃TDx̃ − 2c
(
γ̃ R
)T

PDx̃ − ỹTDỹ − 2c
(
γ̃ I
)T

PDỹ

−
(
γ̃ R
)T [

cλm − 2‖(AI )TAI + (AR)TAR‖
dm

]
γ̃ R −

(
γ̃ I
)T

×
[
cλm − 2‖(AI )TAI + (AR)TAR‖

dm

]
γ̃ I

≤ −εdm x̃
T x̃ − εdm ỹ

T ỹ − ρ
(
γ̃ R
)T

γ̃ R − ρ
(
γ̃ I
)T

γ̃ I .

The rest proof are same with that in Theorems3.3 and 3.4. ��
Theorem 3.7 (Convergence in Finite Time) Suppose the assumptions of Theorem 3.3 and
the assumption A(6) below are satisfied:

A(6) z∗i = x∗
i + iy∗

i is a discontinuous point of fi and f R−
i (x∗

i )−γ R∗
< 0 < f R+

i (x∗
i )−

γ R∗
and f I−i (y∗

i ) − γ I ∗
< 0 < f I+i (y∗

i ) − γ I ∗
, where z∗ = [z∗1, z∗2, . . . , z∗n]T is an

equilibrium of system (2.1).
Then, for each solution of system (2.1)with initial condition z(t0) = z0, there exists t f > 0

such that z(t) = z∗ for t ≥ t f , i.e., z(t) converges to the equilibrium z∗ in finite time t f .

Proof Let us define �R−
i = γ R∗ − f R−

i (x∗
i ), �R+

i = f R+
i (x∗

i ) − γ R∗
, �I−

i = γ I ∗ −
f I−i (x∗

i ), �I+
i = f I+i (x∗

i ) − γ I ∗
and � = mini=1,2,...,n{min{�R−

i , �R+
i , �I−

i , �I+
i }}.

Since limρ→0− f̃ Ri (ρ) ≤ −� and limρ→0+ f̃ Ri (ρ) ≥ �, limρ→0− f̃ Ii (ρ) ≤ −� and
limρ→0+ f̃ Ii (ρ) ≥ �, there exists a sufficient small positive constant δ such that

‖ f̃ Ri (xi )‖ > �, ∀0 < ‖x‖ < δ,

‖ f̃ Ii (yi )‖ > �, ∀0 < ‖y‖ < δ.

Note that the equilibrium point z∗ of system (2.1) is globally asymptotically stable, thus
for each solution z(t) of (2.1) with initial condition z(t0) = z0, there exists tδ > 0 such that
‖x‖ ≤ δ and ‖y‖ ≤ δ for t > tδ.
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Performing similar estimates as in the proof of Theorem3.4, we get V̇ [z̃, γ̃ ] ≤
−ρ(γ̃ I )Tγ̃ I ≤ −ρ�2 and V̇ [z̃, γ̃ ] ≤ −ρ(γ̃ R)Tγ̃ R ≤ −ρ�2. It is easy to get V [z̃, γ̃ ](t) ≤
0 for t ≥ V [z̃, γ̃ ](0)

ρ�2 . It follows that x(t) = x∗ and y(t) = y∗ for t ≥ V [z̃, γ̃ ](0)
ρ�2 + tδ. This

implies that there exists a positive constant t f = V [z̃, γ̃ ](0)
ρ�2 + tδ > 0 such that z(t) = z∗ for

t > t f . ��

4 Numerical Examples

In this section, we will give two examples to demonstrate the above results.

Example 4.1 Consider a two-neuron complex-valued neural network described as follows:

ż = −Dz + A f (z) + u, (4.1)

where

D =
[
2 0
0 2

]
, A =

[− 1
10 + 1

20 i
1
5 + 1

10 i− 1
5 + 1

10 i − 1
10 + 1

20 i

]
, u =

[
1 + 0.5i
0.5 + i

]
.

We choose the real part and imaginary part of discontinuous complex-valued activation
functions as the same with functions in [33], that is

f (s) =

⎧
⎪⎪⎨

⎪⎪⎩

−(Re(s) + 1) + (Im(s) + 1)i, Re(s) < 0 and Im(s) < 0,
−(Re(s) + 1) − (Im(s) + 1)i, Re(s) < 0 and Im(s) > 0,
(Re(s) + 1) + (Im(s) + 1)i, Re(s) > 0 and Im(s) < 0,
(Re(s) + 1) − (Im(s) + 1)i, Re(s) > 0 and Im(s) > 0,

where s ∈ C and i = 1, 2. It is obvious that the activation function f (z) = [ f1(z1), f2(z2)]T
is discontinuous on the complex domainC2, and fi (zi ) is satisfying A(4)with LR

i = L I
i = 1,

which is unbounded in C2.

Now take P = I,where I is the unitmatrix. Then it is easy to get PAI = (AI )TP, PAR+
(AR)TP < 0 anddm = 1.Through simple computation,weobtain‖AR(AR)T+AI (AI )T‖ =
0.0725, λm = 1/5, and

Li pi (‖AR(AR)T + AI (AI )T‖)
dmλm

= 29

160
<

1

4
.

