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Abstract Extreme learning machine (ELM) has several interesting and significant features.
In this paper, a novel pruned Stacking ELMs (PS-ELMs) algorithm for time series predic-
tion (TSP) is proposed. It employs ELM as the level-0 algorithm to train several models
for Stacking. And our previously proposed reduce-error pruning for TSP (ReTSP)-Trend
pruning technique is used to solve the problem that the level-0 learners might make many
correlated error predictions. ReTSP-Trend refers to an evaluation measure for reduce-error
pruning for TSP (ReTSP), which takes into account the time series trend and the forecasting
error direction. What’s more, ELM and simple averaging are used to generate the level-1
model. With the development of PS-ELMs, firstly, those essential advantages of ELM will
be naturally inherited. Secondly, those specific defects of ELM are ameliorated to some
extent, with the help of ensemble pruning paradigm. Thirdly, ensemble pruning is employed
to raise the robustness and accuracy of time series forecasting, making up for the shortages
of the existing research. Fourthly, our previously proposed pruning measure ReTSP-Trend is
employed in PS-ELMs, which indeed guarantees that the remaining predictor which supple-
ments the subensemble the most will be selected. And finally, the development of PS-ELMs
will promote our investigation to the popular ensemble technique of Stacked Generalization.
The experimental results on four benchmark financial time series datasets verified the validity
of the proposed PS-ELMs algorithm.
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1 Introduction

Time series prediction (TSP) is a significant active research topic in machine learning and
data engineering, and it has indispensable importance in many practical data mining appli-
cations. In general, time series involves a subject of research interest in various areas of
knowledge such as: economy (stock prices, unemployment rate, and industrial production),
epidemiology (rate of cases of an infectious diseases), medicine (electrocardiogram, and
electroencephalogram), and meteorology (temperature, wind velocity and pluviometric pre-
cipitation) [1]. Financial time series forecasting is one of the most active areas in TSP.
Amajor challenge confronted with speculators, investors and businesses is how to accurately
forecast price movements in financial and commodity markets [2]. While many factors might
influence the trend of a stockmarket, including political events, general economic conditions,
and trader’s expectations [2], and consequently, it is a challenging task to predict the stock
market trend, due to its high volatility and noisy environment.

Statistical linear methods dominated in TSP for years. However, on the grounds that some
financial time series contain several specific characteristics: large sample sizes, high noise,
non-stationary, non-linearity, and varying associated risk [3], it might be obvious that there
will be no single statistical linear approachwhich could perform the best for all the time series
modeling tasks. In the last decades, neural network (NN) methods have attracted significant
attention for TSP problems in the reason of their theoretical properties of non-parametric,
data driven universal approximation of any linear or nonlinear function [4]. Feed-forward
NNs (FNNs) were the first models used to detect regularities in the stock market [5]. Since
then, many kinds of artificial NNs have been utilized to predict the movement of the stock
market [6].

Traditionally, all the parameters of FNNs need to be tuned, and thus there exists depen-
dency between different layers of parameters (weights and biases). Gradient descent-based
methods have mainly been used in various learning algorithms of FNNs. However, these
gradient descent-based methods are generally very slow and may easily converge to local
minima. In recent years, a new learning algorithm called extreme learning machine (ELM)
for single-hidden layer FNNs (SLFNs) which randomly chooses hidden nodes and analyti-
cally determines the output weights of SLFNs has been proposed. Some simulation results
on artificial and real large applications in [7] have showed that this algorithm tends to provide
good generalization performance at extremely fast learning speed. In [8], the authors have
implemented many simulations and found that ELM has several interesting and significant
features different from traditional popular gradient-based learning algorithms for FNNs:

(1) The learning speed of ELM is extremely fast. In their simulations, the learning phase
of ELM can be completed in seconds or less than seconds for many applications;

(2) ELM could often obtain a better generalization performance than gradient-based learn-
ing algorithms;

(3) ELM learning algorithm tends to reach the solutions straightforwardwithout facing sev-
eral issues like local minima, etc. It looks much simpler than most learning algorithms
for FNNs.

With such many good features, ELM has been widely used in a great deal of fields, such
as intelligent measurement [9], face recognition [10], production prediction [11], biofuel
engine performance prediction [12], wind speed distribution estimation [13], human activity
recognition [14], and biomedical [15,16], etc.

However, it is still a problem to select the appropriate number of neurons in the hidden layer
of ELM. The ELM algorithm tends to have problems when irrelevant or correlated variables
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are present [17]. For this reason, the optimally pruned ELM methodology is proposed in
[17] to perform a pruning of the irrelevant variables, via pruning of the related neurons of
the SLFN built by ELM. What’s more, there also exist other optimization methodologies in
artificial NNs system which have been explored in [18,19]. As there are multiple choices
of hypotheses that produce dissimilar results, these works propose some frameworks for the
optimization of different classifiers aiming at finding the optimal models. While we find that
the ensemble learning methods could be used to solve this problem of selecting the proper
number of hidden neurons for ELM. Besides choosing a best single predictor, ensemble
methods have achieved great success due to that it is more robust and more precise than a
single predictor. And, the ensemble method of combining several ELMs has shown good
classification performance in [16].

