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Abstract As a class of semi-supervised learning methods, manifold regularization learning
has recently attracted a lot of attention, due to their great success in exploiting the underlying
geometric structures among data. This paper presents a novel semi-supervised approach by
combining manifold regularization learning with the idea of multiple kernels, named after
ensemble multiple-kernel manifold regularization learning. In our approach, multiple kernels
we introduced are not only used to add the flexibility and diversity of the candidate space
for the learning problem, but also act as a similarity measure to search for an optimal graph
Laplacian in some sense. In other words, the proposed method allows us to learn an ’ideal’
kernel and an optimal graph Laplacian simultaneously, which is of significant difference from
existing methods. The associated optimization problem is solved efficiently by an alternating
iteration procedure. We implement experiments over four real world data sets to demonstrate
the benefits of the proposed method.

Keywords Manifold regularization learning ·Multiple kernel learning ·Reproducing kernel
Hilbert space (RKHS) · Kernel learning

1 Introduction

Learning knowledge from labeled and unlabeled samples plays a key role in semi-supervised
learning (SSL). Manifold regularization (MR) learning [1] is one of the representative and
successful SSL methods which is achieved by exploiting the intrinsic geometric structure
of the probability distribution of the data, and it recently has attracted a lot of attention
[3,8,12–14,17]. Until recently, the researchers have extended the MR learning to many areas
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of machine learning. For example, [17] and [14] relaxed the label function so that it is better
to deal with novel samples and classification, and [3] aimed at solving small scale problems
appearing in the consequent inverse operation, and [8] transformed the problem of manifold
regularization into learning an optimal graph Laplacian.

Under the framework of MR learning, the decision function or a learner, is a linear combi-
nation of a single kernel function at the given instances and the performance ofMRalgorithms
strongly depends on the choice of the kernel and the given data. Thus the misspecification
of the kernel function may result in the distortion of the manifold structure, meanwhile it
often leads to the underfitting for modeling data. Fortunately, multiple kernel learning (MKL)
[2,9–11,15,20,21] has been proven useful and effective in terms of theoretical analysis and
practical applications, compared to several single kernel methods. The main idea of MKL
is to learn kernels with linear combinations of multiple specified kernels, so that the greater
flexibility can be gained for any kernel-based method.

Among kernel-based methods [4,5,16,19], kernel function is either used as the so called
kernel trick, i.e. mapping input sample into a high dimensional kernel space for learning
nonlinear problem, or used as similar function for measuring the difference between two
input samples. Compared to the existing work, one of significant differences is that we here
make full use of the two advantages of kernel function. Based on this idea, the proposed
method can produce a decision function with greater flexibility, and also find out an ideal
graph Laplacian. Furthermore, the intrinsic manifold structure among data can be exploited
efficiently. The MR methods utilize a graph Laplacian regularizer to constrain the decision
function to be smooth with respect to the data manifold, a low-dimensional subspace on
which the high-dimensional data actually resides; in application, the manifold is determined
by a graph Laplacian from the given data. The graph Laplacian construction step is critical
and important in MR methods but is still an open issue that has not been comprehensively
studied [6,18]. In multiple manifolds or multiple view learning[22–24], the approximation
of the optimal graph Laplacian draws on some pre-given manifold candidates according to
different manifolds or views. In this paper, we utilize the pregiven multiple basis kernel
functions to generate initial graph Laplacian candidates, and then a convex set over the
constrained coefficients is constructed to search for the optimal graph Laplacian. At this
point, it is a learning problem of the optimal graph Laplacian. Since the optimal coefficients
in the learning problem of graph Laplacian are the same as the combination coefficients of
kernels used in the decision function, we can solve the graph Laplacian optimization problem
together with the learning problem of multiple kernel functions function.

