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Abstract Automatic image annotation is an attractive service for users and administrators
of online photo sharing websites. In this paper, we propose an image annotation approach
exploiting the crossmodal saliency correlation including visual and textual saliency. For tex-
tual saliency, a concept graph is firstly established based on the association between the labels.
Then semantic communities and latent textual saliency are detected; For visual saliency, we
adopt a dual-layer BoW (DL-BoW) model integrated with the local features and salient
regions of the image. Experiments on MIRFlickr and IAPR TC-12 datasets demonstrate that
the proposed method outperforms other state-of-the-art approaches.

Keywords Image annotation · Visual saliency · Textual saliency

1 Introduction

With the explosive growth of web images, image annotation has drawn wide attentions in
recent years. Given an image, the goal of image annotation is to analyze its visual content
and assign the labels to it. Numerous approaches have been proposed for automatic image
annotation. In recent years, great research effort has been devoted to automatic image annota-
tion [11,16,19,20,23,24,26–28,30,32,33]. In general, approaches for image annotation can
be classified into two categories: learning-based and search-based annotation [16]. In search-
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based annotation, the labels are directly provided and annotated by utilizing images in the
database. The k-nearest neighbor (KNN) search (including the extended algorithms) iswidely
used because of its simplicity and good performance with large scale data [16,23,26,30].
For learning-based methods, the annotation problem can be considered a multi-class classi-
fication that predicts one label from a set of exclusive labels, or a binary classification that
makes a binary decision on each label independently. In previous work, researchers applied
machine learning methods such as the support vector machine (SVM) to the annotation prob-
lem [4,5,7,21] and showed its good performance with high dimensional data. In traditional
image annotation problems, the number of classes or labels is always limited and samples
of each class are often uniform. This can be considered as a classification problem. How-
ever, there are more than hundreds of labels (even millions) in an online image dataset like
Flickr. Since each image can be tagged with many labels, this problem is no longer compat-
ible with a traditional classification model. Both search-based methods and learning-based
methods are demonstrated with good performance on state-of-art datasets. However, most
of them focus on learning with pre-extracted features while some works are dealing with
the visual representation. Some works try to construct robust model [3] which learns the
probability distribution of a semantic class from images with weakly labeled information.
In [15], the images are coded with sparse features via over-segmentation for label-to-region
annotation. In most recent works, [22] proposed an image annotation approach which selects
some relevant tags with diverse semantics. Wu et al. [29] focus on missing label problems
which add two regularizations to keep inter and intra class smoothness. Lu and Wang [18]
learns the mapping between bag-of-visual-salient features and noise labels via non-negative
matrix factorization. Fu et al. [6] transfers the latent information from large scale web image
datasets to image annotation task using Deep Learning framework. Cao et al. [2] learns more
discriminative features which aims to reduce the intra-class variations.

In this paper, we focus on a combined task which provides better visual representation
and annotation performance simultaneously. Evidence from visual cognition researchers
demonstrates that people are usually attracted with the salient object standing out from the
rest of the scene [35]. Then, the rest of the scene will be recognized via its visual features and
concept correlation with the salient object. It naturally leads to the adoption of visual saliency
model for image annotation. However, the number of images with region-wise labels is quite
limited. In most cases, we can only get the images with some tags. Although the salient
region can be extracted by some saliency detection methods, the corresponding ‘salient’ tag
is not easy to obtain.

In today’s image annotation, the number of labels (i.e. concepts / tags) is quite large
and label concurrence is pretty common. Intuitively, the non-salient objects, i.e. background
scene, are likely to occur with the salient objects in various scenes. For instance, the tag ‘sky’
may appear in urban views which are often associated with ‘road’, etc. However, ‘sky’ can
also appear in outdoor scenes with ‘dog’ and ‘trees’, etc. Since these two scenes are quite
different, we can infer that the label ‘sky’ is a ‘background’ (i.e. non-salient) tag. Therefore,
the coherence of the label concurrence may reveal the textual saliency.

In this paper, a Textual-Visual Saliency based Annotation (TVSA) method is proposed for
image annotation by learning training sample based on visual and textual saliency. Figure 1
illustrates our framework, which consists of two parts: offline learning and online annotation.