Lots of works [20–23] using ensemble methods have achieved great success on financial
time series forecasting.While, an important shortcomingof ensemblemethods is that, inmany
problems of practical interest, many constituent predictors are needed for the ensemble to
achieve good generalization performance. However, larger ensemble requires more storage
spaces and takes longer tomake predictions [24]. Ensemble pruning is a competitive approach
to alleviate the above problems of traditional ensemble methods. Moreover, there exists
another benefit that, the generalization performance of pruned ensembles may be even better
than the original ensemble consisting of all the given individual learners. Ensemble pruning
approach has shown to be effective in classification and regression problems. It can achieve
better performance than, or nearly the same level of performance as, the entire ensemble in
these tasks [25–32].

However, we find that there are few works studying the performance of ensemble pruning
technique on time series forecasting problems, whereas it could be foreseen that the technique
could perform well on this task. First of all, ensemble pruning technique could be used to
enhance the robustness and accuracy of time series forecasting model. Second, in a sense,
time series forecasting is similar to regression problems, and according to the certification
given by Zhou et al. [33], it can be concluded that pruned ensemble could be better than the
original entire ensemble in regression and time series forecasting tasks.

In one of our previous works [34], we proposed several novel evaluation measures for
rank-based ensemble pruning with applications to TSP. The first evaluation measure is com-
plementaritymeasure for TSP (ComTSP),which aims to incorporate at each selection step the
base learner whose performance is most complementary to that of the current subensemble.
The second one is concurrency thinning for TSP (ConTSP), which is designed based on the
performance of both the subensemble and the candidate learner with regard to a selection set.
With the measure ConTSP, a candidate learner is rewarded for obtaining a correct prediction,
and rewarded more for obtaining a correct prediction when the subensemble is incorrect. A
candidate learner is penalized in the event where both the subensemble and the candidate
learner are incorrect.

ReTSP-Value and ReTSP-Trend for reduce-error pruning for TSP (ReTSP) are the third
and fourth evaluation measures proposed by us [34]. ReTSP-Value and ReTSP-Trend are
based on the reduce error (RE) pruning technique, which incorporates one learner into the
subensemble at each selection step by estimating its prediction error on selection dataset.
However, ReTSP-Value has the same weakness as ComTSP that, it could not guarantee the
remainingpredictorwhich supplements the subensemble themostwill be selected. The reason
of this weakness is that the predictive error in TSP is directional. It is not very reasonable for
the measures to take reducing error as the only objective, while neglect the error direction.
Our proposed measure ReTSP-Trend overcomes this weakness, taking into consideration
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the time series trend and the forecasting error direction. It could indeed guarantee that the
remaining predictor which supplements the subensemble the most will be selected [34].

Moreover, ensembles can be integrated by combining the base models outputs in some
fashion. One mechanism of ensemble integration is to use a meta-learning model to combine
the outputs of the base models. One of the best known meta-techniques is that of Stacking
or Stacked Generalization. Stacking is one of the earliest hierarchical methods of ensemble
learning. However, it is a critical issue of selecting the right learners, their parameters and
meta-learners. And it has been found that a necessary condition to create a good ensemble
of learners is that base-level learners error predictions are uncorrelated [35].

In this work, a pruned Stacking ELMs (PS-ELMs) algorithm is proposed by us for TSP. It
uses ELM as level-0 learning algorithm to train a series of models in reason of that the ELM
algorithm has a fast learning speed and good generalization. And it has been showed that
ELM can obtain a good performance on TSP [36]. And ensemble pruning methods can be
used to get rid of those redundant component ELMs in the original ensemble. Specifically,
PS-ELMs applies the Stacking method to combine a pruned committee of ELM networks.
And the ReTSP-Trend ensemble pruning technique which has proven to be effective in one of
our previouswork [34], is used to select appreciate ELMs formaking up the level-0 committee
in order to achieve good generalization performance and less storage spaces. What’s more,
ELM is also used as the meta-learning algorithm for Stacking in comparison with simple
averaging as the meta-learning algorithm.

Based on the above descriptions about the proposed PS-ELMs algorithm, our motivations
behind its development, and simultaneously, the novelty and contributions of this work are
summarized as follows.

Firstly, PS-ELMs naturally inherits those salient advantages of ELM, including extremely
fast learning speed, better generalization capability and the avoidance of local minima prob-
lem.

Secondly, with PS-ELMs, we wish to improve those specific defects of ELM to some
extent, by the introduction of ensemble pruning paradigm.

Thirdly, in PS-ELMs, we use the ensemble pruning technique to enhance the robustness
and accuracy of time series forecasting model. This is the major difference between our work
and the related studies [1,20–23]. In their works, they used the traditional ensemble methods
for financial time series forecasting, while we increase an intermediate ensemble pruning
procedure so as to improve the forecasting performance. Actually, it is found by us that there
exist very few works studying the application of ensemble pruning technique on time series
forecasting. Thus, we hope that with the development of PS-ELMs, we can facilitate the
research of ensemble pruning technique on its applications to TSP.

