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Abstract We consider multilabel classification problems where the labels are arranged hier-
archically in a tree or directed acyclic graph (DAG). In this context, it is of much interest to
select a well-connected subset of nodes which best preserve the label dependencies accord-
ing to the learned models. Top-down or bottom-up procedures for labelling the nodes in the
hierarchy have recently been proposed, but they rely largely on pairwise interactions, thus
susceptible to get stuck in local optima. In this paper, we remedy this problem by directly
finding a small number of label paths that can cover the desired subgraph in a tree/DAG. To
estimate the high-dimensional label vector, we adopt the advantages of partial least squares
techniques which perform simultaneous projections of the feature and label space, while
constructing sound linear models between them. We then show that the optimal label predic-
tion problem with hierarchy constraints can be reasonably transformed into the optimal path
prediction problem with the structured sparsity penalties. The introduction of path selection
models further allows us to leverage the efficient network flow solvers with polynomial time
complexity. The experimental results validate the promising performance of the proposed
algorithm in comparison to the state-of-the-art algorithms on both tree- and DAG-structured
data sets.

Keywords Hierarchical classification ·Multilabel classification ·Network flowoptimization

1 Introduction

The multilabel classification problem has aroused considerable interest in recent years. In
many real-world applications, the labels often exhibit a hierarchical structure, typically in
the form of a tree, or more generally, an arbitrarily directed acyclic graph (DAG) [14,20,
22]. For example, in text classification [19], a document may belong to more than one
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category that resides in the topic hierarchy. In functional genomic [2], a gene usually relates
tomultiple functionswith aDAGstructured hierarchy. In image annotation [13], an image that
belongs to some class automatically belongs to at least one of its superclasses. In effect, the
hierarchical structure among the labels can be problematic to many multilabel classification
algorithms. This is partly due to the highly skewed data distribution, and some labels (such as
those at the lower levels of the hierarchy) tend to have very few positive instances. Besides,
the inconsistent predictions between child and parent make little sense for the underlying
taxonomy. Thus, how to improve the prediction performance by effectively exploiting the
hierarchical information becomes an important research issue [19,21].

Recent advances on hierarchical multilabel classification (HMC) can be tracked in
two directions: algorithm adaptation and problem transformation. Algorithm adaptation
approaches extend some specific algorithms to guarantee the hierarchical consistency. Typ-
ical examples include decision trees [1,6,21] and support vector machines [19]. Problem
transformation approaches, on the other hand, convert a HMC problem into one or more
well-understood problems that can benefit form many off-the-shelf algorithms, which is also
our concern. One straightforward way for reducing the HMC is to train a binary classifier at
each node with the structural dependencies properly encoded [4,10,25]. An alternative way
is to train, for each parent node, a multiclass classifier to discriminate between its child nodes
[15–17]. In many cases, the number of labels can reach thousands or even more, making the
learning process computationally infeasible. Some researchers proposed to train one multi-
class classifier to each level of the hierarchy [7–9]. However, there is probably not sufficient
data for training the classifiers near the bottom of the hierarchy. To remedy both deficien-
cies, some researchers further followed the kernel dependency estimation (KDE) framework,
which projects the labels to a lower-dimension space, followed by learning a mapping from
input space to each projected dimension [3]. However, they ignore all information about the
feature parts during compression, rendering the selected components possibly less well suited
to the subsequent learning tasks. In other words, many of the features may be irrelevant to the
reduced tasks, especially when there exist a huge number of features with a sharp increase
of the computational burden.

Given a test instance, these algorithms then estimate its multilabel from the resulting clas-
sifiers. They can be categorized according to the hierarchy depths at which their predictions
end [5]. We consider a more general scenario, where the prediction paths might stop at an
internal node. To make the output labels consistent with the hierarchical structure, several
studies are devoted to a top-down or bottom-up procedures [8–11,25]. In this manner, a par-
ticular node receives a label that is conditioned on the parent or child nodes. Such schemes
does ensure consistency in principle, but they do not exploit long-range interactions, thus
suffering from error propagation between adjacent nodes in the hierarchy. Existing solutions
that address this issue include [2] and [3]. The former allows all levels of classifiers to be
influenced by one another, whereas it requires training theBayesian network and also requires
high computational expense. Instead, the latter can be interpreted as a label selection prob-
lem within the whole connected graph, which is combinatorially hard and approximately
addressed with greedy algorithms. These results further leads to the question of whether
there exists certain structure that is both rich enough to involve long-range interactions and
computationally feasible.