1.1 Offline Learning

Given the labeled training samples, a concept graph is firstly established by exploiting the
association between the concepts. Then concept communities are detected from concept
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Fig. 1 The main framework of TVSA including offline learning and online annotation

graph. The textual saliency of each tag is measured by the concept removal gain (CRG) from
its community. In each community, the salient region of images are detected which is used
for dual-layer Bag-of-Words (DL-BoW) generation. The community classifiers are trained
with Multiple-Kernel SVM based on the local features (DL-BoW) and global features of
training samples in each concept community.

1.2 Online Annotation

First, the DL-BoW feature is firstly generated based on salient and non-salient visual words.
Then, the corresponding community of the untagged image is determined by the community
classifier. After that, intra-community annotation is performed with training samples accord-
ing to the result of the community classification which assigns the salient tags to the image.
The non-salient tags are determined by both intra and inter-community annotation.

Compared with our previous work in [10], we give better textual saliency representation
and conduct more experiments on synthetic datasets to evaluate the performance of TVSA.
The rest of our paper is organized as follows: The main details of TVSA are described in
Sect. 2; In Sect. 3, we evaluate the performance of TVSA with some other approaches.
Finally, the conclusion is presented in Sect. 4.

2 Methodology

2.1 Textual Saliency Detection

The first step of TVSA is to construct a concept graph based on the tagged images. In this
paper, we construct a directed-weighted graph G = {V, E}. The elements of vertex set V
are tags from concept set C = {c1, c2, . . . , cm}. The concept ci is connected with c j by a
directed edge ei j if an image in training set is tagged with ci and c j at the same time. Let wi j

denote the weight of ei j which implies the semantic correlation between two concepts and
determined as follows:

wci ,c j = P(c j |ci ) = N (ci , c j )

N (ci )
(1)

where P(c j |ci ) is the conditional probability of concept c j given ci , N (ci ) stands for the
number of images tagged with concept ci in the image collection and N (ci , c j ) stands for
the number of images tagged with concept ci and c j simultaneously.
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Concepts which often appear in the same scene or have similar semantic characteristics are
likely to be grouped into the same community1. If an untagged sample is allocated to specific
community, the concepts in this community are likely to be candidates for the image. The
quality of the community detection, which is critical, is often measured by the modularity of
the partition. Given a concept graph G = {V, E} partitioned into M communities, denoted
as S = {s1, s2, . . . , sM }, modularity Q is defined as the sum of the community allocation
status between concepts given as:

Q = 1

g

∑

1≤i, j≤|C |

{[
wi, j − did j

g

]
δ1(ci , c j )

}
, g =

∑

i, j

wi, j (2)

wherewi, j denotes the directedweight of the links between concepts ci and c j , di = ∑
j wi, j

is the sum of weights of the links attached to concept ci , δ-function δ1(ci , c j ) is 1 if concepts
ci and c j are assigned the same community and 0 otherwise, g = ∑

i, j wi, j is the sum of
all weights, and |C | represents the number of concepts (usually |C | ≥ M , i.e., the number
of concepts is greater than the number of communities). Higher modularity of communities
leads to better partition quality, which is the objective function that needs to be optimized
in community detection algorithms. In this paper, a fast unfolding algorithm [1] is applied
to realize latent community detection. This algorithm has proved promising in generating
proper communities with optimal time complexity.

After latent community detection, each tag is assignedwith the corresponding community.
However, the contribution of each concept to its community can be different. Some concepts
are linked only within the concepts in the same community while some of them may have
association with other communities according to the connection status based on the concept
graph. Ifwe remove a concept fromspecific community, themodularity of community is likely
to be changed. We define the concept removal gain (CRG) between tag (cl ) and community
(COMk) as follows:

CRG(cl ,COMk) = QCOMk − QCOMk/cl

QC = 1

gC

∑

ci ,c j∈C

[
wi, j − did j

gC

]

gC =
∑

ci ,c j∈C
wi, j (3)

where QC measures the intra-community modularity with the concepts belonging to set C
which is exactly a special case of the modularity defined in Eq. (2) where δ1(ci , c j ) = 1.
CRG(cl ,COMk) shows the gain when concept cl is removed from community COMk .With
larger CRG(cl ,COMk), the tag cl is likely to be associated only with COMk , i.e. a salient
tag. In our previous work [10], the textual saliency is measured by the weight of tags in sum
of pair-wise correlation between tags. This strategy works well but cannot fully reflect the
contribution of a specific tag to the corresponding community. CRG in this paper measures
the textual saliency based on the removal gain of the tags from its community which is
more reasonable. Given a textual saliency threshold Ttxt , tags are divided into two sets with
high saliency and low saliency respectively. We will assign the training samples with the
corresponding community by voting on the number of salient tags.