In this paper, we propose a novel semi-supervised approach by combining manifold regu-
larization with the idea of multiple kernels. In our case, a flexible learner within multi-kernel
class and the optimal graph Laplacian are selected simultaneously. The advantages of our
proposed method mainly consists of the following points: (1) learning both the composite
manifold and the multiple kernel functions jointly; (2) the decision function is built by using
multiple kernel functions for extracting more data information from data, in other words, the
reproducing kernel Hilbert space associated with multiple kernels enables us to enrich and
expand the search range of the optimal solution of learning problem; (3) the intrinsicmanifold
is further approximated by some initial manifold candidates that are induced by the multiple
kernel functions. In term of theory, we present the formulations of the proposed algorithm
and search for the optimal decision function in the sum space of reproducing kernel Hilbert
spaces (RKHS). In term of numerical computation, the associated optimization problem is
solved efficiently by an alternating iteration procedure like [15].

The paper is organized as follows. In Sect. 2, we introduce the framework of manifold reg-
ularization learning and some related concepts. Section 3 introduces our proposed approach
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Ensemble Multiple-Kernel Based Manifold Regularization 541

called multiple-kernel manifold regularization (MKMR) and the details of its optimization
problem. The experimental results on both synthetic and real-world data sets are presented
in Sect. 4. Finally, some conclusive remarks are given in Sect. 5.

2 Manifold Regularization

In the semi-supervised learning, consider an available set X = {x1, . . . , xl+u} ⊆ Ω, xi ∈ Rn ,
where {x1, . . . , xl} are the labeled samples with the corresponding labels {y1, . . . , yl} and
{xl+1, . . . , xl+u} are the unlabeled samples. We suppose that XL = {x1, . . . , xl} is the set
of labeled samples drawn according to the joint distribution P defined on Ω × R, and
XU = {x1+u, . . . , xl+u} is the set of unlabeled samples drawn according to the marginal
distribution PX of P .

Manifold regularization aims at exploiting the geometry of the marginal distribution PX .
It assumes that if the two data points x, x ′ ∈ X are close in the intrinsic geometry of
PX , then the conditional distributions P(y|x) and P(y|x ′) are similar accordingly. Then an
additional regularization term is introduced to characterize manifold structure for the given
learning problem. Consider an reproducing kernel Hilbert space (RKHS) H associated with
a symmetric nonnegatively definite kernel {k(x, x ′) : Ω × Ω → R}, and the manifold
regularization learning problem can be expressed as the following form:

min
f ∈H

{
1

l

l∑
i=1

V (yi , f (xi )) + κ‖ f ‖2H + λ‖ f ‖2M
}
, (1)

where f : Ω → R is the decision function. The first term of the objective function(1) is
defined on the loss function V which measures the discrepancy between the predicted value
f (xi ) and the actual label yi . ‖ f ‖2M is themanifold regularizer and measures the smoothness
of the function f on data manifold and ‖ f ‖2H is the norm of the function f in the RKHS H .
κ and λ are the regularization parameters, balancing different terms. The aim of the objective
function (1) is to find the optimal function f in the RKHS space H .

In most applications, PX is not known. Therefore, the manifold regularizer is usually
approximated by the graph Laplacian matrix associated with X and the function prediction
f = [ f (x1) · · · f (xl+u)]T . Hence the optimization problem can be reformulated as:

min
f ∈H

{
1

l

l∑
i=1

V (yi , f (xi )) + κ‖ f ‖2H + λfT Lf
}
, (2)

where L is the graph Laplacian matrix given by L = D − W . Here D is the diagonal
matrix with dii = ∑l+u

j=1 wi j and W is the similar matrix, where the element wi j denotes
the similarity between points xi and x j . For example, a commonly-used measurement of
wi j is the Gaussian kernel function defined on the Euclidean distance [5,12], i.e., if the data

x j ∈ N (xi ) or xi ∈ N (x j ), wi j = exp(−‖xi−x j‖2
t2

) and 0 otherwise, where N (xi ) is the
neighborhood of xi and t is the tuning parameter.