Fourthly, in PS-ELMs, our previously proposed pruning measure of ReTSP-Trend [34]
is employed, which takes into consideration the time series trend and the forecasting error
direction, and could indeed guarantee that the remaining predictor which supplements the
subensemble the most will be selected.

Finally, PS-ELMs applies the Stackingmethod to combine a committee of ELMnetworks,
and ELM is used as the meta-learning algorithm for Stacking in comparison with simple
averaging as the meta-learning algorithm. Therefore, the development of PS-ELMs will
boost our investigation to the popular Stacked Generalization ensemble technique, and we
attempt to solve those difficult problems confronted with Stacked Generalization.

Except for the above summarization about the motivations, novelty and contributions
of this work, another essential contribution is that, the proposed model PS-ELMs possesses
several good features comparedwith the traditional ensemblemethods, such as: it can improve
the forecasting accuracy, according to the experimental results. And it also can reduce the
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time complexity when making a prediction for an unknown instance, which has been proven
by theoretical analysis, while the property of prediction speed is crucial for time series
forecasting.

We implement simulation experiments to evaluate the performance of the proposed PS-
ELMs algorithm in comparison with choosing the best single model (BSM) in the original
ELMsensemble, andwith theStacking ensemblemethodwithout pruning, on four benchmark
financial time series datasets. For comparison purposes, support vector regression (SVR)
algorithm is also used as the level-0 learning algorithm in Stacking. From the experimental
results, it can be found that the proposedPS-ELMs algorithmoutperforms its rivals. It can give
a best generalization performance, andmake a best prediction for the trendof the stockmarket.
Moreover, it could obtain a highest pruning ratewhich represents that it couldmake prediction
extremely fast.Meantime, it also can be found that the performance of StackingELMswithout
pruning procedure is barely satisfactory. The phenomenon can be attributed to that the pruning
procedure could reduce correlated error predictions made by the level-0 models.

This paper is organized as follows. Section2 introduces some important concepts of the
ELM algorithm. Section3 gives the novel ideas and details of the proposed PS-ELMs algo-
rithm. Section 4 reports and discusses the experimental results. Finally, Sect. 5 summarizes
this paper.

2 Preview with ELM

The ELM algorithm was originally proposed by Huang et al. [8]. It makes use of the single
layer FNN (SLFN), and it has the same topology as SLFN, as shown in Fig. 1. The main
concept behind the ELM lies in the random initialization of the SLFN weights and bias. The
input weights and biases do not need to be adjusted. And it is possible to calculate explicitly
the hidden layer output matrix and hence the output weights. The network is obtained with
very few steps and very low computational costs [37].

Fig. 1 ELM network topology
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Suppose we have N arbitrary distinct samples (xi , ti ),where xi = [xi1, xi2, . . . , xin]T ∈
Rn and ti = [ti1, ti2, . . . , tim]T ∈ Rm, standard SLFNs with Ñ hidden nodes with activation
function g(x) can be analytically modeled by:

Ñ∑

i=1

βi g
(
wi · x j + b j

) = t j , j = 1, . . . , N , (1)

where wi = [wi1, wi2, . . . , win]T is the weight vector connecting the i th hidden node and
the input nodes, [βi1, βi2, . . . , βin]T is the weight vector connecting the i th hidden node and
the output nodes, and bi is the bias of the i th hidden neuron to the output layer.

Equation (1) can also be written compactly as:

Hβ = T, (2)

where H(w1, . . . ,wÑ , b1, . . . , bÑ , x1, . . . , xN ) =
⎡
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Here,wi •x j denotes the inner product ofwi and x j .As named in Huang [38],H is called
the hidden layer output matrix of the NN; the i th column of H is the i th hidden node output
with respect to inputs x1, x2, . . . , xN .

Traditionally, in order to train an SLFN, one may wish to find specific ŵi , bi , β̂(i =
1, . . . , Ñ) to minimizing ‖Hβ − T‖. Specifically,
∥∥∥H

(
ŵ1, . . . , ŵÑ , b̂1, . . . , b̂Ñ

)
β̂ − T

∥∥∥ = min
wi ,bi ,β

∥∥H
(
w1, . . . ,wÑ , b1, . . . , bÑ

)
β − T

∥∥ ,

(3)
which is equivalent to minimizing the cost function

E =
N∑

j=1

⎛

⎝
Ñ∑

i=1

βi g
(
wi ·x j + bi

) − t j

⎞

⎠
2

. (4)

The gradient-decent learning algorithms are generally used to optimize these parameters. It
update parameter vector w iteratively according to:

wk = wk−1 − η
∂E(w)

∂w
. (5)

Here η is learning rate. The popular learning algorithm used in FNNs is the back-propagation
(BP) learning algorithm where gradients can be computed efficiently by propagation from
the output to the input. However, there are several issues on BP learning algorithms: the way
to find an appropriate learning rate η is difficult; the BP learning algorithm is the presence of
local minima; it may be over-trained and obtain worse generalization performance; gradient-
based learning is very time-consuming in most applications.

