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Abstract This paper is concernedwith the problems of existence and stability of the periodic
solution for a class of neutral-type neural networks. The neural network addressed is general
where the time delays and difference operator are taken into account. By employing the
Mawhin’s continuation theorem, the sufficient condition is obtained to guarantee the existence
and uniqueness of the periodic solution for the neutral-type neural networks. By constructing
a novel Lyapunov functional, a unified framework is established to derive sufficient conditions
for the concerned system to be globally exponentially stable.Anumerical example is provided
to demonstrate the usefulness of the main results obtained.
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1 Introduction

Over the past decades, the neural networks have been widely investigated and found many
applications in different areas such as imageprocessing, signal processing, pattern recognition
and optimization. The dynamical behaviors of neural networks such as stability, oscillation
and convergence issues have been extensively studied. In general, many applications of neural
networks are built upon the existence and stability of the equilibrium point. For example,
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if a neural network is used to solve an optimization problem, it is desirable for the neural
network to have a unique globally stable equilibrium. Therefore, the stability analysis and
synchronization problem of neural networks has caught many researchers’ attention [1–18].

In many biological and artificial neural networks, time delays always exist due to varieties
of reasons such as the finite speed of information transmission and processing. As is well
known, the time delay is one of main sources for causing instability and bad performances
of neural networks [11]. Consequently, the stability analysis problems for delayed neural
networks have received considerable research attention. Recently, a great deal of results have
been reported in the literature, see e.g. [1,8–10,12,14] and references therein, where the time
delays considered can be categorized as constant delays, time-varying delays and distrib-
uted delays, the methods used include the M-matrix theory, linear matrix inequality (LMI)
approach, Lyapunov functionalmethod and techniques of inequality analysis, and the stability
criteria derived contain delay-independent conditions and delay-dependent conditions.

On the other hand, it is common in engineering systems that the time delay occurs not
only in system states but also in the derivatives of system states. The systems containing
the information of past state derivatives are called neutral-type systems, and such systems
can be found in many engineering systems, e.g. chemical reactors, transmission lines, partial
element equivalent circuits in very large scale integration (VLSI) systems and Lotka-Volterra
systems. Due to the fact that neutral delays may exist in VLSI implementations of neural
networks, the stability analysis of neural networks with neutral terms has received increasing
attention and a rich body of results has been reported [19–23]. In [20], the delay-dependent
exponential stability have been studied for a class of neural networks described by nonlinear
delay differential equations of neutral type by means of linear matrix inequalities (LMIs). By
utilizing the Lyapunov-Krasovkii functional and the LMI approach, the global exponential
stability have been analyzed in [24] for a kind of neutral-type impulsive neural networks.
By constructing the new Lyapunov-Krasovskii functional, a unified framework has been
established in [25] to derive sufficient conditions for the global exponential mean square
stability of a class of Markovian jumping neutral-type neural networks with mode-dependent
mixed time-delays.

As has been pointed by Hale [26], the properties of difference operator are crucial for
the existence and stability of solutions to neutral functional differential equations (NFDEs).
In order to obtain solutions of NFDEs, the definition of stability for difference operator has
been introduced in [26]. The properties of difference operator has been studied in [27] when
it is not stable. By using the results derived in [27], some results on the existence of periodic
solutions to NFDEs have been obtained in [28–30]. However, to the best of the authors’
knowledge, the problems of existence and stability of periodic conditions for delayed neural
networks with difference operator have not been fully addressed, which constitutes the main
motivation of the current research. In this paper, we aim to investigate the existence and
stability of periodic solutions for a class of neutral neural networks by using the properties
of difference operator. Three fundamental issues emerge as follows: (1) how to prove the
existence of the periodic solution of the delayed neural networks with difference operator;
(2) how to construct a feasible Lyapunov functional to reflect the influence of the neutral
operator in neural networks; (3) how to analyze the stability of the periodic solution for the
neutral-type neural networks with difference operator. By using the Mawhin’s continuation
theorem and Lyapunov functional method, some new sufficient conditions are derived to
guarantee the existence, uniqueness, and global exponential stability of the periodic solution
for neutral neural networks.