In this paper, we propose a novel solution which directly finds a small number of paths
that can cover the desired label subgraph in a tree/DAG. To estimate the high-dimensional
label vector, we adopt the advantages of partial least squares (PLS) techniques which address
compression and learning in a unified framework. Specifically, they perform simultaneous
projections of the feature and label space, while minimizing both the encoding error and
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training error. We then show that the optimal label prediction problem with hierarchy con-
straints can be reasonably transformed into the optimal path prediction (OPP) problem with
the structured sparsity penalties. The resulting formulation can be regarded as path selection
problems, where each path starts from a root and terminates on a leaf or an internal node.
Apparently, the labels in each path serve as context for one another, going beyond pairwise
interactions. In this view, predicting a hierarchical multilabel for an instance amounts to
selecting the union of one or more paths from an exponential number of candidates. The
introduction of path selection models allows us to leverage the efficient network flow solvers
with polynomial time complexity. The experimental results validate the promising perfor-
mance of the proposed algorithm in comparison to the state-of-the-art algorithms on both
tree- and DAG-structured data sets.

The remainder of this paper is organized as follows. In the next section, we begin by
presenting some notations used throughout the paper and giving a brief review on PLS. Then
we elaborate our proposed algorithm in Sect. 3, and report the experimental results in Sect. 4.
We finally give some concluding remarks in the last section.

2 Preliminaries

In this section, we provide some preliminaries including notations used throughout the paper
and the linear PLS techniques.

2.1 Notations

Let X ⊂ RM be the instance space, where M is the feature dimension of each instance. Let
Y = {1, . . . , K } be the label space with K different labels. A multilabel for an instance is
any subset of Y , including the empty set. For any instance x ∈ X , we denote the associated
multilabel by a vector y = (y1, . . . , yK ) ∈ {0, 1}K , where yi = 1 indicates i belongs to
the multilabel of x, and yi = 0 otherwise. Note that each y can have more than one non-
zero entries. Given a dataset D that contains n training instances of the form (x, y), let X
be a n × M matrix consisting of n instances with M features, and let Y be a n × K matrix
consisting of n instances with K labels.

2.2 Partial Least Squares

PLS is a class of methods for modeling the relationship between sets of observed variables
by means of latent vectors (also called score vectors or components). It is widely applicable
to the regression and classification as well as dimension reduction tasks. The derivations
underlying PLS are closely related to those of principal component analysis (PCA). Unlike
PCA, PLS constructs low-rank approximations for both X and Y , which plus the linear
projections are utilized to compute the final predictive model.

Consider the general setting of a linear PLS algorithm to model the relationship between
two data sets (blocks of observed variables). After observing n training instances from each
block of variables, PLS decomposes the (n × M) zero-mean matrix X and (n × K ) zero-
mean matrix Y into the form [24]

X = TPT + E

Y = UQT + F
(1)
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where T andU are (n× p) matrices of p extracted latent vectors. The (M × p) matrix P and
the (K × p) matrixQ represent matrices of loadings, and the (n× M) matrix E, the (n× K )

matrix F are the residual matrices. The solution for PLS is based on the nonlinear iterative
partial least squares (NIPALS) algorithm [23], which at each iteration seeks normalized basis
vectors w and c for projecting X and Y into one-dimension space. In this way the covariance
between the score vectors t and u (rows of T and U) is maximized as:

cov(t,u)2 = [cov(Xw,Yc)]2
= max|r |=|s|=1[cov(Xr,Ys)]2 (2)

An equivalent form of Eq. (2) is

Jw,c = argmax
w,c

wTXTYc

s.t. wTw = 1; cT c = 1
(3)

Apparently, the desired w can be obtained by calculating the eigenvector with the largest
eigenvalue in the following equation.