However, the ELM algorithm resolve the above issues related with gradient-based algo-
rithms. It first chooses input weights wi and hidden neuron bias bi randomly, after which
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matrix H can be calculated immediately. Then the problem of minimizing cost function in
Eq. (3) is equivalent to finding a least-squares solution β̂ of the linear system ‖Hβ − T‖:
∥∥∥H

(
w1, . . . ,wÑ , b1, . . . , bÑ

)
β̂ − T

∥∥∥ = min
wi ,bi ,β

∥∥H
(
w1, . . . ,wÑ , b1, . . . , bÑ

)
β − T

∥∥ .

(6)
If the number Ñ of hiddennodes is equal to the number N of distinct training samples, Ñ = N ,

matrixH is square and invertiblewhen the inputweight vectorswi and the hidden biases bi are
randomly chosen, and these training samples can be approximated with zero error. However,
in most cases the number of hidden nodes is much less than the number of distinct training
samples, Ñ � N , H is nonsquare matrix and there may not exist wi , bi , βi (i = 1, . . . , Ñ )

such that Hβ = T. ELM algorithm learns the output weights β with the use of a Moore–
Penrose generalized inverse of the matrix H, denoted as H† [38]. The smallest norm least
squares solution of the above linear system is

β̂ = H†T. (7)

The solution β̂ defined in Eq. (7) has the norm minimum over all the solutions of the least
squares solutions of linear system in Eq. (2). Thus, β̂ deserves the best generalization perfor-
mance across all the other least squares solutions [39]. Compared with traditional popular
gradient-based learning algorithms for FNNs, the ELM has several interesting and signifi-
cant features: the learning speed of ELM is extremely fast; the generalization performance of
ELM is better than the gradient-based learning algorithms and the ELM learning algorithm
tends to reach the solutions straightforward without facing several issues like local minima
which the traditional classic gradient-based learning algorithms faced [8].

3 The Proposed Pruned Stacking ELMs (PS-ELMs) Algorithm for Time
Series Prediction

The ELM algorithm needsmuch less training time compared to the popular BP algorithm and
support vector machine (SVM) or SVR. What’s more, the prediction accuracy of basic ELM
is usually better thanBP and similar to SVM/SVR inmany classification and regression appli-
cations. However, a single ELM network simply assigns input weights and biases at random,
instead of explicit training as in the gradient-decent based network. It also ineluctably brings
about uncertainty and susceptibility to errors in the reason of certain stochastic behaviors of
ELM. Therefore, we tend to use an ensemble of ELMs instead of selecting a best single ELM
for TSP task, as an ensemble is usually superior to a single predictor given the same amount
of training information.

Stacking is a widely used ensemble technique for combining learners and improving pre-
diction accuracy. One of the problems of Stacking is how to obtain the right combination
of level-0 classifiers and the meta-classifier, specifically in relation to each specific dataset
[40]. Typically, Stacking uses an algorithm to learn how to combine the outputs of a set of
classifiers obtained with the same learning algorithm [41]. In [42], the authors use proba-
bility distributions for the outputs from level-0 models instead of a simple class prediction
as level-1 attributes. And the authors proposed to use the multi-response linear regression
technique as the level-1 algorithm. In [43], a regression tree as the meta-classifier instead of
a linear model was proposed by Ting and Witten. In [40], Agapito Ledezma et al. proposed
an evolutionary Stacked Generalization (GA-Stacking) algorithm, an approach to find good
Stacking configurations bymeans of genetic search. GA-Stacking not only determines which
level-1, and which (and howmany) base classifiers must be present, but also their parameters.
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GA-Stacking could find accurate Stacking configurations, and it also provides some automa-
tion for the data mining process. However, GA-Stacking requires a longer execution time
than the rest of approaches, because several generations of individuals must be evaluated in
order to obtain a good individual. Therefore, we are aimed at exploring the performance of
the ELM algorithm as the meta-model for Stacking for the many outstanding features that
ELM has.

What’s more, it has been shown that selecting the right level-0 learners was a critical
issue in early researches of Stacking. The ensembles generated by existing techniques are
sometimes unnecessarily large, which can lead to extra memory usage, computational costs,
and occasional decreases in effectiveness. And a necessary condition to create a good ensem-
ble of learners is that the error predictions made by level-0 learners are uncorrelated [35].
In [44], a variant of Stacking that uses correspondence analysis in order to detect correla-
tions between the level-0 learners was proposed. While in this work, we apply the ensemble
pruning technique to search for a good subset of an ELMs ensemble. A well-understood
and high-performance pruning strategy for TSP task, i.e., the ReTSP-Trend pruning method,
which has been proposed in our previous work [34], is used in this work.

Our thinking behind the construction of PS-ELMs is summarized as below.
First, PS-ELMswill naturally inherit the salient advantages of ELM, including: extremely

fast learning speed, better generalization capability and the avoidance of local minima prob-
lem.

Second, with PS-ELMs, we hope to ameliorate the specific defects of ELM to some extent,
by the incorporation of ensemble pruning paradigm.

Third, we attempt to use the ensemble pruning method to boost the robustness and predic-
tive accuracy of time series forecasting model, whereas it is found by us that there are very
few works studying the application of ensemble pruning method on time series forecasting.
We wish that with the construction of PS-ELMs, we could advance the application research
of ensemble pruning method on TSP.