1 The term ‘community’ comes from research field of networks which is similar to ‘clique’ in graph-cut
problems but not identical.
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Fig. 2 Example of visual saliency detection. a and c are original images; b and d are corresponding saliency
map. We can find that the lighter regions in saliency map refer to the salient objects in original images

2.2 Visual Saliency Detection

In each community, the visual saliency of a pixel refers to its relative attractiveness with
respect to the whole image. To generate a saliency map for each image, a MATLAB imple-
mentation of Manifold Ranking-Based Visual Saliency [31] is applied to compute saliency
values of pixels, with the values normalized to a range between 0 and 1. As shown in Fig. 2,
the higher the saliency value is, the more attractive an image pixel would be. According to the
result in [35], the salient portions often correspond to semantic objects in an image. Given a
saliency value threshold Tvis , we can divide an image into two disjoint regions, one of high
saliency and the other of low saliency. They will both be used to extract the visual words
indicating the saliency-level. In this paper, we use the mean of the saliency values of image
as the visual saliency threshold which is relatively adaptive to image variance.

2.3 Dual-layer Bag of Salient Words

Given an image, we try to use local or block-wise features for visual representation. In this
paper, SIFT [17] is adopted to extract the local features in training images. Firstly, we extract
visual words according to region saliency in each community. Then, the global codebook is
generated according to the community-wise codebook.

In specific community, a M×N image Ik is featured with a saliency map {Mk,m×n},
m ≤ M, n≤N and nk SIFT descriptors {Dk, j }, j = 1...nk . We generate the intra-community
codebook with the SIFT features and the corresponding value of the saliency map for high
and low salient regions respectively. For instance, the distance between two SIFT descriptors
Dk,i and Dk, j in salient region is defined as:

dist (i, j) = dist (Dk,i , Dk, j ) × dist (Mk,i , Mk, j ) (4)

where Mk,i is the saliency-level of the SIFT descriptor defined by the saliency map. The
value of saliency-level is determined by the description region based on the position and
scale factor. As shown in Fig. 3, the yellow corners refer to the local interesting points
with different scales. The saliency-level of SIFT point is the mean value of the saliency
value in the 4 × 4 grid around the interesting point. According to the origin of SIFT, each
descriptor is generated based on its scale in 4×4 neighborhoods. Comparedwith our previous
work [10] which measures the visual saliency based on single pixel, the proposed strategy
fully considers the characteristics of SIFT descriptors. The codebook can be generated by
clustering based on the distance measured as Eq. (4). However, for non-salient regions, we
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Fig. 3 The image on the left shows local interesting points with different scales. The saliency-level of the
point is determined by the mean value of saliency in the 4 × 4 grid around the interesting point. For the grids
cropped by the boundary of image, only the saliency values within the image are considered

directly use dist (Dk,i , Dk, j ) for similarity measurement since the saliency value are quite
closed for them. For distance function dist (·, ·), we directly use the Euclidean distance based
on the normalized feature.

According to the distance between local features, the community-wise codebook consist-
ing of visual words for salient and non-salient region is obtained via K-means clustering
algorithm. Based on the community-wise codebook, we can obtain the global codebook by
clustering the visual words from all communities for salient and non-salient regions. Images
are quantized into Bag-of-Words features based on the global codebook.

2.4 Community Classifier: Learning and Inference

We define the score of interpreting an image I with the corresponding community as :

F(I ) = ΘTΦ(I ) = θTφsal(I ) + ηTφunsal(I ) + βTω(I ) (5)

In the following, we describe in detail each term in Eq. (5).

2.4.1 Bag-of-Salient-Words θTφsal(I )

For an unlabeled image I , we can extract the local feature based on salient visual words.
θi can be weight associated with the similarity between each training samples Ik and the
unlabeled image.Therefore, we can parameterize this potential function as:

θTφsal(I ) =
∑

Ik∈ICom

θk Ksal(I, Ik) (6)

where Ksal(I, Ik) is a similarity function,ICom denote the images in specific community.
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2.4.2 Bag-of-non-salient-Words ηTφunsal(I )

This potential function captures the similarity on non-salient words between each training
samples Ik and the unlabeled image. As shown above, we can parameterize it as:

ηTφunsal(I ) =
∑

Ik∈ICom

ηk Kunsal(I, Ik) (7)