Following the Representer Theorem [9], theminimizer of optimization problem (2) admits
an expansion

f (x) =
l+u∑
i=1

αi k(x, xi ) (3)
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in termof the unlabeled and labeled samples [1]. Therefore, the decision of the kernel function
k plays a key role for the performance of MR algorithms. When lose function V in Eq.(2) is
adopt to be the squared loss function V (yi , f (xi )) = (yi − f (xi ))2, the problem of (2) can
be reduced to a typical quadratic programme, and its analytic solution can be easily obtained
(refer to [1] in details). And the MR algorithm formulates the Laplacian Regualrized Least
Squares (LapRLS).

3 Proposed Ensemble Multiple-Kernel Manifold Regularization (MKMR)

In this section, we propose a novel semi-supervised method that combines the two charac-
teristics of multiple kernels and the specific merit of manifold regularization.

3.1 Framework

We denote by {kb(x, x ′) : b = 1, . . . ,m} the set ofm base kernels to be combined. Each base
kernel kb can generate an RKHS Hb. Under the MKL framework, f (x) = ∑

b fb(x) where
each function fb belongs to the different RKHS Hb . Thereforewith a non-negative coefficient

βb, we can define an equivalent space of Hb by H ′
b = { fb : ‖ fb‖2Hb

βb
< ∞, fb ∈ Hb}. When∑m

b=1 βb = 1 is constrainted, a new RKHS H ′ is defined as the direct sum of the spaces
H ′
b, i.e., H

′ = H ′
1 ⊕ · · · ⊕ H ′

m , and its reproducing kernel is the combined kernel function
k′(x, x ′) = ∑m

b=1 βbkb(x, x ′). H ′ is a multiple-kernel space and can be used to further
explore the data and solve the problems involved in multiple data sources. The learning
problem of MKMR method is working in the new RKHS H ′, formulated as the following
minimization

min
f ∈H ′

{
1

l

l∑
i=1

V (yi , f (xi )) + κ‖ f ‖2
H ′ + λ‖ f ‖2M

}
, (4)

where ‖ f ‖2H ′ penalizes the classifier complexities measured in the RKHS H ′. Obviously, the
solution range of f is expanded from the single kernel space to the multiple-kernel space.

As mentioned before, the kernel function can be used to measure the similar relationship
between pair data. Therefore, in order to find an optimal graph Laplacia for manifold regu-
larizer, we employ a series of initial graph Laplacian candidates {Lb}m1 corresponding to the
multiple kernels {kb}m1 to construct a convex set {L|L = β1L1+· · ·+βmLm,

∑m
b=1 βb = 1}.

Such a combination for graph Laplacian naturally allows us to learn a better graph Laplacian.
Note that the initial graph candidates may be not limited to those base kernels. By using the
above expression, the manifold regularizer becomes

‖ f ‖2M = fT
( m∑

b=1

βbLb

)
f =

m∑
b=1

βb‖ f ‖2Mb
. (5)

Substituting (5) into the framework (4), we have

min
βb∈�

min
fb∈H ′

b

{
1

l

l∑
i=1

V (yi , f (xi )) + κ

m∑
b=1

βb‖ fb‖2H ′
b
+ λ

m∑
b=1

βb‖ f ‖2Mb

}
, (6)

where � = {βb ∈ Rm+ : ∑m
b=1 βb = 1} is the domain of βb . It can be seen that we actually

establish two learning problems: the learning problem of the classifier f and the optimization
problem of graph Laplacian. We can also use different parameters in our learning problem,
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denoted by βb and β ′
b. However, by doing this, we need to estimate additionalm coefficients,

resulting in adding computation cost. In view of computational efficiency, we only use the
single tuning parameter λ to measure the differences between the two sets of coefficients in
Eq. (6), instead of the set of coefficients β ′

b.