Fourth, in PS-ELMs, our previously proposed pruningmeasure ReTSP-Trend is employed
[34], which takes into consideration both the time series trend and the forecasting error
direction, and could indeed guarantee that the remaining predictor which supplements the
subensemble the most will be selected. We hope that, with the help of our proposed ReTSP-
Trend, we can further improve the predictive accuracy achieved by our system on time series
forecasting problems.

Last, we wish that the construction of PS-ELMs will promote our investigation to the
popular ensemble technique of Stacked Generalization. We attempt to solve the difficult
problems existed in Stacked Generalization with the help of ELM and our proposed ReTSP-
Trend pruning method.

The training procedure of the proposed PS-ELMs algorithm can be summarized with a
few steps:

Step 1 train various of level-0 models using the ELM algorithm;
Step 2 use the ReTSP-Trend pruning method to select the right learners for Stacking;
Step 3 use theELMalgorithmas level-1 algorithm to combine the outputs of learners selected

in Step 2.

In this section, we first give the basic ideas of Stacked Generalization for time series
forecasting. Then, the details of ReTSP-Trend pruning technique are presented. Finally, we
introduce the proposed PS-ELMs algorithm for TSP.
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3.1 Stacked Generalization

Stacking is the abbreviation that refers to Stacked Generalization. Stacking [45] comprises
two different stages, namely, level-0 and level-1 stages. Level-0 learners refer to a set of
models in the committee, and the original data, called level-0 data, is applied to train each
one of the level-0 learners. Once the level-0 learners have been generated, it is required to
further combine their predictive results in order to get the final prediction of the ensemble.
Stacking uses a meta-learner (or termed level-1 model) to further combine the outputs of the
level-0 learners so as to obtain the final prediction. In the following, we use a formalized
language to describe it.

Given a data set L , it leaves one of the subsets out (e.g., L j ) to be used later. The remaining
instances L(−j) = L− L j are used to generate the level-0 classifiers by applyingK different
learning algorithms, k =1,…,K, to obtain K learners. After the level-0 models have been
generated, the L j set is used to train the level-1 learner. Level-1 training data is created from
the predictions of the level-0 models over the instances in L j , that were left out for this
purpose. Level-1 data has K attributes, whose values are the predictions of each one of the
K level-0 learners for every instance in L j . Therefore, a level-1 training example is made of
K attributes (the K predictions) and the target value, which is the right prediction for every
instance in L j . Once the level-1 data has been built from all instances in L j , any learning
algorithm can be used to generate the level-1 learner. To predict a new instance, the level-0
models produce a vector of predictions that is the input to the level-1 model, which in turn
predicts the value of target variable.

3.2 ReTSP-Trend Pruning Technique

The objective of investigation about ensemble pruning methods is to design a procedure that
can select the subensemblewith the lowest generalization error, which has been proven to be a
NP-complete problem [46]. In order to simplify the search in the space of subensembles, it is
assumed that the best subensemble of size u−1 is included in the best subensemble of size u
for ranking-based pruningmethods, and we can construct a sequence of best subensembles of
increasing size by including one learner a time [27]. The learnerwhich should be incorporated
into the subensemble has to be decided according to an evaluation measure for ranking-based
ensemble pruning methods. While it is too simplistic to using the predictive performance of
individual models as evaluation measure, which can not achieve satisfying results [47]. In
[48], the authors have shown in their works that neither the accuracy of the base learners nor
their diversity are by themselves sufficient to identify effective ensembles. A good ensemble
evaluationmeasure needs to take into account both accuracy and diversity. In order to identify
subensembles with a good generalization performance, it is necessary to take into account
the complementarity among the learners [49].

Before describing the ReTSP-Trend evaluation measure in detail, it is useful to introduce
some notations. The input of the learning algorithm consists in a set of instances Ztrain =
{(xi , yi ), i = 1, . . . , Ntrain}. Each instance is characterized by a feature vector xi , and a
target value yi . The objective of the learning algorithm is to induce from the training dataset
Ztrain a hypothesis h(x) that predicts the predicted value of a new example characterized by
the vector of attributes x.

The evaluation measures for rank-based pruning technique make use of a selection set
composed of Nsel labeled examples, i.e., Zsel = {(xi , yi ), i = 1, . . . , Nsel}, to guide the
order of aggregation. Base learners that are expected to perform best when combined are
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aggregated first. From the subensemble Su−1 of size u − 1, the subensemble Su of size u
is constructed by incorporating a single learner selected from the remaining models in the
original ensemble which are not included in Su−1.

The ReTSP-Trend pruning procedure is simple in theory. An in-depth analysis for this
method has been presented in our previous work [34], along with which the detail of ReTSP-
Trend pruning technique is given as below.