Global features βTω(I ): This part indicates how likely the image I assigned with this com-
munity based on global features of I . It is shown as:

βTω(I ) =
∑

Ik∈ICom

βk Kglobal(I, Ik) (8)

We learn our model in a multiple-kernel learning SVM framework. The multiple-kernel
SVMmodel can be trained with adaptively-weighted combined kernels and each kernel is in
accordance with a specific type of visual feature. The decision function is defined as follows:

F(I ) =
∑

Ik∈ICom

θi Ksal(I, Ik) + ηi Kunsal(I, Ik) + βi Kglobal(I, Ik)

=
∑

Ik∈ICom

αk

{
θk

αk
Ksal(I, Ik) + ηk

αk
Kunsal(I, Ik) + βk

αk
Kglobal(I, Ik)

}

=
∑

Ik∈ICom

αk

∑

m

wmKm(I, Ik) =
∑

Ik∈ICom

αk K (I, Ik) (9)

where K (·) is the combined kernel, Km(·) is the sub-kernel of mth visual feature and wm is
the weight for sub-kernel to be learnt. In order to get a sparse solution, we add the l1norm
constraints and the learning problem is shown as follows:

min
1

2
‖F‖ + C

∑

Ik∈ICom

ξk

s.t.F(I ) =
∑

Ik∈ICom

αk K (I, Ik)

K (I, Ik) =
∑

m

wmKm(I, Ik), wm ≥ 0,
∑

m

wm = 1

ξk≥0, yk F(Ik)≥1 − ξk (10)

where ξk is the relaxation variables in SVM and yk is the two-class label of samples. The
community classifier is exactly a multi-class SVM. However, it has to be converted in several
two-class problems to learn. In this paper, we adopt the widely-used one-versus-all strategy.
As reported in previous work, multiple-kernel SVM shows better performance than conven-
tional SVM learnt with combined features. We solve this problem via SimpleMKL [25].

2.5 Labeling: Neighbor-Voting in Communities

The corresponding communities of an untagged image can be determined by the trained
community classifiers. A naive KNN search is carried out to realize the tag assignment in
each community based on the Euclidean distance between the visual features of the untagged
image and the ones in the community. We will firstly tag the image with the salient tags.
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The non-salient tag is assigned based both on the correlation of salient tag and the visual
feature. Let r(I, rsalci ) denote the relevance between image I and salient tag ci . r(I, rsalci )

is determined by the K-nearest-neighbors measured with Bag-of-Salient-Words feature and
global features:

r(I, rsalci ) = 1

K

⎧
⎪⎨

⎪⎩

∑

I j∈N sal
K (I )

wsalr(I j , r
sal
ci ) +

∑

I j∈N global
K (I )

wglobalr(I j , r
sal
ci )

⎫
⎪⎬

⎪⎭
(11)

where wsal and wglobal are kernel weight obtained in Eq. (10); N sal
K (I ) is the K-nearest-

neighbors measured with salient word feature; N global
K (I ) is the K-nearest-neighbors

measured with global feature which can reduce the impact of false/miss salient regions.
Similarly, the relevance between the unlabeled image and non-salient tags based on visual

features are firstly determined by global and non-salient features:

r(I, runsalci ) = 1

K

⎧
⎪⎨

⎪⎩

∑

I j∈N unsal
K (I )

wunsalr(I j , r
unsal
ci ) +

∑

I j∈N global
K (I )

wglobalr(I j , r
unsal
ci )

⎫
⎪⎬

⎪⎭
(12)

Inspired by the association ability of human beings, the non-salient tags are also comple-
mented by the salient tags as follows:

r∗(I, runsalci ) = r(I, runsalci ) +
∑

k

r(I, rsalck ) × w(ck, ci )

= r(I, runsalci ) +
∑

k

r(I, rsalck ) × P(ci |ck) (13)

where ck is the salient concept assigned to image by TVSA. The final tagging information
of the image is a combination of salient and non-salient tags.