The main contributions of this paper are highlighted as follows. (1) The neural network
under consideration shows the neutral features characterized by the operator Ai , which is
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different from other papers. Hence, when the neutral term is studied as a neutral operator Ai ,
novel analysis technique is developed since the conventional analysis tool no longer applies;
(2) By employing the Mawhin’s continuation theorem and Lemma 1 in [27], the sufficient
condition is obtained to guarantee the existence of the periodic solution for a class of neutral-
type neural networks with delays; and (3) By constructing a novel Lyapunov functional,
the sufficient conditions are derived for the concerned systems to be globally exponentially
stable.

The following sections are organized as follows: In Sect. 2, the problem under consider-
ation is formulated and some useful lemmas are introduced. In Sect. 3, sufficient conditions
are established for the existence of a unique periodic solution of neutral neural networks. The
global exponential stability of the periodic solution are investigated in Sect. 4. In Sect. 5, a
numerical example is provided to show the feasibility of our results. Finally, we conclude
the paper in Sect. 6.

2 Preliminaries

Consider the following neutral-type neural networks with delays:
⎧
⎪⎪⎨

⎪⎪⎩

(Ai xi )
′(t) = −ai (t)xi (t) +

n∑

j=1

[bi j (t) f j (t, x j (t)) + di j (t)g j (t, x j (t − τi j (t)))] + Ii (t),

xi (t) = φi (t), t ∈ [−τ, 0], i = 1, 2, . . . , n,

(1)

where Ai is a difference operator defined by

(Ai xi )(t) = xi (t) − ci (t)xi (t − γ ), (2)

xi (t) denotes the state of the i th unit at time t , and Ii (t) is the external bias on the i th at time
t , ai (t) represents the rate with which the i th unit will reset its potential to the resting state
when disconnected from the network and external inputs at time t , τi j (t) corresponds to the
finite speed of the axonal transmission of signal, bi j (t) denotes the strength of the j th unit
on the i th unit at time t , di j (t) denotes the strength of the j th unit on the i th unit at time
t − τi j (t) and f j is the signal transmission function. Throughout this paper, it is assumed
that ci (t), ai (t), bi j (t), di j (t), τi j (t), Ii (t) are continuously periodic functions defined on
t ∈ [0,∞) with a common period ω > 0. Moreover, γ, ai (t), bi j (t), di j (t) are positive
everywhere, f j (t, x), g j (t, x) are continuous and ω−periodic with respect to t .

Let τ = max{γ, τi j (t), 1 ≤ i, j ≤ n, t ∈ [0,∞)}. The initial-value functions are as
follow:

φ(t) = (φ1(t), φ2(t), · · · , φn(t))
T ∈ C([−τ, 0],Rn),

where C([−τ, 0],Rn) is the Banach space of continuous functions on [−τ, 0] with norm

||φ|| = sup
t∈[−τ,0]

max
1≤i≤n

|φi (t)|.

Denote that

c0 = max
t∈[0,T ] |c(t)|, σ = min

t∈[0,T ] |c(t)|,
CT = {x |x ∈ C(R,R), x(t + T ) ≡ x(t), ∀t ∈ R}
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with the norm

|ϕ|0 = max
t∈[0,T ] |ϕ(t)|, ∀ϕ ∈ CT .

Clearly, CT is a Banach space. Define a linear operator as follow:

A : CT → CT , [Ax](t) = x(t) − c(t)x(t − τ), ∀t ∈ R.

Lemma 2.1 [27] If |c(t)| 	= 1, then the operator A has the continuous inverse A−1 on CT

which satisfies

(i)

[A−1 f ](t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (t) +
∞∑

j=1

j∏

i=1

c(t − (i − 1)τ ) f (t − jτ), c0 < 1, ∀ f ∈ CT ,

− f (t + τ)

c(t + τ)
−

∞∑

j=1

j+1∏

i=1

1

c(t + iτ)
f (t + jτ + τ), σ > 1, ∀ f ∈ CT .

(ii)

∫ T

0
|[A−1 f ](t)|dt ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 − c0

∫ T

0
| f (t)|dt, c0 < 1, ∀ f ∈ CT ,

1

σ − 1

∫ T

0
| f (t)|dt, σ > 1, ∀ f ∈ CT .

(iii)

|A−1 f |0 ≤

⎧
⎪⎪⎨

⎪⎪⎩

1

1 − c0
| f |0, c0 < 1, ∀ f ∈ CT ,

1

σ − 1
| f |0, σ > 1, ∀ f ∈ CT .

The famous Mawhin’s continuation theorem is recalled as follows.