ST Sw = λw (4)

where S = XTY. The other score or weight vectors are updated iteratively according to the
NIPALS algorithm. In most cases, PLS is built upon two assumptions: i) the score vectors
extracted from X are good predictors of Y, and ii) a linear inner relation between the scores
vectors t and u exists; that is [18],

U = TD + H (5)

where D is a (p × p) diagonal matrix and H indicates a residual matrix. In turn, the decom-
position of Y matrix in Eq. (1) can be rewritten as

Y = TDQT +
(
HQT + F

)
(6)

and this defines the linear PLS regression model

Y = TCT + F∗ (7)

whereCT = DQT denotes the (p×K )matrix of regression coefficients and F∗ = HQT +F
is the residual matrix. Equation (7) can also be expressed using the originally observed data
X and written as [18]

Y = XB + F∗ (8)

where the estimate of B has the following form

B = XTU(TTXXTU)−1TTY (9)

For a test instance xt , the estimated multilabel is ŷt = xtB. In fact, PLS requires far
less computational time than traditional multilabel classification algorithms. This can be
attributed to the fact that PLS integrates dimension reduction and parameter estimation in a
simple and unified manner, as shown above. While the counterparts often need to perform
three isolatedprocesses includingprojection, training andprediction,with the trainingprocess
comparatively time consuming when the number of features is large.

Due to the high-dimensionality of many data sets, such as the Gene Ontology (thousands
of labels, and tens of thousands of features sometimes), implementation simplicity becomes
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a main reason that we adopt PLS as the learning model for multilabel prediction. Another
reason lies in its joint linear projections in both the feature space and the label space, thus
enjoying performance advantages because of the additional feature information.

3 Proposed Algorithm

In general, the label hierarchy can be modeled as a directed acyclic graph (DAG), in which
each node can have multiple parents. Let H = (V, E) denote the label hierarchy, where V is
a node set indexed by {1, . . . , K }, and E ⊆ V × V is an edge set. Let Hρ denote the group
structure containing all the paths in H , where each path ρ starts from a root and terminates on
a leaf or an internal node. In the context of hierarchical classification, eachmultilabel actually
takes the form of a connected subgraph that can be exactly covered by a small number of
paths. As shown in the left side of Fig. 1, the i-th component of the ground truth multilabel
y can be formalized as

yi = min

⎧⎨
⎩1,

L∑
j=1

α j Gi j

⎫⎬
⎭ , (10)

where L denotes the number of paths involved in the label structure, Gi j ∈ {0, 1} indicates
whether the i-th label resides in the j-th path, and α j ∈ {0, 1} indicates whether the j-th
path is selected. In this regard, we are allowed to map the hierarchical multilabel prediction
problem to the path selection problem. And the final prediction is simply the union of these
resulting paths.

If the labels are flat, one can simply pick the labels with the largest entries in the esti-
mated multilabel ŷ, as shown in Fig. 1a. Here we refer to it as the pointwise selection. By
combining multiple pairwise interactions, top-down or bottom-up procedures cater for the
hierarchical structure, but they suffer from error propagation, as shown in Fig. 1b. The use of
path descriptors, however, helps diminish the influences of mistakes made at adjacent levels,
as shown in Fig. 1c. Note that a path corresponds to the co-occurrence of a set of nodes, and
is able to model long-range interactions between labels. In the following section, we will

Fig. 1 An example with the ground truth multilabel y = {1, 1, 0, 1, 0, 1, 0, 0, 1} and the estimated multilabel
ŷ = {3.0, 0.5, 0.8, 0.7, 1.2, 2.5, 1.0, 0.2, 1.5}. Left the multilabel y can be viewed as the union of the first and
the fourth paths. Right comparison of different prediction results obtained by pointwise (a), pairwise (b) and
pathwise (c) selection strategies
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introduce the path-based objective function for consistent prediction, and demonstrate how
to leverage the efficient network flow solvers to the OPP.

