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Abstract In this paper, a novel supervised local high-order differential channel feature is
proposed for fast pedestrian detection. This method is motivated by the recent successful use
of filtering on the multiple channel maps, which can improve the performance. This method
firstly compute the multiple channel maps for the input RGB image, and average pooling is
acted on the channel maps in order to reduce the effect of noise and sample misalignment.
Then, each of the pooled channel maps is convolved with our proposed local high-order
filter bank, which can enhance the discriminative information in the feature space. Finally,
due to the increasing memory consumption incurred by the higher dimension of resulting
feature, we have proposed a local structure preserved supervised dimension reductionmethod
which aims to keep the manifold structure of samples in the feature space. This method is
formulated as a classical spectral graph embedding problem which can be solved by the
LPP algorithms. Thorough experiments and comparative studies show that our method can
achieve very competitive result compared with many state-of-art methods on the INRIA and
Caltech datasets. Besides, our detector can run about 20 fps in 480×640 resolution images.
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1 Introduction

In recent years, object detection [1–3] has attracted much more attention from the worldwide
computer vision researchers. Although object detection have gained much progress in the
recent years, detecting pedestrians in arbitrary image is still an open problem to be addressed,
due to many complicated factors, such as view variation, occlusion and illumination changes,
etc. As a hot topic in the domain of computer vision, pedestrian detection can be applied to
many utilitarian areas, such as autonomous-driven vehicles, video surveillance and human
activity classification [4], etc.

The past decades witness a large amount of work [5,6] devoted to human detection, but in
this paper,wewill cover just a few closely related to ourmethod.Most of the classicalmethods
for pedestrian detection are generally treated as a rigid or half-rigid object detection problem
with less deformation. So it can be formulated as a traditional pattern recognition problem
which can be handledwith carefully designed feature and the off-the-shelf classifiers.Massive
efforts have beenmade to the feature extraction step from the rawRGB or grey images, which
is a crucial step to build a successful object detector. Without loss of generality, the feature
extraction methods can be categorized into two main groups: hand-crafted features [7–10]
and learning based features [11,12]. The representative works of the former one are HOG [7],
LBP [13], InformedHaar [14] and ICF [9], etc, they are proved to be very effective in many
applications. Themost popular learning based features are obtained by the recent typical deep
learning methods [15–17], such as CNN [18] and DBN [19], etc. The hand-craft features are
advantageous in desirable computational efficiency, and thus achieves state-of-the-art results
in many applications. However, they’re task-specific and suffering from subjective human
experimence, which leads to their sub-optimal performance in various visual applications.
The emerging features of deep features have achieved best performance in many computer
vision applications, such as image classification [20], object localization [21] and speech
recognition [22], etc. Although deep learning based applications grow fast in recent few
years, the intrinsic mechanisms are insufficiently stated. Furthermore, a high-end computer
workstation with high capacity GPUs is indispensable for training a robust model.

In this paper, we will focus on the light-weighted discriminative feature which can be used
to build efficient pedestrian detection system. a novel high-order differential channel feature is
proposed for fast pedestrian detection task.Motivated by the filtered channel features [14,23],
the proposedmethod also utilize an intermediate layer filtering on the multiple channel maps.
It can not only improve the accuracy of the detector, but also have a real-time running speed.

Our contributions of this work are summarized as follows:

(1) A novel light-weighted filter bank is proposed to enhance the discriminative information
from the pooled channel maps of the training data;

(2) Label information is integrated into the procedure of feature dimension reduction which
preserves the structure of the manifold space.

(3) Our detector is very efficient to train and also can run about 20 fps in 480×640 resolution
images.

2 Review of Related Works

2.1 Multiple Channel Map

The multiple channel map [9] models the feature C of image I as a channel generation
function �, so the feature of image I can be represented as Ci = �i (I ), where � =
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Fig. 1 Different channels of the input image (the first row gives the original, magnitude, gradient angle
discrete from 1 to 6, sobel image, while the second row illustrates the lbp, orientation, luv, hsv and canny
image)

Fig. 2 Filter banks for channel features

{�i }, i = 1, 2, . . . , n. Ci is the ith channel map for image I, �i is the ith channel generation
function. The channel generation function can be a linear function, such as gray-level image
of original image I or nonlinear function, such as gradient image. Each channel represents a
different feature space which is derived from the original image. The different channel of the
original RGB image is shown in Fig. 1. It can be observed that different channels can reflect
different aspect of input image, such as magnitude, gradient orientation, edge map and color
channels, etc. In this paper, we only use ten channels (LUV color space, gradient magnitude
and six gradient orientation maps) for our detection system due to its fast computation and
high informative feature.