According to Theorem3.4, the equilibrium z∗ = (0.65 + 0.23i, 0.14 + 0.83i) is unique
and globally asymptotically stable. The output solution γ (t) of system (4.1) convergence to
γ ∗ = (1.65 − 1.23i, 1.14 − 1.83i) in measure. According to Theorem3.7, the trajectories
of z(t) convergence to z∗ in finite time. Consider the IVP of system (4.1) with the initial
condition z0 = [2 − i, 1 − 2i]T, the time response of the real part and imaginary part for
z1, z2 and γ1(t), γ2(t) are shown in Figs. 3 and 4, respectively. The trajectories of z1, z2 and
output solution γ1(t), γ2(t) in complex domain are shown in Figs. 5 and 6.

Remark 8 Let the imaginary parts of all the variables and parameters be zero, the system
(4.1) becomes:

{
ẋ1 = −2x1 − 1

10 f1(x1) + 1
5 f2(x2) + 1,

ẋ2 = −2x2 − 1
5 f1(x1) − 1

10 f2(x2) + 0.5,
(4.2)

where fi (x) = (x+1)sign(x) for i = 1, 2. From Fig. 3, we can see that the equilibrium point
of system (4.2) is different from the equilibrium point of real part of z in system (4.1). This is

123



Dynamical Behavior of Complex-Valued Hopfield Neural Networks… 1057

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t/s

Re(z
1
)

Re(z
2
)

Im(z
1
)

Im(z
2
)

x1

x2

R
e(

z 1), 
R

e(
z 2), 

Im
(z

1), 
Im

(z
2), 

x 1 a
nd

 x
2

Fig. 3 Time responses for the real part and imaginary part of z1, z2 in Example4.1 and trajectories of states
x1, x2 in system (4.2)
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Fig. 4 Time responses for the real part and imaginary part of output solutions in Example4.1 and trajectories
of output solutions in system (4.2)

because the imaginary part of system can affect the equilibrium point definitely. On the other
aspect, system (4.1) has four equilibriumpointswhile system (4.2) has two equilibriumpoints,
this manifests that complex-valued neural networks can enhance the capacity compared with
the same dimensional real-valued neural networks, which has been reported in [10].
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Fig. 5 Phase plane behavior of the state variables z1 and z2 in complex domain C in Example4.1

1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

Re(z)

Im
(z

)

γ1
γ2

γ*
1=1.65−1.23iγ*

2=1.14−1.83i

Fig. 6 Phase plane behavior of the state variables γ1 and γ2 in complex domain C in Example4.1

Example 4.2 Consider a two-neuron complex-valued neural network described as follows:

ż = −Dz + A f (z), (4.3)

where

D =
[
9 0
0 8.5

]
, A =

[ −1 + 0.5i 0.25 + 0.25i
−0.25 − 0.25i −1 + 0.5i

]
,

and f (s) = (Re(s) + 0.2)sign(Re(s)) + i(Im(s) + 0.1)sign(Im(s)) for any s ∈ C and
i = 1, 2. It is clear that the activation function f (z) = [ f1(z1), f2(z2)]T is discontinuous
on the complex domain C2, and fi (zi ) is satisfying A(4) with LR

i = L I
i = 1. According to

Definition2.5, z∗ = [0, 0]T is an equilibrium point of system (4.3).
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Fig. 7 Time responses for the real part and imaginary part of the variables z1 and z2 in Example4.2
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Fig. 8 Phase plane behavior of the state variables z1 and z2 in complex domain C in Example4.2

Now take P = I, it is easy to get Q = diag{−11/16, −11/16} and (AR)TAR +
(AI )TAI = diag{11/8, 11/8}. Therefore, we obtain ‖(AR)T(AR) + (AI )T(AI )‖ =
11/8, λm = 11/16 and

Li pi‖(AR)TAR + (AI )TAI ‖
dmλm

= 4

17
<

1

4
.

According to Theorem3.6, the equilibrium z∗ = [0, 0]T is unique and globally asymp-
totically stable. We choose the initial value z(0) = [2 − i, 1 − 2i]T, then time response of
the real part and imaginary part of z1, z2 is shown in Fig. 7. Figure8 shows the trajectories
of z1, z2 in complex domain.

Remark 9 It can be seen that [0, 0]T is a discontinuous point of activation function f (z) and
K [ f (0)] = [−0.2, 0.2] + i[−0.1, 0.1], which is shown in Fig. 2. The stability problem can
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not be studied by methods proposed in [27,28]. In this paper, we can analyze the stability of
the equilibria under the framework of Filippov differential inclusion.

5 Conclusion

In this paper, we introduced the Filippov differential inclusions for complex differential equa-
tions with discontinuous right-hand side. Dynamical behavior of complex-valued Hopfield
neural networks, including global asymptotic stability, output solution convergence in mea-
sure and convergence in finite time was studied in this paper based on differential inclusion
theory and generalized Lyapunov stability theory. Numerical simulations are given to show
the effectiveness and correction of our results. We think it would be interesting to investi-
gate the possibility of extending the results to more complex discontinuous complex-valued
neural network system with time varying and distributed delays.
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