3.1 Path-Based Objective

It is of great interest to select a set of labels that preserve the priori label dependency and
approximate the probability estimates as close as possible. Based on the logistic function,
we obtain the probability estimate P(ŷi = 1) according to the i-th entry of the multilabel ŷ,
that is,

P
(
ŷi = 1

) = 1

1 + exp
(−θ ŷi

) , (11)

where ŷi is estimated by the PLS regressor, θ > 0 is a tuning parameter and set to 1 for
convenience.When no ambiguity arises, we abbreviate P(ŷi = 1) as p̂i . One way to describe
the hierarchical label prediction is as finding the parameters ψ = [ψ1, . . . , ψK ]T that solve
the following optimization problem,

max
ψ

K∑
i=1

p̂iψi ,

s.t. ψi ∈ {0, 1},
K∑
i=1

ψi ≤ γ,

supp(ψ) satisfies the hierarchy constraints,

(12)

where supp(ψ) = { j ∈ {1, . . . , K } : ψ j �= 0} is defined as the set of nonzero entries in a
vector ψ , and γ > 0 is a tuning integer parameter.

Proposition 1 Let ψ∗ be the optimal solution of Eq. (12). Suppose 0 < γ ≤ K and p̂i > 0,
then for any given integer parameter γ ,ψ∗ must have γ nonzero entries, i.e., |supp(ψ∗)| = γ .

Apparently, this requires solving the selection of isolated variableswith the underlying depen-
dency constraints. For interpretation purposes, we seek to handle the more general variables
and directly select a few path groups with desired properties. Hence, the problem in (12) can
be reformulated as follows,

max
ψ

K∑
i=1

p̂iψi , s.t. ψi ∈ {0, 1}, supp(ψ) =
⋃
h∈P

h,
∑
h∈P

ηh ≤ τ, (13)

where P is a subset of groups in Hρ whose union exactly covers the support of ψ , the term∑
h∈P ηh is called the structured sparsity, τ > 0 is a regularization parameter, and ηh is a

non-negative weight associated with the path h. Equivalently, we have

min
h

∑
i /∈∪h∈Ph

p̂i , s.t.
∑
h∈P

ηh ≤ τ, (14)

Then, for any path h = (v1, v2, . . . , vk) in Hρ , we define the weight ηh as

ηh = β +
k−1∑
i=1

cvivi+1 = β +
∑

(u,v)∈h
cuv, (15)
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(a) (b)

Fig. 2 Graph H ′ representation obtained by adding a source s and sink t to a DAG with six nodes and a path
(s, 1, 2, 5, t) in bold red. a All edges in H have cost α. For path h = (1, 2, 5), the cost of a flow sending one
unit from s to t along h is β + 2α, which is exactly ηh . b Different edges in H have different costs. For path
h = (1, 2, 5), the cost of a flow sending one unit from s to t along h is β + 7, which is exactly ηh . (Color
figure online)

where β > 0 is a tuning parameter, cuv represents certain cost on edge (u, v) ∈ E . Note
that designing cuv may require some priori knowledge about the dependency importance or
reliability. When no additional knowledge is available, a simple choice is to set cuv = α for
all edges. As can be seen, the parameters α and β provide a tradeoff between two factors
including the number of selected paths and the length of each path. From the viewpoint of
semantics, α encourages the abstraction of the solution whereas β encourages concreteness.
When β is large and α is negligible, the term

∑
h∈P ηh simply “counts” how many paths are

required to cover the support of ψ , thereby encouraging the choice of longer paths. On the
contrary, the labels distributed across different paths are preferred.

In fact, the structured sparsity enriches the original constraints in (12) by introducing the
structural information, while monotonically increases as more and more nodes are added.
In this sense, the hierarchical label prediction problem can be reasonably translated into the
OPP problem with each path appropriately weighted.

3.2 Optimal Path Selection

The optimization problem in (14) involves an exponential number of variables, one for every
candidate path in the DAG. The explicit search for a few path groups is a combinatorial
optimization problem. Instead, we exploit the network structure of flows to implicitly handle
the exponential combinations, allowing the exact solution to be computed in polynomial
time.