2.2 Filtered Channel Feature

Recent studies show that filtering on the channel maps can greatly improve the performance
of the detector [23]. Several popular effective filters have been developed for object detection,
such as Haarlike filter [24], informedHaar feature [14], checkboard [23], square filters [25]
and SSD filters [26], etc. These filter banks are shown in Fig. 2. The Haarlike filter, informed-
Haar, square filter and checkboard filters are shown from top to bottom at the third step in
Fig. 2. It is shown that all the filters require calculating the mean pixel value in a local
area and then computing the difference between these local areas. Each filter only returns
a single feature value which represents the response in a local area. Then all the channel
maps are convolved with these filters to produce the final response maps which are fed to
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Fig. 3 Local differential filter bank

Fig. 4 Filtering with local high-order differential filter bank

the AdaBoost classifiers. Albeit simple, this straightforward step significantly benefits the
performance improvement [23] (Fig. 3).

3 Our Proposed Method

3.1 Local Differential Filter Bank

The filtered channel features [14,23] can be used as an intermediate layer filtering imposed on
the low-level features, such as InformedHaar [14], CheckBoard [23], SSD [26], etc. Inspired
by this, we model this type of feature as a two layers network in this paper, which is shown
in Fig. 4.

The computation procedure of our filter bank is shown in Fig. 4 (step I). The calculation
of the local differential filter bank is similar to the calculation of Pixel Differential Vector
(PDV), which is shown in Fig. 3. The computation of PDV a for each reference pixel and
the dimension of the PDV equals to 8 (Fig. 3a). The local filtering is used for enhancing the
shape information of the channel map, which is more discriminative than the original channel
map. In order to illustrate the procedure of calculating PDV, we give a toy sample as shown
in Fig. 3b.

We have also demonstrated four channels of the filtering results with our filter banks
corresponding to the LU colorspace, magnitude and gradient angle channel map, which are
shown inFig. 5. It can be seen fromFig. 5, the average contour of the pedestrians is highlighted
after filtering with our local differential filter bank.

It is worth mentioning that there exist two main differences between our method and the
methods referred in Sect. 2.2. Firstly, ourmethod depicts the details of statistic information for
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Fig. 5 Four average channel maps and filtered high-order differential maps

Fig. 6 Our proposed feature
extraction framework

each position of channelmaps instead of each block region.Our fine-grainedfilter bank allows
capturing more discriminative information of the pedestrians. Secondly, in order to preserve
the pedestrian manifold in the feature space, we make use of the class label information to
reduce the feature dimension. It can be considered as a feature transformation from high
dimensional feature space to low discriminative manifold space which will be discussed in
Sect. 3.2.

3.2 Supervised Filtered Channel Feature Dimension Reduction

Although our method can distill discriminative information, it lead to a much higher feature
dimension (40,960 dim) than the original channel map (5120 dim) for each training sample.
Despite a number of unsupervised dimension reduction methods proposed in recent years,
class-specific discriminative information is often ignored. In this paper, we attempt to utilize
a supervised dimension reduction algorithm to distill discriminative information which is
effective and computationally efficient. As shown in Fig. 4 (step II), our method makes use of
amuch simpler filter bankwhich enables capturing statistic information in each local position.
Besides, our method is deeper than other methods (e.g. haarlike, square and informedhaar,
etc.), which can integrate the class label information into the feature extraction procedure.

The step II of Fig. 4 is enlarged in Fig. 6.We formulate the supervised dimension reduction
of the channel map as a classical spectral graph embedding problem which can be solved by
the LPP algorithms [27]. This LPP method not only preserves the manifold structure of the
filter response maps, but also reduces the side effect of misalignment of training data. The
eigenmap (projection matrix) of A can be formulated as a generalized eigenvector problem,
which is shown in Eq. (1).

XLXT a = λXDXT a (1)
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where L = D − W , Dii = ∑
j W ji . The eigenmap A is constructed by the eigenvectors of

solution of Eq. (1), correspond to the top d eigenvalues. W is calculated by the heat kernel
based on the pooled channel maps in the positive training data set, which is shown in Eq. (2).