3.2 Parameters Optimization

In our current work, we adopt the group-Lasso minimization MKLmethod [15] as a solution
to optimize the decision function of MKMR. Following the Representer Theorem [9], the
solution of the optimization problem (6) admits

f (x) =
l+u∑
i=1

αi

m∑
b=1

βbkb(x, xi ). (7)

Therefore, the MKMR problem only refers to the optimization of coefficients {αi }l+u
1 and

{βb}m1 . To solve it, we employ the alternating way with two steps: finding the optimal {β∗
b }l+u

1

with fixed {αi }l+u
1 , and then finding the best classifier weights {αi }l+u

1 with the fixed {β∗
b }l+u

1 .
In the first step, inspired by the method [9] we can define a new classification functions set

f̂b = βb fb, (8)

where b = 1 · · ·m. With it, the formulation in (6) is rewritten as

min
β∈�

min
f̂b∈H ′

b

{
1

l

l∑
i=1

V (yi ,
m∑

b=1

f̂b(xi )) + κ

m∑
b=1

1

βb
‖ f̂b‖2H ′

b
+ λ

( m∑
b=1

f̂b

)T( m∑
b=1

βbLb

)( m∑
b=1

f̂b

)}
.

(9)
By taking the minimization over β, we obtain:

β∗
b =

‖ f̂b‖2H ′
b∑m

b=1 ‖ f̂b‖2H ′
b

. (10)

When taking derivative of the Lagrangian with respect to βb, we set

∑
βbLb =

∑
j 
=b

β j L j + Lb

(
1 −

∑
j 
=b

β j

)
, j = 1 · · ·m.

Observing from theEq. (10), we update the parameterβb by the normof the decision function.
Second, with the fixed β∗, the object J (α) is given by

J (α) = min
α∈Rl+u

{
1

l

l∑
i=1

V

(
yi ,

l+u∑
i=1

αi k
′
(x, xi )

)
+ καT K ′α + λαT K ′

( m∑
b=1

βbLb

)
K ′α

}
,

(11)
where y = [y1, . . . , yl , 0, . . . , 0]1×(l+u) is the label vector; K ′ is the kernel matrix of the
combined kernel function k′. When the squared loss is used as the loss function V , i.e.,
V = (y − GK ′α)T (y − GK ′α), we have

min
α∈Rl+u

{
yT y − 2yT GK ′α + αT

(
K

′T GT GK ′ + κK ′ + λK
′T

( m∑
b=1

βbLb

)
K

′
)

α

}
, (12)
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where G is the diagonal matrix in which the first l diagonal elements are 1 and the rest are
0. The problem above becomes a typical symmetric quadratic form, that is

α∗ = argmin
α∈Rl+u

{
yT y − 2BTα + αT Aα

} = A−1B, (13)

where B = K
′T GT y, A = K

′T GT GK ′ + κK ′ + λK
′T ( ∑m

b=1 βbLb
)
K ′. Note that the

matrix A is a symmetric and positive definite matrix, and then the final analytic solution is

α∗ =
(
K

′T
(
GTG + κ I + λ

( m∑
b=1

βbLb

))
K ′

)−1

K ′GT y, (14)

where I is the unit matrix. Repeat the above two steps until meeting the stopping criteria of
the alternating optimization procedure.

4 Experiments

This experimental study aims at verifying the effectiveness and advantages of MKMR. The
proposed approach introduces the multiple kernels to the MR approach and jointly learns the
optimal graph Laplacian. In order to validate the proposed MKMR, the classical MR [1] and
the general multi-kernel basedMR approach (be called MMR in short) [7] are considered for
comparisons with the proposed MKMR. This study includes the two parts: first, we focus on
MR, MMR, andMKMR for classification problem with four real-world datasets; second, we
compare MKMR with MMR and an optimized MMR method (be called OMMR in short)
to show the effectiveness of learning the optimal graph Laplacian. OMMR method uses a
pre-optimized graph Laplacian obtained by the cross-validation method.

4.1 Data Sets

In our experiments, we use one object database(ETH80), one handwritten digits data-
base(USPS), one face database(Yale-B), and the Caltech 101 dataset. These datasets are
chosen since they correspond to several types.

The ETH-801 dataset has been used in many object recognition studies. It contains eight
categories (apples, pears, tomatoes, cows, dogs, horses, cups, and cars) of images. Each class
has 10 objects, and each object is represented by 41 views. Thus there are 3,280 images in
total in this dataset. The size of image is 16 × 16.