Let us augment the label hierarchy H by introducing a source node s and a sink node t .
Formally, we introduce a new graph H ′ = (V ′, E ′) with
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V ′ = V ∪ {s, t},
E ′ = E ∪ {(s, v) : v ∈ V is a root node} ∪ {(u, t) : u ∈ V }

Obviously, the node s are linked to the root nodes in H , while t are linked to every node in
H . The construction of the graph H ′ is illustrated in Fig. 2a, b for two cost configurations.
Let fuv be the flow on edge (u, v) ∈ E ′, and F be the set of integer flows on H ′. The cost of
a flow f ∈ F sending one unit from s to t along a path h in H is defined as

∑
(u,v)∈E ′

fuvcuv =
∑

(u,v)∈(s,h,t)

cuv, (16)

which is exactly ηh when we set csh = β and cut = 0 for every node u in V , as can
been seen in Fig. 2. Typically, a node may appear in more than one path. A useful expres-
sion is therefore the amount of flow going through a node j in V = {1, . . . , K }, which is
defined as

s j ( f ) =
∑

u∈V ′:(u, j)∈E ′
fu j , (17)

Let supp( f ) = { j ∈ {1, . . . , K } : s j ( f ) > 0} denote the set of nodes with positive flow
values. Then, the optimization problem (14) over the paths in H can be formulated as opti-
mization problems over (s, t)-path flows in H ′,

min
f ∈F

∑
i /∈supp( f )

p̂i + λ
∑

(u,v)∈E ′
fuvcuv

s.t. si ( f ) > 0, ∀i ∈ supp( f ),

(18)

where λ > 0 is a regularization parameter. Note that

∑
i /∈supp( f )

p̂i =
K∑
i=1

max
(
p̂i (1 − si ( f )), 0

)
.

Thus, the above optimization problem (18) can be equivalently rewritten as

min
f ∈F

⎧⎨
⎩

K∑
i=1

max
(
p̂i (1 − si ( f )), 0

) + λ
∑

(u,v)∈E ′
fuvcuv

⎫⎬
⎭ . (19)

The resulting minimum cost flow problem with piecewise linear costs in turn is equivalent
to a classical minimum cost flow problem with integral constraints, and can be solved in
polynomial time.

4 Experiments

In this section, we carry out experiments to investigate whether our algorithm performs
better than the state-of-the-art algorithms on both tree- and DAG-structured data sets, and to
evaluate the contributions of its components.

4.1 Datasets and Baselines

We use 12 yeast data sets downloaded from Clare [12], where each data set records a spe-
cific aspect of the genes in the yeast genome. There are two versions of each data set. The
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Table 1 The yeast data sets used in the experiments

Data sets # Training
instances

# Validation
instances

# Test
instances

# Features # Labels

FunCat GO

seq 1692 876 1332 478 500 4134

pheno 653 352 581 69 456 3128

struc 1659 859 1306 19, 629 500 4133

hom 1661 876 1309 47, 035 500 4127

cellcycle 1625 848 1278 77 500 4126

church 1627 844 1278 27 500 4126

derisi 1605 842 1272 63 500 4120

eisen 1055 528 835 79 462 3758

gasch1 1631 846 1281 173 500 4126

gasch2 1635 849 1288 52 500 4132

spo 1597 837 1263 80 500 4120

expr 1636 849 1288 551 500 4132

input features are identical in both versions, but the labels are annotated according to dif-
ferent classification schemes. In the first version, the labels are organized as a category tree
from MIPS’s FunCat (http://mips.gsf.de/projects/funcat), which has 6 levels and assigns an
average of 8.8 labels for each instance. In the second version, the labels are organized as a
DAG from the Gene Ontology (GO) (http://www.geneontology.org), which has 14 levels and
assigns an average of 35 labels for each instance.

As in [21], we use two-thirds of each data set for training and use the remaining one-third
for testing. Out of the training set, two-thirds are used for running algorithms and one-third
for validating parameters. Besides, the final model is trained on the complete training set.
As in [3], we manage missing features by replacing the missing values with the mean of the
non-missing values. Table 1 summarizes the information about the 12 data sets.