Wi j = e−‖xi−x j‖2

t (2)

where t is the window size, xi is the feature vector corresponding to i th sample, xi ∈ R80.
In this paper, we calculate the feature vector x for each sample with average PDV for all
channels, which is efficient and effective. It can be formulated in Eqs. (3) and (4).

x̄ = 1

512N

N∑

i=1

512∑

j

mi
j (3)

x = 1

512

512∑

j

(m j − x̄) (4)

where x̄ is the mean PDV for the entire positive samples at all positions, N is the number of
positive samples, m j ∈ R80 is the PDV at the j th position of the channel map.

It is worth to mention that the filter response map is reshaped from 4-dimensional tensor
(32 × 16 × 10 × 8) to a three dimensional tensor (32 × 16 × 80), which can be readily to
implemented. The dimension D of the final feature (last step in Fig. 6) equals to 10×d.

3.3 Computational Complexity Analysis

Suppose the input image size is H×W×3, the pooling size is s, then the resulted channelmap

is H
s × W

s ×10. The dimension of the local differential filter is 3×3×8 and the dimension of
the filtered result is

( H
s −2

)× (W
s − 2

)×10×8. Besides, we will learn a feature projection
matrixwith size 80×d , then the feature dimension is reduced to

( H
s − 2

)×(W
s − 2

)×10×d .
In this paper, we useH=128,W=64 for the training samples, pooling size s=4, each feature
is a float type and there’re about 50,000 samples in each training round. So on the training
session, the features of original and reduced feature will consume 6.26 and 3.14Gigabytes
memory respectively in total. In the test section, the input image size is 640 × 480 × 3, the
extract feature is 120×160×40, so each image will consume about 2.8megabytes memory.
It can be inferred that our method is memory efficient in both training and testing section,
and our detector also can run on the common desktop computers.

The computation complexity of multiple channel maps is about O(10 × W × H), the
complexity of calculating filter banks is O

( H
s × W

s × 40
)
, and the complexity of feature

reduction is O
( H
s × W

s × 80 × d
)
. In this paper, the parameters are set asW=480, H=640,

s=4, d=4, which is computationally efficient. Furthermore, we have implemented the con-
volution function with multi-thread operation which is very fast to calculate.

4 Experiments

4.1 Experimental Setting

The detailed experiment setting is described as follows. The size of the pedestrian window is
128× 64, and every positive sample is cropped from the annotated images. Each annotation
of pedestrian is jittered to deal with misalignments problem, which yields approximately
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24,740 positive samples for the INRIA dataset and 24,498 positive samples for the Caltech
dataset. The pooling template size is 4×4 pixels, which shrink the original channelmaps (size
128×64×10) into pooled maps (size 32×16×10). We make use of GentleBoost algorithm
for feature selection, with depth-2 decision tree as weak classifiers. The soft cascade structure
is employed in our model training, and the final detector comprised of 2048weak classifiers.
We use the Piotr’s toolbox [17] to calculate the channel features and also utilize the evaluation
code [17] publicly available.

4.2 Comparisons of ACF, PDV and Different Dimensions of LPP

In this section, we have compared our methods with the baseline (ACF) which is shown in
Fig. 7. It can be seen that our method PDV is slightly better than ACF, which indicates that
statistic information of each pixel in the channel maps do helps to promote the performance
of the detector. It is also shown that the ROC curves of the baseline and the PDV feature have
an intersection when FPPI=0.2 and miss rate equals 0.13. When the FPPI is less than 0.2
the PDV is better than ACF, and when the FPPI is greater than 0.2 the ACF is slightly better
than PDV. It is can be explained with less positives produced in our detection framework,
which indicates that PDV is more discriminative than ACF. The PDV have a miss rate of
7%@FPPI=1, whereas the ACF is 9%@FPPI=1.

We also make a comparison between different hyper parameters of the LPP method. The
results are shown in Fig. 7. We can see that our PDV+LPP (d=4) achieves the best result
(averagemiss rate equals to 14.07%)when the reduced dimension equals to 4 that is the half of
the original dimension. The deteriorating performance is also revealed when the dimensions
exceeds 4. Based on this experimental observation, we fixed our hyper parameter d=4 in the
following experiments. Besides, it is can be concluded that distill discriminative information
can improve the performance of the detector.

Fig. 7 Parameter selection for LPP
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4.3 Comparisons with State-of-the-Arts Methods on INRIA Dataset

In order to validate the effectiveness of our proposedmethod, we have compared our methods
PDV and PDV+LPP with other state-of-the-art methods on the INRIA dataset. The INRIA
dataset containing high resolution pedestrians in complex background, such as deformation,
occlusion.