The USPS2 handwritten digits database contains 10 handwritten digits from “0” to “9”,
and each digit consists of 1100 grayscale images. The images we loaded have been resized
to 16 × 16 pixels. The size is already small.

The Caltech 1013 dataset contains 9146 images of 101 categories (about 40 to 800 images
per category). We resize all the images and the final size is 150 × 150. This dataset object
displays a wide variety of complex geometry and reflectance characteristic.

The Yale-B4 face dataset contains 10 individuals, and each is seen under 576 viewing
conditions (9 poses and 64 illumination conditions). All images are cropped based on the

1 http://people.csail.mit.edu/jjl/libpmk/samples/eth.html.
2 http://www.cs.nyu.edu/~roweis/data.html.
3 http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
4 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.
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location of eyes, and resize to 32 × 32 pixels. We select a subset, including 64 images of 8
individuals (under the front pose) to evaluate the performance of algorithms.

4.2 Parameters Settings

There are three parameters (the number of nearest neighbors, and the two regularization
parameters κ and λ) to be tuned for all comparison methods. For all experiments, the number
of nearest neighbors is set to 6. and the two regularization parameters are selected from
set {10−4, 10−2, 10−1, 1, 10, 100} through a twofold cross-validation of labeled training

samples on the training set. We use the Gaussian RBF kernel k(x, v) = exp(−‖x−v‖2
t2

)

with 10 different widths, i.e., t = {2−4, 2−3, 2−2, 2−1, 20, 22, 23, 24, 25, 27} ∗ θ , and the
Polynomial kernel of degree 1 to 3 to construct base kernels, where θ is set to the average
of squared distances in the training set. During the training procedure of MR, we calculated
the kernel matrix with linear one-order polynomial, two-order polynomial and a Gaussian
kernel, respectively. For MKMR, MMR, and OMMR, the maximum number of iterations as
the stopping criteria is set to 15 for all datasets.

The entire classification proceeds on the four datasets include a binary classification
problem and a multiple-class problem. The multiple-class problem can be converted into a
set of binary classification problems via the one-vs-rest strategy. For the binary classification
(two-class) experiments, 60%of the data per class is used as the training set and the remaining
40% as the test set. The number of labeled samples l for ETH-80 and USPS datasets is set
to 1, 3, 5, 10, 15, 30, 50, and 100, respectively, and for Yale-B and Caltech 101 datasets it is
set to 1, 3, 5, 8, 10, and 15, respectively. It is a critical variable in semisupervised learning
algorithms. Each two-class experiment is repeated ten times, and the average classification
error rates are reported. For the multiclass experiments, we vary the number of training data.
For ETH80 and USPS datasets, we randomly select 20, 30, 40, 50, 80, 100, and 120 data from
each class to form the training set, and use the remaining data as the test set. For Caltech 101
and Yale-B datasets, the number of the data in most cases is less than 60, then we randomly
choose 20, 30, and, 40 data per class to form the training set, the remaining data serve as
the test set. At the same time, l is set to 5. The multiclass process is run on the same set of
10 randomly drawn replication of the training and test set. Then the averaged error rates and
the corresponding standard deviation are reported. The running time of MKMR, MMR, and
OMMR in multiclass experiments are presented for discussing the effectiveness of MKMR.
All the kernelmatrices are pre-computed and loaded into thememory. This enables us to avoid
re-computing and loading kernel matrices at each iteration of optimization. Our experiments
are implemented in a 64 bWindows PCwith 2.3GHzCPUand 4GBRAM.All the algorithms
are implemented with MATLAB.

4.3 Classification Results

The binary classification results of five methods (MR-L, MR-P, MR-G, MMR, and MKMR)
for ETH-80, USPS, Caltech 101, and Yale-B datasets are shown in Figs. 1, 2, 3, and 4, respec-
tively. MR-L, MR-P, and MR-G represent the MR method with a linear kernel, a polynomial
kernel, and a Gaussian kernel, respectively. For MR andMMR, the graph Laplacian matrix is
estimated by an empirical value. In this experiment, we use the average of squared distances
of training data θ to compute the graph Laplacian for MMR and MR.