2.6 Time Complexity Analysis

In this section, we analyze the computational complexity of TVSA. In offline learning, we
firstly detect the semantic communities on concept graph. The time complexity of construct-
ing concept graph is O(m2) where m is the number of semantic concepts and the space
complexity is O(m2). The complexity of community detection is O(m2log2m) since the
iteration of community detection is similar to a hierarchical clustering process. The space
complexity of community detection is also O(m2). The textual saliency is measured by CRG
values in Eq. (3). The time complexity of calculating CRG is O(m) since the saliency of each
tag should be obtained. After textual saliency detection, all training samples are assigned to
specific community whose time complexity is O(nmlog2m) where n is the number of train-
ing samples and n � m. Therefore, it can be considered linear to the number of training
samples. In visual saliency detection , we first generate the saliency map of images which
is related to the specific algorithms adopted. Yang et al. [31] used in this paper is actually a
graph-based propagation method which is quite efficient. The most-time consuming process
is to generate the dual-layer codebook by KMeans algorithm. When given nd SIFT descrip-
tors, the time-complexity is O(knd) where k is the maximum number of iteration. Then, we
train the multiple kernel SVM based on the samples with multiple features. Since we adopt
one-versus-all? strategy for learning community classifiers, we have to train nc MKL-SVMs
where nc is the number of communities.
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In online annotation, the salient, non-salient and global features are extracted. The time-
complexity for extracting salient and non-salient feature is linear to the size of codebook.
Then, the untagged samples are firstly assigned to the most relevant communities by MKL-
SVM.After that, wewill give the initial tags via intra-community annotationwhich is actually
a KNN process in top M relevant communities. If KNN is boosted by KD-Tree, the time
complexity of building for all communities isO(ncncslog2nc)where nc is the number of com-
munities and ncs is the number of training samples in each community. The time complexity
of annotation is O(Mntlog2ncs) where M is the number of candidate communities and nt
is the number of untagged images. Therefore, the total time complexity of intra-annotation
is O(ncncslog2nc + Mntlog2ncs).

3 Experiments

3.1 Pre-settings and Evaluation Measures

In this section, some experiments are conducted to evaluate the performance of the proposed
method on MIRFlickr [12] and IAPR TC-12 [8] datasets.

The annotation model is trained using the training part while the evaluation of the model
is based on the testing part. All visual features are deployed for the compared methods.
The comparison between TVSA and state-of-the-art methods MLKNN [34], RLVT [14],
RANK [14], NBVT [13] and LCMKL [9] is also presented to show the proposed method
progresses towards better performance. NBVT is a neighbor voting method for tag relevance
estimation. RLVT takes the relevance between tags into consideration based on the Google
distance combined with low-level visual features. RANK is an extension of RLVT using
a random walk. ML-KNN is derived from the k-nearest method exploiting Bayesian rules.
LCMKL is a general framework using community detection and multiple kernel learning for
image annotation. In order to present the improvement compared with our previous works
in [10], we denote the result based on [10] with TVSA-prev. The method proposed in this
paper is represented by TVSA-cur. All of the experiments are executed on a PC with Intel
2.4GHz CPU and 10GB RAM on MATLAB.

For TVSA, we use [31] to extract saliency map and detect 500D BoW feature for salient
and non-salient regions respectively. Global feature ,i.e. Color Histogram (64D), is also
adopted as visual representation. For the baseline methods, a 1000D BoW feature and the
global features mentioned above are deployed. The parameter settings for TVSA are listed
as follows: The threshold of textual saliency (Ttxt )is set to 0.5 while for the visual saliency
(Tvis)is the mean-value of image’s saliency map. The number of neighbors for neighbor-
voting is 100. The scaling factor σ in Eq. (4) is 10.

In this paper, Precision, Recall and F1-score are used tomeasure the performance of image
annotation. For concept ci , they are determined as follows:

Precision(ci ) = Ncorr

Ntagged
; Recall(ci ) = Ncorr

Nall

F1 − score(ci ) = 2
Precision(ci )×Recall(ci )

Precision(ci ) + Recall(ci )
(14)

where Ntagged denotes the number of images tagged with a specific concept ci , in testing part
by image annotation, Ncorr denotes the number of images tagged correctly according to the
original tagging information and Nall denotes the number of images taggedwith ci in training
part. For each concept, we can obtain Precision, Recall and F1-score respectively. The global
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performance is obtained via averaging over all concepts. To make fair comparisons, the top
five relevant concepts of the image are selected for annotation.

3.2 Experiments on IAPR TC-12

IAPR TC-12 dataset was used for the ImageClef Challenge from 2006 to 2008. It consists
of still natural images taken from locations around the world and comprising an assorted
cross-section of still natural images. The numbers of training and test samples are 17,665
and 1962, respectively. The number of tags is 291.