Lemma 2.2 [31] Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y
is a Fredholm operator with index zero. Furthermore, � ⊂ X is an open bounded set and
N : �̄ → Y is L-compact on �̄. If all the following conditions hold

(i) Lx 	= λNx,∀x ∈ ∂� ∩ D(L),∀λ ∈ (0, 1),
(ii) Nx /∈ ImL ,∀x ∈ ∂� ∩ Ker L ,

(iii) deg{J QN ,� ∩ Ker L , 0} 	= 0,

where J : ImQ → Ker L is an isomorphism, then the equation Lx = Nx has a solution on
�̄ ∩ D(L).

3 Existence of Periodic Solution

For convenience, the following notations will be used in this paper:

f̄ = 1

ω

∫ ω

0
f (t)dt, f + = max

t∈[0,ω] | f (t)|, f − = min
t∈[0,ω] | f (t)|,

where f is a continuous ω−periodic function.
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Denote by Cω (respectively, C1
ω) the set of all continuous (respectively, differentiable) ω-

periodic functions with respect to x(t) = (x1(t), x2(t), · · · , xn(t))T defined onR.Moreover,
denote that

|x |0 = max
1≤i≤n

{x+
i }, |x |1 = max{|x |0, |x ′|0}.

Then Cω and C1
ω are Banach spaces with the norms | · | and | · |1, respectively. Define

A : Cω → Cω, (Ax)(t) = x(t) − C(t)x(t − γ ),∀t ∈ R,

L : D(L) ⊂ Cω → C1
ω, (Lx)(t) = (Ax)′(t),

N : C1
ω → Cω, (Nx)i (t) = −ai (t)xi (t) +

n∑

j=1

[bi j (t) f j (t, x j (t))

+ di j (t)g j (t, x j (t − τi j (t)))] + Ii (t), i = 1, 2, · · · , n,

where C(t) = diag(c1(t), c2(t), · · · , cn(t)) and D(L) = {x : x ∈ C1
ω}.

Then system (1) is the operator equation Lx = Nx . It is easy to see

ImL =
{

y : y ∈ Cω,

∫ ω

0
y(s)ds = 0

}

.

We have (x(t) − C(t)x(t − τ))′ = 0 ∀x ∈ Ker L . Therefore,

x(t) − C(t)x(t − τ) = c̃, (3)

where c̃ ∈ R
n is a constant vector. Let ϕ(t) be the unique ω−periodic solution of (3), then

ϕ(t) 	= 0 and

KerL = {a0ϕ(t) : a0 ∈ R}.
It is now a position to state the result on the existence of the periodic solution.

Theorem 3.1 Assume that c+
i < 1 or c−

i > 1 for t > 0 and i = 1, 2, · · · , n. Moreover,

suppose that
∫ T
0 ϕ2(t)dt 	= 0 where ϕ(t) is defined in (3), and there exist non-negative

constants p j and q j such that

| f j (t, x)| ≤ p j , |g j (t, x)| ≤ q j , j = 1, 2, · · · , n.

Then system (1) has at least one ω−periodic solution.

Proof Obviously, ImL is a closed in Cω and dimKer L = condimImL = n. So L is a
Fredholm operator with index zero. From

∫ T
0 ϕ2(t)dt 	= 0, define continuous projectors

P, Q

P : Cω → Ker L , (Px)(t) =
∫ ω

0 x(t)ϕ(t)dt
∫ ω

0 ϕ2dt
ϕ(t)

and

Q : Cω → Cω/ImL , Qy = 1

ω

∫ ω

0
y(s)ds.

Let

LP = L|D(L)∩Ker P : D(L) ∩ Ker P → ImL ,
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then

L−1
P = KP : ImL → D(L) ∩ Ker P.

Since ImL ⊂ CT and D(L)∩ Ker P ⊂ C1
T , we know that KP is an embedding operator.

Hence, KP is a completely operator in ImL . According to the definitions of Q and N , it can
be found that QN (�) is bounded on �. Then, nonlinear operator N is L−compact on �.
Next, we will complete the proof in three steps.