From the Fig. 1, we see that our MKMR method has got the smallest classification error
rates on both the test and unlabeled training samples.Moreover,MKMRperformsmuch better
thanMRmethods (MR-L,MR-P, andMR-G). ForMR, in most case, polynomial kernel gives
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Fig. 1 Binary classification results (%) of five methods on the ETH-80 data set

better performance compared to linear kernel because of its nonlinearity.We also observe that
the performance of MKMR is better than MMR, that indicates the effectiveness of MMR
for applying the two benefits of kernel function. Fig. 2 shows that the proposed MKMR
method provides more stable and effective classification results. From this figure, we see that
MKMR performs much better thanMR-L, MR-P, andMR-G, particularly for a small amount
of labeled samples. The proposed MKMR works better than MMR consistently along with
different number of labeled data. In Fig. 3, our proposedMKMRhas got the best classification
results on both the test and unlabeled training samples. Moreover, the improvement obtained
by the proposed MKMR method on unlabeled data is significant compared with the MR
methods (MR-L, MR-P, andMR-G) and the MMR approach. For Caltech 101 dataset, MMR
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Fig. 2 Binary classification results (%) of five methods on the USPS data set

performs a little worse than MR-G on the classification of test data when l = 1. The reason
may be that when the number of training examples is small, it may be insufficient to determine
the appropriate kernel combination. For face dataset Yale-B, the binary classification results
of MKMR are better than the MRmethods, particularly for the test data (see Fig. 4). MKMR
also performs better thanMMR.Moreover, theMKMRbecomesmore effective as the number
of labeled examples increase.

The overall multiclass classification results obtained by the proposed MKMR and the
comparison methods are listed in Tables 1, 2, 3 and 4.

Table 1 summarizes the multiclass classification results of five methods (MR-L, MR-
P, MR-G, MMR, and MKMR) on the ETH-80 dataset. First, we observe that the MKMR
algorithm outperforms the MR algorithms on both the training and test data. In particular,
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Fig. 3 Binary classification results (%) of five methods on the Caltech 101 data set

Fig. 4 Binary classification results (%) of five methods on the Yale-B data set

the proposedMKMR can obtain about 5–15% improvements to the MR algorithms in object
recognition of the ETH-80 dataset. We also observe that MKMR performs better thanMMR.
Moreover, MKMR becomes more effective as the number of training data increases.

The multiple-class experiments results of five comparison methods for the USPS dataset
are reported in Table 2. A good improvement can be observed. First, we observe that
the MKMR method outperforms the MR methods on both the training and test samples.
Particularly, MKMR obtains about 5–10% improvements to MR in the handwritten digit
classification of the USPS dataset. Compared to the MMR approach, the MKMR algorithm
has about 1–4% improvements.

Table 3 shows the classification error results of five methods on the Caltech 101 dataset.
Again, we see that the MKMR algorithm outperforms the MR algorithms and obtains about
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Table 1 Multiclass experimental results (%) on the ETH-80 data set using five methods