Table 1 shows the performance of image annotation on IAPR TC-12 dataset. We observe
that the proposed method outperforms the compared method on Avg. Precision, Avg. Recall
and Avg. F1-score with the top 10 relevant tags. Since TVSA focus on tagging the visual
and textual salient objects, the recall of TVSA is relatively higher than other methods. Some
exemplars are shown in Fig. 4.

3.3 Experiments on MIRFlickr

MIRFlickr consists of 25,000 images that were downloaded from the social photography site
Flickr.com through its public API. The color images are representative of a generic domain

Table 1 The performance comparison on IAPR TC-12 dataset measured by Precision, Recall and F1-score

Method MLKNN NBVT RANK RLVT LCMKL TVSA-prev TVSA-cur

Recall 0.162 0.195 0.179 0.106 0.287 0.295 0.321

Precision 0.112 0.091 0.191 0.254 0.121 0.131 0.128

F1-score 0.132 0.124 0.134 0.149 0.170 0.181 0.184

Fig. 4 Tagging exemplars from IAPR TC-12 dataset. ‘GT’ denotes the ground truth. We select only top five
relevant tags generated by each method. The salient regions like ‘man’ and ‘tree’ are ranked higher than the
non-salient objects by TVSA
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Table 2 The performance comparison on MIRFlickr dataset measured by Precision, Recall and F1-score

Method MLKNN NBVT RANK RLVT LCMKL TVSA-prev TVSA-cur

Recall 0.210 0.211 0.208 0.209 0.200 0.201 0.223

Precision 0.091 0.123 0.119 0.121 0.118 0.122 0.140

F1-score 0.126 0.155 0.151 0.153 0.148 0.152 0.173

Fig. 5 Tagging exemplars fromMIRFlickr dataset. ‘GT’ denotes the ground truth. Some textual concepts are
duplicated in MIRFlickr like ‘bird’ and ‘bird_r1’

and are of high quality. The numbers of training and test samples are both 12,500. The number
of tags is 38.

Table 2 shows the performance of image annotation on MIRFlickr dataset. Similar to
the result of IAPR TC-12 dataset, we observe that the proposed method outperforms the
compared method on Avg. Precision, Avg. Recall and Avg. F1-score with the top 5 relevant
tags. However, the improvement gained byTVSA is not as obvious as on IAPRTC-12 dataset.
The main reason is that the number of concepts fromMIRFlickr is only 38 and some of them
are actually duplicated like ‘bird_r1’ and ‘bird’. Since the number of textual concepts and
the tag co-occurrence are both limited, the detection of textual saliency cannot provide better
performance. Some exemplars are shown in Fig. 5.

3.4 Discussions

Most of the previous works for image annotation follows two basic strategies: search-
based methods which assign tags for images based on the similarity between images;
learning-based methods which consider image annotation as a classification problem (Neural
Networks/SVM). They did not fully take the structure of semantic labels and the cross-modal
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correlations. Our method is based on two assumptions: the co-occurrence of labels is a key
factor in image annotation and the salient visual features have strong associations with salient
textual labels. Therefore, our approach has relatively clear target in annotation and introduce
promising performance.

We also discuss the selection of key parameters of TVSA in this section including threshold
of visual saliency(Ttxt ), textual saliency (Tvis) and the size of bag of visual words.

For visual saliency, it is not appropriate to set a fixed threshold since the distribution of
saliency map varies in different images. The mean-value of image’s saliency map is a relative
simple and good choice. For textual saliency, the threshold is selected by cross-validation
among {0.1, 0.2, . . . , 0.9}. We found that Ttxt = 0.5 achieves the best performance.

For the size of bag of visual words, we find that with larger size of salient visual words,
the performance of TVSA can be improved. When using 1000D Bag-of-salient-words, the
F1-score of TVSA is 0.220 on IAPR TC-12 and 0.192 on MIRFlickr. However, larger size
of non-salient visual words cannot provide better performance since the non-salient regions
often refers to simple concepts like ‘sky’ or the objects without salient semantic information.

4 Conclusion

In this paper, a Textual-Visual Saliency based framework for image annotation is proposed.
Our work integrates the textual saliency on labels and visual saliency on images. A concept
graph is constructedwhich implies a dense semantic intra-community correlation of concepts.
The dual-layer Bag-of-Words provide a good visual representation based on local features
and salient regions. The robust multiple-kernel SVM is applied for community classification.
Experiments on IAPR TC-12 and MIRFlickr datasets demonstrate that the proposed method
outperforms other state-of-the-art approaches.
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