Given a selection set Zsel of size Nsel , the signature vector c(t) of predictor t is defined
as the Nsel dimensional vector whose i th component is

c(t)
i = (ht (xi ) − yi ) , (xi , yi ) ∈ Zsel . (8)

The i th component c(t)
i is equal to 0 if the forecasting value of the t th predictor exactly

matches to the i th example in Zsel , and it denotes the squared error made by the t th predictor
for the i th example in Zsel . The ensemble signature vector cens is defined as the sum of the
signature vectors of all the predictors in the ensemble. And the average ensemble signature
vector is defined as:

〈c〉 = T−1
T∑

t=1

c(t). (9)

In TSP, the i th component of 〈c〉 is the margin of the i th example, defined as the accuracy of
the ensemble prediction for this example. The i th example is fitted better by the ensemble if
the i th component of 〈c〉 is smaller. In consequence, the objective is to select a subensemble
whose average signature vector is as close as possible to the origin o of coordinates.

Thismethod starts with selecting into the empty subensemble the individual learner whose
predictive performance on the selection set is the best. Then, the remaining individual learners
are sequentially put into the subensemble, such that the Euclidean distance from vector 〈c〉
to o is as small as possible in each selection round. More specifically, the first predictor that
is incorporated into the subensemble is the one that reduces the distance from vector 〈c〉 to
o the most. In particular, the predictor selected in the uth selection step is indexed with:

su = argmin
k

d

(
o, T−1

(
c(k) +

u−1∑

t=1

c(t)

))
, (10)

where hk ∈ ET \Su−1, d(u, v) denotes the usual Euclidean distance between points u and
v, and su represents the serial number of the currently selected base learner in the original
ensemble.

We use Algorithm 1 to show the procedure of ReTSP-Trend pruning method. And Fig. 2
is used to illustrate the diagram of this selection procedure. Assume T models are trained in
the ensemble, the time complexity of training the ensemble without pruning procedure and of
making a prediction for an unknown instance respectively are O(T ·ttrain) and O(T ·ttest ),
where ttrain depends on the specific training algorithm and the size of training set, and
ttest depends on the specific base models utilized in the ensemble. When the ReTSP-Trend
pruning procedure is applied, the time complexity of training and pruning the ensemble equals
to O(T ·ttrain + u·T ), while the time complexity of making a prediction for an unknown
instance is O(u·ttest ), where u is the size of ensemble obtained after pruning and u � T .

From the theoretical analysis, we can see that the prediction complexity is reduced largely
and the prediction complexity means a lot for a time series forecasting system.

123



Selected an Stacking ELMs for Time Series… 841

Algorithm 1 The pseudo code of the ReTSP-Trend pruning procedure

Input: },,1),,{( seliisel NiyZ == x : pruning dataset;

u : size of feasible subensemble;

TE : the original ensemble { } 1
(x) T

T i i
E h

=
≡ ;

Output: Best subensemble for prediction uS .

1: Select the learner h which has the best accuracy on the pruning dataset.

2: }{hSu =

3: while S u≤ //Comments: S denotes the size of the subensemble uS

4: Select the learner \k T uh E S∈ which satisfies Eq.(10).

5: },{ kuu hSS =

6: End while

7: Return Best subensemble uS

Fig. 2 The diagram of ReTSP-Trend pruning procedure
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3.3 The Proposed Pruned Stacking ELMs (PS-ELMs) Algorithm for Time Series
Prediction

If we consider an equidistant sampled time series {αi }i=1,...,Q, we can construct a m-
dimensional state space vector xi in the form:

xi = (
α(i−(m−1)), α(i−(m−2)), . . . , αi

)
, (11)

α̂(i+s) = f (xi ) , (12)

where s is called the horizon of prediction, m denotes the time window size (TWS), and the
function f : Rm → R is called the fitting function. In this work, we just concentrate on one-
step-ahead prediction, i.e., s = 1. In this way, we can get a dataset L = {(xi , α(i+1)), i =
m, . . . ,Q − 1}, where xi ∈ Rm and αi+1 ∈ R represent input vectors and output variable,
respectively. However, to form the input data, we have to determine how large the TWS
should be, which is important for forecasting performance. Using a time window of fixed
size has proven to be limited in many applications, for the reason that a narrow time window
could lead to omission of important information, while a uselessly wide window may cause
interfering noise. Ideally, for a given problem, the size of the time window should be adapted
to the context. This can be done by using recurrent NNs, which could be learned by a
gradient-based learning algorithm, such as BP through time algorithm [50].

In this work, we use a smart way to solve this problem based on ensemble learning
paradigm which is proposed in our previous work [34]. First, numbers of models are trained
by using training datasets obtained with different TWSs. In other words, we did not use a
fixed number of past values to feed into a single model. Instead, we use time windows with
different sizes to form different training datasets, based onwhich numbers of differentmodels
could be trained. The detail of the PS-ELMs algorithm is described in the following.

Given a time series L , split it into j equal parts L1, L2, . . . , L j along a chronological
order, where j is an integer. Define L(− j) = L − L j as the level-0 training data, while L j is
kept as the pruning data and level-1 data. For aTWSπ ∈ {1, 2, . . . ,m}, the dataset Z(π) could
be obtained from L(− j) with the TWS π. Define K members of the committee networks,
Mk, for k = 1, . . . , K . Separately invoke the K estimators in the committee using Z(π)

dataset to produce a set of trained level-0 models, Mπ
k , for π = 1, 2, . . . ,m, k = 1, . . . , K .