No. training
samples per
class

ETH-80 MR-L MR-P MR-G MMR MKMR

20 U 60.34 ± 1.73 48.34 ± 1.68 38.26 ± 1.33 30.67 ± 1.99 27.78 ± 0.75

T 45.50 ± 1.45 41.03 ± 1.16 39.68 ± 1.77 31.45 ± 1.87 25.42 ± 1.07

30 U 51.74 ± 1.56 40.74 ± 1.43 35.76 ± 1.17 29.31 ± 0.86 26.20 ± 0.70

T 43.15 ± 1.39 36.48 ± 1.33 34.27 ± 1.63 29.63 ± 1.82 23.76 ± 0.72

50 U 45.69 ± 1.79 40.69 ± 1.12 29.20± 1.51 27.41 ± 0.95 23.86 ± 0.68

T 38.54 ± 1.74 33.05 ± 1.56 29.72 ± 1.92 26.72 ± 1.23 22.93 ± 0.66

80 U 40.55 ± 1.90 38.52 ± 1.69 28.52 ± 1.52 25.05 ± 0.70 21.43 ± 0.98

T 35.84 ± 1.85 34.83 ± 1.33 25.06 ± 1.45 26.11 ± 0.67 21.05 ± 0.88

100 U 37.62 ± 1.66 32.03 ± 1.52 27.75 ± 1.84 23.91 ± 0.62 20.04 ± 0.63

T 34.73 ± 1.39 34.09 ± 1.68 23.59 ± 1.63 22.75 ± 0.60 20.14 ± 0.52

120 U 37.62 ± 1.81 30.81 ± 1.89 27.09 ± 1.90 20.19 ± 0.70 18.12 ± 0.84

T 33.86 ± 1.62 32.68 ± 1.10 22.51 ± 1.72 22.04 ± 0.70 19.74 ± 0.88

U represents the unlabeled training data, T represents the test data

Table 2 Multiclass experimental results (%) on the USPS data set using five methods

No. training
samples per
class

USPS MR-L MR-P MR-G MMR MKMR

20 U 41.44 ± 0.58 40.94 ± 0.29 33.76 ± 0.79 29.80 ± 0.70 26.50 ± 0.38

T 46.02 ± 0.58 32.69 ± 0.91 32.69 ± 0.67 30.25 ± 0.57 27.73 ± 0.76

30 U 38.51 ± 0.69 35.15 ± 0.77 28.21 ± 0.76 26.26 ± 0.45 25.14 ± 0.46

T 45.02 ± 0.74 28.90 ± 0.67 29.60 ± 0.75 28.99 ± 0.31 24.80 ± 0.48

50 U 37.70 ± 0.81 33.25 ± 0.56 27.12 ± 0.66 24.96 ± 0.71 21.29 ± 0.32

T 43.60 ± 0.75 29.69 ± 0.91 25.79 ± 0.7 22.29 ± 0.79 20.04 ± 0.41

80 U 35.82 ± 0.96 32.25 ± 0.75 23.46 ± 0.61 20.21 ± 0.56 19.36 ± 0.29

T 37.40 ± 0.84 25.90 ± 0.67 24.70 ± 0.81 21.40 ± 0.51 16.69 ± 0.40

100 U 35.80 ± 0.78 30.62 ± 0.69 21.88 ± 0.84 20.06 ± 0.70 17.19 ± 0.32

T 33.06 ± 0.97 24.37 ± 0.63 21.49 ± 0.59 17.18 ± 0.74 13.89 ± 0.48

120 U 34.94 ± 0.82 30.46 ± 0.71 20.95 ± 0.57 18.13 ± 0.51 12.31 ± 0.29

T 32.69 ± 0.90 23.51 ± 0.63 16.82 ± 0.54 14.63 ± 0.44 13.11 ± 0.37

U represents the unlabeled training data, T represents the test data

7–30% improvements to them. Moreover, our proposed algorithm has about 1–5% improve-
ments to the MMR approach. The competitive results of our method indicate the good
generalization to the multiple object dataset.

For the face dataset Yale-B, the multiple-class classification error rates of five methods
are listed in Table 4. As can been see, the MKMR method outperforms the MR methods on
both the training and test data and obtains about 1–18% improvements to them. Moreover,
the proposed MKMR performs better than MMR.
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Table 3 Multiclass experimental results (%) on the Caltech 101 data set using five methods

Caltech 101 The number of training samples per class

20 30 40

Method U T U T U T

MR-L 62.31 ± 2.19 55.55 ± 2.25 49.18 ± 2.19 41.09 ± 1.76 39.51 ± 2.51 35.64 ± 1.98

MR-P 38.14 ± 1.51 35.74 ± 2.17 33.80 ± 1.91 30.47 ± 1.80 29.95 ± 1.23 27.34 ± 1.43

MR-G 40.39 ± 2.14 36.65 ± 1.54 34.11 ± 1.72 31.37 ± 1.63 31.02 ± 1.09 30.65 ± 1.54

MMR 33.84 ± 0.93 31.76 ± 1.01 30.41 ± 0.86 29.05 ± 0.66 28.50 ± 0.95 26.71 ± 0.67

MKMR 32.13 ± 0.89 29.53 ± 0.62 28.56 ± 0.57 24.34 ± 0.51 26.87 ± 0.49 25.21 ± 0.37

U represents the unlabeled training data, T represents the test data

Table 4 Multiclass experimental results (%) on the Yale-B data set using five methods