Step 1. Let �1 = {x ∈ D(L) ⊂ C1
ω : Lx = λNx, λ ∈ (0, 1)}. We show that �1 is a

bounded set. If ∀x ∈ �1, then Lx = λNx , i.e., for i = 1, 2, · · · , n,

(Ai xi (t))
′ + λai (t)xi (t) − λ

n∑

j=1

[bi j (t) f j (t, x j (t)) + di j (t)g j (t, x j (t − τi j (t)))]

− λIi (t) = 0. (4)

Notice that there exists ti ∈ [0, ω] such that Axi (ti ) = [Axi (t)]+. Hence (Ai xi )′(ti ) = 0
which implies that

ai (ti )xi (ti ) =
n∑

j=1

[bi j (ti ) f j (ti , x j (ti ))

+ di j (ti )g j (ti , x j (ti − τi j (ti )))] + Ii (ti ). (5)

From (5), we have

|xi (ti )| =
∣
∣
∣
∣
∣
∣

n∑

j=1

[
bi j (ti )

ai (ti )
f j (ti , x j (ti ))

+di j (ti )

ai (ti )
g j (ti , x j (ti − τi j (ti )))

]

+ Ii (ti )

ai (ti )

∣
∣
∣
∣

≤
n∑

j=1

p j

[
bi j (ti )

ai (ti )

]+
+

n∑

j=1

q j

[
di j (ti )

ai (ti )

]+
+

[
Ii (ti )

ai (ti )

]+
, i = 1, 2, · · · , n. (6)

By (6), we obtain

[xi (t)]+ ≤ hi , i = 1, 2, · · · , n,

where hi is the i th component of vector h, and it is independent of λ. Moreover, it follows
from (4) that

[(Ai xi (t))
′]+ ≤ max

t∈[0,ω][ai (t)|xi (t)| +
n∑

j=1

[|bi j (t) f j (t, x j (t))|

+ |di j (t)g j (t, x j (t − τi j (t)))|] + |Ii (t)|]

≤ [ai (t)]+hi +
n∑

j=1

[p j |bi j (t)]+ + qi [di j (t)]+] + [Ii (t)]+ := h̄i . (7)

123



Existence and Global Exponential Stability. . . 987

From (7) and Lemma 2.1, if c+
i < 1, we get

|x ′
i (t)| = |A−1

i Ai x
′
i (t)|

≤ 1

1 − c+
i

max
t∈[0,ω]{|Ai x

′
i (t)|}

= 1

1 − c0
max
t∈[0,ω]{|(Ai xi )

′(t) + c′
i (t)xi (t − γ )|}

≤ h̄i + [c′
i (t)]+hi

1 − c+
i

. (8)

Similarly, if c−
i > 1, we have

|x ′
i (t)| ≤ h̄i + [c′

i (t)]+hi
c−
i − 1

. (9)

From (8) and (9), we obtain

[x ′
i (t)]+ ≤ �i .

Step 2. From the above proof, it can be found that there exists some d > 1 such that

dhi > A for i = 1, 2, · · · , n,

where A = max1≤i≤n{hi + 1, h̄i + 1}. Let �2 = {x ∈ C1
ω : −dh < x(t) < dh}. We shall

prove that if x ∈ ∂�2 ⊂ Ker L , then

|(QNx)i | 	= 0 for i = 1, 2, · · · , n (10)

where

(QNx)i = 1

ω

∫ ω

0

[
− ai (t)xi (t) +

n∑

j=1

[
bi j (t) f j (t, x j (t))

+ di j (t)g j (t, x j (t − τi j (t)))
] + Ii (t)

]
dt.

Considering x ∈ ∂�2 ⊂ Ker L , it is obvious that x is a constant vector in R
n with

|xi | = dhi for i = 1, 2, · · · , n.

Next, the proof by contradiction will be used. Suppose that there exists some i ∈
{1, 2, · · · , n} such that |(QNx)i | = 0, i.e.,

∫ ω

0

[
− ai (t)xi (t) +

n∑

j=1

[
bi j (t) f j (t, x j (t)) + di j (t)g j (t, x j (t − τi j (t)))

] + Ii (t)
]
dt = 0.

Then there exists some ξ ∈ [0, ω] such that

−ai (ξ)xi +
n∑

j=1

[
bi j (ξ) f j (ξ, x j ) + di j (ξ)g j (ξ, x j )

] + Ii (ξ) = 0.