Obviously, �(� = K ∗ m) level-0 estimators could be obtained.
Then, apply our ReTSP-Trend ensemble pruning technique to select a subensemble of

level-0 models, {Mδλ , δλ ∈ {1, . . . , �}, λ ∈ {1, . . . , P}}, where P � � and P denotes the
size of final pruned subensemble. Here, dataset L j is used as the pruning dataset.

After the pruning procedure, apply dataset L j to each Mδλ model, δλ ∈ {1, . . . , �}, λ ∈
{1, . . . , P}, P � �, and obtain their corresponding outputs. Consequently, we have pre-
dictions {ziδ1 , ziδ2 , . . . , ziδP } for each input xi in L j , where ziδλ denotes the δλ-th model
prediction on xi . Finally, we obtain a new dataset Lmeta = {(ziδ1 , ziδ2 , . . . , ziδP , αi+1)},
which is the so called level-1 data.

At level-1 learning stage, we derive a level-1 model M̃ from Lmeta . We adopt the ELM
algorithm as the level-1 generalizer M̃ to conduct the combination of level-0 estimator pre-
dictions in the reason of its generalization ability. The number of hidden neurons and the
kernel function of the level-1 ELM generalizer are selected by using the cross-validation
method. What’s more, we also simply implement averaging the predictions of all level-0
models as the level-1 generalizer.
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Fig. 3 The diagram of the pruned Stacking ELMs (PS-ELMs) algorithm

We select suitable models by employing ensemble pruning method, rather than select
suitable TWS for a single model in advance. Our methodmakes the TWS selection procedure
no longer necessary. We use Algorithm 2 to show the procedure of training, pruning and
Stacking ELM networks. And Fig. 3 is used to illustrate the procedure of our PS-ELMs
algorithm.

With regard to the computational complexity of the proposed PS-ELMs algorithm, the
analysis to its computational complexity is identical with Algorithm 1, except that the base
models in Algorithm 2 have been determined to be ELMs. Therefore, the time complexity
of training the original ensemble and then implementing pruning to the ensemble equals to
O(T ·ttrainELM+u·T ),where T denotes the size of the original ELMs ensemble, u represents
the size of subensemble obtained from pruning and u � T, and ttrainELM depends on the
specific ELM training algorithm and the size of training set, while the time complexity of
making a prediction for an unknown instance is O(u·ttest ELM ), and ttest ELM denotes the
time required for an ELM to make a testing decision.

Algorithm 1 focuses on exhibiting the detailed process of the ReTSP-Trend pruning pro-
cedure, while Algorithm 2 shows the process of the proposed PS-ELMs algorithm on the
whole. Their computational complexities are consistent with each other. Based on these the-
oretical analyses, it can be concluded that the prediction complexity is reduced greatly, which
is of great concern for the time series forecasting tasks.
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Algorithm 2 Pruned Stacking ELMs algorithm

Input: Time series 1,..,Q{ }i iL α == ;

Estimators for training 1 2, , , KM M M ;

P : a constant parameter represent the size of subensemble after pruning procedure;

{1,2,..,m}: time window sizes set;

Output: Level-0 learners
1 2
, , ,

P
M M Mδ δ δ and level-1 generalizer M .

1: Split L into j equal parts 1 2, ,..., jL L L along a chronological order in order to obtain the 

level-0 training data ( ) jL j L L− = − and pruning data jL .

2: For a time window size {1,2,..,m}π ∈ , form the datasets ( )πΖ , using a time window sizes set 

{1, 2,..,m} obtained from ( )L j− with the time window size {1,2,.., m}π ∈ .

3: Separately invoke the K estimators in the committee using ( )πΖ ( {1,2,..,m})π ∈ dataset.

Φ level-0 models kM π , for 1, 2,...,mπ = , 1,...,k K= could be produced.

4: Apply the ReTSP-Trend ensemble pruning technique to select a subensemble of level-0 models, 

M
λδ , where {1,..., }, {1,..., },P Pλδ λ∈ Φ ∈ Φ and P denotes the size of final pruned 

subensemble. Here jL is used as the pruning dataset.

5: Apply the pruning dataset jL to each M
λδ model and obtain their corresponding outputs

1 2
{z , z ,..., z }

Pi i iδ δ δ for each input ix in jL , where iz λδ denotes the λδ -th model prediction 

on ix .

6: Derive a level-1 model M from metaL , 
1 2 1{(z , z ,..., z , )}

Pmeta i i i iL δ δ δ α += .

7: Return: Level-0 learners
1 2
, , ,

P
M M Mδ δ δ and level-1 generalizer M .

<<

4 Empirical Analysis and Evaluation

4.1 Research Data and Data Pre-processing

The research data in this study consists of four typical stock indices: (1) Dow Jones Industrial
Average (∧DJI), (2) GlaxoSmithKline plc. (GSK), (3) Hang Seng Index (∧HSI), (4) Johnson
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Outdoors, Inc. (JOUT). The historical data are collected daily and are obtained from Yahoo
Finance [51]. The entire dataset covers the period from 1 January 1996 to 31 December 2012.