We compare our proposed method which is abbreviated as OPP with the following state-
of-the-arts for multilabel classification on tree- and DAG-structured hierarchies.

– OPP: In the learning step, we use the PLS technique for feature-aware label space dimen-
sion reduction andmultilabel estimation, inwhich the number of latent variables is chosen
via cross-validation. In the prediction step, we leverage the classical minimum cost flow
solvers to deal with the transformed path selection problem.

– CSSA/CSSAG [3]: In the learning step, this method extends the KDE framework by
encoding the label dependencies using the kernel trick. After projecting the labels to a
50-dimensional space, it uses ridge regression to estimate the multilabel with the ridge
parameter chosen via cross-validation. In the prediction step, this method uses greedy
strategies to produce consistent predictions.

– CLUS-HMC [21]: This method improves the predictive clustering trees by the data
distance metric that assigns larger weights to the labels higher up in the hierarchy. During
data partition, the variance reduction is estimated according to the weighted Euclidean
distances, and its significance level parameter is chosen via cross-validation.

– HMC-PC [1]: This method adopts an expectation-maximization scheme to cluster the
training instances, which are then used to define the per-cluster average class vector.
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The definition is based on the probabilities of cluster membership and certain threshold
selection strategy.

– HMC-LMLP [8]: This method treats a neural network as a multi-label classifier, and only
designed for tree-structured hierarchies. It incrementally trains a multi-layer perceptron
for each classification hierarchical level. Predictions made by a neural network in a given
level are used as inputs to the neural network responsible for the prediction in the next
level.

– Rprop-NoComp [9]: Thismethod adaptsHMC-LMLP to theDAG-structured hierarchies.
It trains an individual multi-layer perceptron for each classification hierarchical level
without employing the class labels to augment the feature vectors. The testing phase is
performed by feeding all instances into all multi-layer perceptrons at every level.

We adopt the precision-recall curves (PR curves) for analyzing themultilabel classification
models. Precision and recall are originally developed for binary classification with positive
andnegative labels. In particular, the precisionmeasures the percentage of positive predictions
that are correct, and the recall measures the percentage of positive instances that are correctly
predicted. They are defined as

Prec = TP

TP + FP
, Rec = TP

TP + FN
,

where TP is the number of true positives (correctly predicted positive instances), FP is the
number of false positives (incorrectly predicted negative instances), and FN is the number
of false negatives (incorrectly predicted positive instances). They are further adapted for the
multilabel cases [21], i.e.,

Prec =
∑

i TPi∑
i TPi + ∑

i FPi
, Rec =

∑
i TPi∑

i TPi + ∑
i FNi

,

where i ∈ {1, . . . , K } ranges over all label indices. Note that the overall PR curve can be
obtained by varying the threshold values. For the proposedmethod, we vary the regularization
parameter λ within a particular range. As in [21], we use the performance score called
Area Under the average PR curve (AUPRC) for model evaluation. The closer the AUPRC
approaches 1.0, the better the model should be.

4.2 Results

We first examine the individual contribution of learning and prediction components in OPP.
For clarity, we express the methods to be compared in explicit combining forms, includ-
ing PLS+OPP, PLS+CSSA/CSSAG, and KDE+CSSA/CSSAG, where KDE represents the
processes of KPCA projection in the label space and ridge regression. PLS differs from KDE
in that it performs simultaneous projections of the feature and label space, and minimizes
both the encoding error and training error, while KDE focuses on the label space reduction
without considering the features, and minimizes the training error in a subsequent step.