Therefore, we have

dhi = |xi | ≤
n∑

j=1

[ |bi j (ξ)|
ai (ξ)

| f j (ξ, x j )| + |di j (ξ)|
ai (ξ)

|g j (ξ, x j )|
]

+ |Ii (ξ)|
ai (ξ)

≤ hi .
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In view of d > 1, it follows from the above inequality that dhi < dhi , which is a
contradiction. Thus, (10) holds and hence

QNx 	= 0, ∀x ∈ ∂�2 ⊂ Ker L .

Step 3. We shall prove that the third condition in Lemma 2.2 holds. Take the homotopy

H(x, μ) = μdiag(−ā1,−ā2, · · · ,−ān)x + (1 − μ)QNx, x ∈ � ∩ Ker L , μ ∈ [0, 1].
When x ∈ ∂�2 ⊂ Ker L , one has |xi | = dhi for i = 1, 2, · · · , n. Thus,

|H(x, μ)|0= max
1≤i≤n

{

− āi xi + (1 − μ)

ω

n

j=1

∫ ω

0
[bi j (t) f j (t, x j )+ di j (t) f j (t, x j )]dt+ Īi

}

.

We claim that

|H(x, μ)|0 > 0. (11)

Suppose that |H(x, μ)|0 = 0, then for i = 1, 2, · · · , n we have

−āi xi + (1 − μ)

ω

n

j=1

∫ ω

0
[bi j (t) f j (t, x j ) + di j (t) f j (t, x j )]dt + (1 − μ) Īi = 0. (12)

According to the integral mean value theorem and (12), there is some η ∈ [0, ω] such that
−āi xi + (1 − μ)
n

j=1[bi j (η) f j (η, x j ) + di j (η) f j (η, x j )] + (1 − μ) Īi = 0.

Then, one has

dhi = |xi | ≤ (1 − μ)

n∑

j=1

[ |bi j (η)|
āi

| f j (η, x j )| + |di j (η)|
āi

|g j (η, x j )|
]

+ (1 − μ)
| Īi |
āi

≤ hi

which contradicts that d > 1. Therefore, Eq. (11) holds. Using the property of topological
degree and taking J to be the identity mapping I : ImQ → Ker L , we have

deg{J QN ,� ∩ Ker L , 0} = deg{H(·, 0),� ∩ Ker L , 0}
= deg{H(·, 1),� ∩ Ker L , 0}
= deg{diag(−ā1,−ā2, · · · ,−ān),� ∩ Ker L , 0}
= 1 	= 0.

Then, by using Lemma 2.2, we obtain that the equation Lx = Nx has at least one
ω−periodic solution x in �̄. Namely, system (1) has at least one ω−periodic solution. �

Remark 3.2 The neural network system (1) shows the neutral features characterized by the
Ai operator, which is different from the corresponding results of other papers, see, e.g.,
[1,22,24,25]. And also the main results are derived by fully taking advantage of the some
properties of operators, such as the characterization of the kernel space of operator L .

If we further assume that f j (t, x) and g j (t, x) ( j = 1, 2, · · · , n) are globally Lipschitz
with respect to the second variables, then we shall obtain a unique ω−periodic solution for
system (1). Then we have the following corollary.

Corollary 3.3 Assume that all the conditions of Theorem3.1 hold and there exist nonnegative
constants L f

j and Lg
j such that | f j (t, x)− f j (t, y)| ≤ L f

j |x − y| and |g j (t, x)− g j (t, y)| ≤
Lg
j |x − y|, where t > 0, x, y ∈ R, j = 1, 2, · · · , n. Then system (1) has a unique

ω−periodic solution x(t) on [−τ,∞].
Since the proof of Corollary 3.3 is similar to Ref. [32], we omit it here.
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4 Exponential Stability

In this section, we shall deal with the exponential stability of the periodic solutions.

Definition 4.1 Let z∗(t) = (z∗1(t), z∗2(t), · · · , z∗n(t))� be a periodic solution of system (1).
Then the periodic solution z∗(t) is globally exponentially stable if there exist constants α > 0
and β ≥ 1 such that, for the any solution of system (1), the following holds

|z(t) − z∗(t)| ≤ βe−αt |z(0) − z∗(0)|, t > 0.

Denote that

D = diag

(

a−
1 −

(
a+
1 c

+
1

1 − c+
1

+ 1

)

, a−
2 −

(
a+
2 c

+
2

1 − c+
2

+ 1

)

, · · · , a−
n −

(
a+
n c

+
n

1 − c+
n

+ 1

))

,

E =
(b+

i j L
f
j + d+

i j L
g
j

1 − c+
j

)

n×n
,

then we have the following theorem for the stability of system (1).