The experimental result is shown in Fig. 8. In Fig. 8a, we evaluate our detector with
ROC curve with miss rate@FPPI. We can see that the PDV is slightly better than ACF [28]
and DPM [29] based method, but still slightly worse than InformedHaar feature [14] which
is most close to our method. But our PDV+LPP method can surpass the InformedHaar
feature [14] which is due to its supervision of labels when getting discriminative information
by manifold structure preserving dimension reduction. Our PDV+LPP reports a miss rate
of 6%@FPPI=1 and miss rate of 12%@FPPI=0.1. It is shown that PDV+LPP achieves
state-of-the-arts result when compare with most of the hand-crafted features.

The evaluation result of our detectorwith the recall-precision curve is shown inFig. 8b. The
results indicate that our method works marginally better than others and reports the same
performance as wordchannel, randforest and NAMC. It is suggested that evaluation with
average precision is less significant of difference than average miss rate@FPPI evaluation
on this dataset.

4.4 Comparisons with State-of-the-Arts Methods on the Caltech Dataset

We have also conducted experiments on the Caltech dataset, which is the large-scale dataset
for pedestrian detection. This dataset features low resolution of pedestrians in the city road,
which is captured by a camera fixed in the car. It’s one of the most challenging datasets, due
to low resolution and occlusion in the video.

We evaluated our detector with ROC curve with miss rate@FPPI in Fig. 9a. The compar-
ison results indicate that both of the PDV and PDV+LPP methods can achieve state-of-the
arts results on this low resolution dataset. The PDV+LPP achieves an average miss rate of
24.42%which is best among all the comparedmethods, such asACF [28], InformedHaar [14]
and LDCF [30]. The phenomenon also coincides with the results on the INRIA dataset. The
results also indicate that PDV performsmuch better for the low resolution pedestrians and the
PDV+LPP performs best for both high resolution and low resolution dataset. Furthermore,
our method has achieved best performance for almost all the hand-crafted feature on this
dataset.

We also evaluated our detector with the recall-precision curve, which is shown in Fig. 9b.
Our method (PDV+LPP) is also better than other methods, but the difference of average
precision between PDV and PDV+LPP is small (less than 1%). Surprisingly, our PDV
is slightly worse than LDCF in miss rate@FPPI curve, but the results reversed in average
precision of the recall-precision curve. We think the reason behind that these two detectors
have different performancewhen the recall approximately equal to 0.78. Our detector is better
than inforHaar when recall rate is less than 0.78 and slightly worse when recall is greater
than 0.78.

4.5 Sample Detections on the INRIA and Caltech Datasets

In this section, some sample detections on the INRIA andCaltech dataset are provided, which
are shown in Figs. 10 and 11 respectively. From Fig. 10, it can be seen that the most challenge
scenario in this dataset is thatmanypedestrians overlapwith others and somepedestrians carry
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Fig. 8 Comparisons with state-of-arts in INIRA dataset

package can also lead to false negative. Another situation is the deformation of pedestrians
which is quite difficult to detect for a single rigid pedestrian detector. From Fig. 11, it can
be concluded that the current best detector still have a long way to go. There’re lots of false
positives appear in the image which is due to the small size of the pedestrians. It also can
be found that, in some scenarios, the quality of the image is quite difficult even for human
being to observe due to image blurring and low resolution.
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Fig. 9 Comparison with state-of-the-arts methods on Caltech dataset

4.6 Runtime Comparison

Our detector is implemented with Matlab R2014b and visual studio 2013 on DELL worksta-
tion of Precision T7610 (8 core CPU E5-2650 ×2, 2.6GHz, 64G). It takes about 6h to train
a four-stage detector and the detection speed for a 640 × 480 image can get approximately
20 fps. The speed of our detectors with different features using average number of weak
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Fig. 10 Sample detections on INRIA dataset

Fig. 11 Sample detections on Caltech dataset
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Table 1 Runtime comparison Name Running speed (fps) Average reject number

ACF 30 3.86

PDV 20 3.09

PDV+LPP 19 2.94

classifiers to reject a background patch is called Average Reject Number in Table 1. We can
see that both of the PDV and PDV+LPP method are slower than the original ACF features.

5 Conclusion

We have proposed a supervised local high-order differential channel feature for pedestrian
detection, which make use of the labels of the positive samples in the feature design process.
This feature can achieve state-of-the-art results compared with other hand-crafted features on
both the INRIA and Caltech datasets, which indicate that the supervision of label is helpful
in designing discriminative features. Furthermore, we also point out that the most challenge
problems of these two dataset, which still need to be focus on. Our future work will study
on the occlusion reasoning for overlapping pedestrians which have a large space to improve
the performance.
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