In Table 2, we lay out performance comparisons of the different algorithms for the FunCat
data sets in terms of AUPRC values.We canmake several observations. First, we observe that
for most cases, the performance of CSSA algorithm is improved by implementing the PLS
regressors, indicating that predicting hierarchical labels can benefit from the estimates learned
from it. Second, compared to PLS+CSSA algorithm, the proposed PLS+OPP algorithm
yields better results on all the data sets except one. The most impressive case is for the
largest data set “hom”, in which the improvement is up to about 2.2%. Figure 3 shows
the PR curves for the two algorithms. As can be seen, our algorithm exhibits a promising
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Table 2 AUCPR values of the
different algorithms for FunCat

Data sets PLS+OPP PLS+CSSA KDE+CSSA

seq 0.271 0.262 0.241

pheno 0.191 0.197 0.195

struc 0.234 0.225 0.203

hom 0.295 0.273 0.256

cellcycle 0.237 0.233 0.222

church 0.211 0.211 0.203

derisi 0.216 0.216 0.209

eisen 0.282 0.269 0.242

gasch1 0.274 0.263 0.239

gasch2 0.248 0.239 0.219

spo 0.223 0.221 0.213

expr 0.232 0.227 0.251

Average 0.243 0.235 0.224

Table 3 AUCPR values of the
different algorithms for GO

Data sets PLS+OPP PLS+CSSAG KDE+CSSAG

seq 0.425 0.405 0.374

pheno 0.376 0.361 0.358

struc 0.388 0.365 0.359

hom 0.417 0.389 0.379

cellcycle 0.392 0.370 0.355

church 0.409 0.376 0.374

derisi 0.410 0.395 0.373

eisen 0.449 0.422 0.384

gasch1 0.419 0.395 0.366

gasch2 0.408 0.386 0.365

spo 0.396 0.381 0.364

expr 0.398 0.382 0.370

Average 0.407 0.386 0.368

performance especially in the low-recall regions. Last, compared to the two baselines, our
method yields the highest AUPRC on average. The differences between PLS+OPP and
PLS+CSSA/KDE+CSSA are also statistically significant with a p-value of less than 0.01 in
t-test, where the significance level is often set to 0.05.

Table 3 compares the different algorithms for the GO data sets. We can draw simi-
lar conclusions as above. Specifically, PLS+CSSAG algorithm consistently outperforms
KDE+CSSAG algorithm by 1.8% on average. Compared to PLS+CSSAG algorithm, the
proposed PLS+OPP algorithm further shows apparently superior performance, rising about
2.1% on average. We also depict the PR curves for the two best algorithms in Fig. 4. One
can see that our algorithm appears superior performance across the entire recall regions.
In addition, the differences between PLS+OPP and PLS+CSSAG/KDE+CSSAG are also
statistically significant with a p-value of less than 0.01 in t-test, where the significance level
is often set to 0.05.

123



274 Z. Sun et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) seq.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) pheno.

recall
pr

ec
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) struc.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) hom.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(e) cellcycle.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(f) church.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(g) derisi.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(h) eisen.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(i) gasch1.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(j) gasch2.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(k) spo.

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(l) expr.

recall

pr
ec

is
io

n

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

PLS+OPP
PLS+CSSA

Fig. 3 PR curves for the FunCat data sets
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Fig. 4 PR curves for the GO data sets
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Next, we compare our proposedmethodwith other HMCmethods that are developedmore
recently. Experimental results on five protein function datasets show that OPP consistently
outperforms the three baselines in terms of AUPRC values on both tree- and DAG-structured
hierarchies, as shown in Figs. 5 and 6. In particular, the improvement of OPP over the state-
of-the-arts is highly statistically significant, further demonstrating the validity of our method.

5 Conclusion

In this paper, we propose a novel solution which directly finds a small number of paths
that can cover the desired label subgraph in a tree/DAG. We adopt the advantages of PLS
techniques for multilabel estimation, which address compression and learning in a unified
framework.We then formulate theHMCproblem into the constrained path selection problem.
Apparently, a path can model long-range interactions, where the labels serve as context for
one another, thus less affected by the mistakes of local classifiers. The introduction of path
selection models allows us to leverage the efficient network flow solvers with polynomial
time complexity. The encouraging empirical results show that our proposed method is more
effective than the state-of-the-arts on both tree- and DAG-structured data sets. As future
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work, we would like to preserve the hierarchical structure during the PLS pre-processing,
and extend our approach to more larger, richer domains.
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