Theorem 4.2 Assume that all the conditions of Theorem 3.1 hold, ρ(D−1
E) < 1, f j (t, 0) =

g j (t, 0) = 0 and there exist nonnegative constants L f
j and L

g
j such that | f j (t, x)− f j (t, y)| ≤

L f
j |x − y| and |g j (t, x) − g j (t, y)| ≤ Lg

j |x − y|, where t > 0, x, y ∈ R, j = 1, 2, · · · , n.

Then system (1) has a unique ω−periodic solution x(t) on [−τ,∞], which is globally expo-
nentially stable.

Proof Since ρ(D−1
E) < 1, i.e., the spectral radius of D−1

E is less than 1, there exists a
constant vector ϑ = (ϑ1, ϑ2, · · · , ϑn)

T > 0 such that

(En − D
−1

E)ϑ > 0, [Ii (t)]+ ≤ ϑi , i = 1, 2, · · · , n,

where En is an n × n unit matrix. Thus
(

−a−
i + a+

i c
+
i

1 − c+
i

+ 1

)

ϑi +
n∑

j=1

(b+
i j L

f
j + d+

i j L
g
j )

1 − c+
j

ϑ j < 0, i = 1, 2, · · · , n. (13)

For t > 0, define

�i (t)=
[

t−a−
i +

(
a+
i c

+
i

1 − c+
i

+1

)

etγ
]

ϑi +
n∑

j=1

(b+
i j L

f
j + d+

i j L
g
j e

tτ+
i j )

1 − c+
i

ϑ j , i = 1, 2, · · · , n.

It is easy to verify that �i (t), i = 1, 2, · · · , n are all continuous on interval [0, λ0]. Then
we have

�i (0) =
(

−a−
i + a+

i c
+
i

1 − c+
i

+ 1

)

ϑi +
n∑

j=1

(b+
i j L

f
j + d+

i j L
g
j )

1 − c+
j

ϑ j < 0, i = 1, 2, · · · , n

and there is a constant λ ∈ [0, λ0] such that

�i (λ) =
[

λ − a−
i +

(
a+
i c

+
i

1 − c+
i

+ 1

)

eλγ

]

ϑi +
n∑

j=1

(b+
i j L

f
j + d+

i j L
g
j e

λτ+
i j )

1 − c+
j

ϑ j

< 0, i = 1, 2, · · · , n.
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For the above λ, we choose the following Lyapunov functional:

Vi (t) = |(Ai xi )(t)|eλt , t > 0, i = 1, 2, · · · , n.

We claim that

Vi (t) = |(Ai xi )(t)|eλt < ξi , t > 0, i = 1, 2, · · · , n. (14)

Otherwise, there must exist an i ∈ {1, 2, · · · , n} and ti > 0 with ti ≤ γ such that

Vi (ti ) = ξi and Vj (t) < ξ j , i = 1, 2, · · · , n, t < ti .

Calculating the time derivative of Vi (t) along the trajectories of system (1), we have

0 ≤ D+Vi (ti ) = sgn{(Ai xi )(ti )}(Ai xi )
′(ti )eλti + λ|(Ai xi )(ti )|eλti

= sgn{(Ai xi )(ti )}
[ − ai (ti )xi (ti )

+
n∑

j=1

[bi j (ti ) f j (t, x j (ti )) + di j (ti )g j (ti , x j (ti − τi j (ti )))] + Ii (ti )
]
eλti

+ λ|(Ai xi )(ti )|eλti

≤ (λ − a−
i )|(Ai xi )(ti )|eλti + a+

i c
+
i |xi (ti − γ )|eλ(ti−γ )eλγ + [Ii (t)]+eλγ

+
n∑

j=1

b+
i j L

f
j |x j (ti )|eλti +

n∑

j=1

d+
i j L

g
j |x j (ti − τi j (ti ))|eλ(ti−τi j (ti ))eλτi j (ti )

≤
[

λ − a−
i + (a+

i c
+
i

1

1 − c+
i

+ 1)eλγ

]

ξi

+
n∑

j=1

(b+
i j L

f
j + d+

i j L
g
j e

λτ+
i j )

1

1 − c+
j

ξ j , (15)

where the following inequalities are used

|xi (ti − γ )| = |A−1
i Ai xi (ti − γ )| ≤

∣
∣
∣
∣
Ai xi (ti − γ )

1 − c+
i

∣
∣
∣
∣,

|x j (ti )| = |A−1
j A j x j (ti )| ≤

∣
∣
∣
∣
A j x j (ti )

1 − c+
j

∣
∣
∣
∣, |x j (ti )| = |A−1

j A j x j (ti − τi j (ti ))|

≤
∣
∣
∣
∣
A j x j (ti − τi j (ti ))

1 − c+
j

∣
∣
∣
∣.