Yale-B The number of training samples per class

20 30 40

Method U T U T U T

MR-L 31.31 ± 0.63 27.55 ± 0.68 25.88 ± 0.53 27.09 ± 0.56 22.66 ± 0.46 24.36 ± 0.76

MR-P 20.36 ± 0.69 18.34 ± 0.74 18.80 ± 0.51 16.63 ± 0.60 17.57 ± 0.81 15.50 ± 0.52

MR-G 15.49 ± 0.44 14.86 ± 0.63 13.86 ± 0.71 12.48 ± 0.54 12.20 ± 0.50 11.51 ± 0.60

MMR 13.88 ± 0.53 13.76 ± 0.70 11.77 ± 0.66 12.05 ± 0.58 10.84 ± 0.23 11.17 ± 0.29

MKMR 12.29 ± 0.49 12.13 ± 0.62 10.36 ± 0.37 11.35 ± 0.51 9.92 ± 0.50 10.35 ± 0.42

U represents the unlabeled training data, T represents the test data

4.4 Running Time

In the second experiments, we evaluate the training time and the error rates ofMMR,OMMR,
andMKMR on four datasets. We empirically use θ to compute the graph Laplacian ofMMR.
By the cross-validationmethod, the graphLaplacian ofOMMR is selected from the Laplacian
candidates set used in MKMR. For ETH-80 and USPS sets, the number of training data per
class is set to 120, and for Caltech 101 and Yale-B sets it is set to 40. We only report the
multiple-class results and training time of MMR, OMMR, and MMR on the training data.
Table 5 summarizes the classification error rates and time of different methods. We observe
that compared to the proposed MKMR, OMMR achieves similar classification performance
but requires a considerable time cost. This is not surprising because OMMR applies the
cross-validation method to decide the optimal graph Laplacian matrix. At the same time, we
observe that although the training time ofMMR is similar toMKMR, the performanceMMR
becomes worse.

5 Conclusion

Manifold regularization learning is a successful SSL approach in machine learning. From the
viewpoint of kernel choice, we introduce multiple kernels to improve the original MR learn-
ing. In the proposed MKMR, the reproducing kernel Hilbert space associated with multiple
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Table 5 Comparison of classification error rate (%) and training time (s) among MMR, oMMR, and MKMR
on the training set

Data set Method Error rate (%) Time(s)

ETH-80 n = 120

MMR 20.19 ± 0.70 19.27 ± 3.15

OMMR 19.35 ± 0.58 213.07 ± 14.24

MKMR 18.12 ± 0.84 24.20 ± 4.29

USPS n = 120

MMR 18.13 ± 0.51 14.69 ± 4.06

OMMR 11.88 ± 0.38 158.85 ± 15.15

MKMR 12.31 ± 0.29 17.27 ± 5.91

Caltech 101 n = 40

MMR 28.50 ± 0.95 12.62 ± 3.34

OMMR 26.43 ± 0.58 124.37 ± 11.09

MKMR 26.87 ± 0.49 14.58 ± 4.79

Yale-B n = 40

MMR 10.84 ± 0.23 0.13 ± 0.05

OMMR 10.17 ± 0.38 1.45 ± 0.23

MKMR 9.92 ± 0.50 0.17 ± 0.08

Here, n is the number of training data per class

kernels contains multiscale structures, such as functional complexity and the measurement of
the graph Laplacian. Therefore, the MKMR learning has comparable performance compared
to the classical MR learning, in term of exploiting the intrinsic geometric structure of the
data. We also implement several real-data experiments to show this improvement.
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