It is obvious that (15) contradicts (13), and then (14) holds. It follows from (14) that, for
i = 1, 2, · · · , n and t > 0,

|xi (t)| = |A−1
i Ai xi (t)| ≤

∣
∣
∣
∣
Ai xi (t)

1 − c+
i

∣
∣
∣
∣ ≤ ϑi

1 − c+
i

e−λt ≤ Mφ ||φ||e−λt ,

where Mφ is a constant such that Mφ ||φ|| ≥ ϑi
1−c+

i
. The proof is now completed. �
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If we denote that

D̃ = diag

(

a−
1 −

(
a+
1 c

+
1

c−
1 − 1

+ 1

)

, a−
2 −

(
a+
2 c

+
2

c−
2 − 1

+ 1

)

, · · · , a−
n −

(
a+
n c

+
n

c−
n − 1

+ 1

) )

,

Ẽ =
(b+

i j L
f
j + d+

i j L
g
j

c−
j − 1

)

n×n
,

then we get the following corollary.

Corollary 4.3 Assume that all the conditions of Theorem 3.1 hold, ρ(D̃−1
Ẽ) < 1, f j (t, 0) =

g j (t, 0) = 0 and there exist nonnegative constants L f
j and L

g
j such that | f j (t, x)− f j (t, y)| ≤

L f
j |x − y| and |g j (t, x) − g j (t, y)| ≤ Lg

j |x − y|, where t > 0, x, y ∈ R, j = 1, 2, · · · , n.

Then system (1) has a unique ω−periodic solution x(t) on [−τ,∞], which is globally expo-
nentially stable.

5 Numerical Example

In order to verify the feasibility of our results, consider the following neutral-type neural
network:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A1x1)
′(t)=−a1(t)x1(t)+

2∑

j=1

[b1 j (t) f j (t, x j (t)) + d1 j (t)g j (t, x j (t − τ1 j (t)))]+ I1(t),

(A2x2)
′(t)=−a2(t)x2(t) +

2∑

j=1

[b2 j (t) f j (t, x j (t)) + d2 j (t)g j (t, x j (t − τ2 j (t)))]+ I2(t),

where

(A1x1)(t) = x1(t) − c1(t)x1(t − γ ), (A2x2)(t)= x2(t)−c2(t)x2(t−γ ), ω=2π, γ =100,

I1(t)= I2(t)=sin t, a1(t)=a2(t) = 2, c1(t) = c2(t) = 0.01 cos t, bi j (t) = di j (t) = 0.1,

τi j (t) = 1

2π
sin t, f j (t, u) = g j (t, u) = 0.2 sin u.

For i, j = 1, 2, we have

c+
i = 0.01 < 1, L f

j = Lg
j = 0.2, D = 97

99

(
1 0
0 1

)

, E = 4

99

(
1 1
1 1

)

,

D
−1

E = 4

97

(
1 1
1 1

)

,

then ρ(D−1
E) = 8

97 < 1. It follows from Theorem 4.2 that the periodic solution of the above
system is globally exponentially stable.

6 Conclusions

In this paper, the problem of stability analysis has been discussed for a class of neutral-type
neural networks with time delays and difference operator. By using Mawhin’s continuation
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theorem and Lyapunov functional method, some results have been derived for the existence,
uniqueness and global exponential stability of periodic solution for the concerned systems. A
numerical example has beenprovided to illustrate the effectiveness of the obtained results. The
results about existence and global exponential stability of periodic solution for neutral-type
neural networks proposed in this paper could be further utilized for other related problems,
such as control and filtering [35–37] the non-fragile state estimation in [38,39], the distributed
state estimation for sensor networks as considered in [40,41]. The results derived in this paper
can be also extended into Sensor networks or social networks, which is now a hot research
topic [42–44].
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