We verified the performance of rank-based pruning methods with k-fold cross-validation
approach by computing mean values. Yet, time series could be problematic for cross-
validation. In the forecasting domain, recent patterns should have higher importance when
compared with older ones. When the data are not independent, cross-validation becomes
more difficult as leaving out an observation does not remove all the associated information
due to the correlations with other observations. An approach that is sometimes more princi-
pled for time series is forward chaining [52]. Therefore, the similar 5-fold cross-validation
approach as adopted in [24] is also used here, where the procedure would be something like
this.

For each fold of cross-validation, the entire dataset is divided into three periods. The
first period, which is assigned to in-sample estimation, is used for network training, i.e., the
training set. The second period is reserved for ensemble pruning, i.e., the selection dataset.
The third period, which is assigned to out-of-sample evaluation, is used for testing purpose,
i.e., the testing set.

• fold 1

The first period is from 1 January 1990 to 31 December 2010, the second period is from
1 January 2011 to 31 December 2011, while the third period is from 1 January 2012 to 31
December 2012.

• fold 2

The first period is from 1 January 1990 to 31 December 2009, the second period is from
1 January 2010 to 31 December 2010, while the third period is from 1 January 2011 to 31
December 2011.

• fold 3

The first period is from 1 January 1990 to 31 December 2008, the second period is from
1 January 2009 to 31 December 2009, while the third period is from 1 January 2010 to 31
December 2010.

• fold 4

The first period is from 1 January 1990 to 31 December 2007, the second period is from
1 January 2008 to 31 December 2008, while the third period is from 1 January 2009 to 31
December 2009.

• fold 5

The first period is from 1 January 1990 to 31 December 2006, the second period is from
1 January 2007 to 31 December 2007, while the third period is from 1 January 2008 to 31
December 2008.

There are five attributes in the financial time series:

(1) The highest value that the stock was negotiated in a certain day, denoted by Ht ;
(2) The lowest value that the stock was negotiated during the same day, denoted by Lt ;
(3) The value of the first negotiation of the day, i.e., opening price, denoted by Ot ;
(4) The value of the last negotiation of the day, i.e., closing price, denoted by Ct ;
(5) The business volume of the stock during the same day.
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While there is a lot of missing data in the volume series, we just use the first four attributes
of the five attributes. Among the four attributes, the closing price is the attribute that is really
important, since most of the professional investors and financial institutions take action based
on its value [53]. So our forecasting goal is to forecast the daily close price using its past
value and the other three time series attributes. Specifically,

Ĉt = f
(
Ct−1, Ct−2, . . . ,Ct−p, Ht , Lt , Ot

)
, (13)

where Ĉt is the t th prediction of closing price by learning algorithm f. Ci (i = t − 1, t −
2, . . . , t − p) is the i th observation of the closing price, Ht is the t th observation of the
highest price, Lt is the t th observation of the lowest price, Ot is the t th observation of the
opening price, and p is the TWS.

Since the attributes of sample sets have different value scales, it is necessary to adjust the
scale of each attribute into the range of [0, 1]. It ensures that the larger value input attributes
do not overwhelm smaller value inputs, and then helps to reduce prediction errors. We use
the following two steps to describe normalization method:

Step 1 each of the attributes dt was converted to logarithms returned as:

rt = log (dt ) . (14)

Step 2 each of the series value rt was normalized by the linear interpolation equation (15)

r ′
t = rt − MI N

(MAX − MI N )
, (15)

where r ′
t is the normalized value, rt is the value to be normalized,MIN is the minimum value

of the series to be normalized,MAX is the maximum value of the series to be normalized.

4.2 Performance Measurement

A performance measurement is necessary to appropriately evaluate the predictive per-
formance of pruned ensemble obtained with different ensemble pruning measures. The
performance measurements are defined on the basis of prediction error, which is established
as the difference between the real value of the series (target or objective of the prediction)
and the predicted value (the output of the ensembles). Therefore, they are presented by the
following equation:

et = (targett − outputt ) , (16)

where targett is the desired output of the predictionmodel at time t, and outputt is the output
of the NN model at time t. Based on the prediction error, three performance measurements
used to evaluate the predictive performance of the pruned ensembles are described below.

4.2.1 RMSE: Root Mean Square Error

RMSE [54] is the most common metric used to analyze ensemble performance and it is
defined by the equation:

RMSE =
√√√√ 1

N

N∑

t=1

(targett − outputt )2, (17)

where N denotes the number of data values of the testing time series. Obviously, the lower the
value of RMSE, the better is the result of the prediction. Even though RMSE is quite common
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as a performance measurement, it does not provide complete and convincing evidence about
the accuracy of the predictive model. Therefore, other two metrics are also used to evaluate
the performance of the proposed models.

4.2.2 MAPE: Mean Absolute Percentage Error

ThemeasureMAPE [55] describes the errors in percentages which is an advantage in relation
to the RMSE measure, since it does not depend on the values or the scale of the time series,
which simplifies its usage. MAPE is defined as:

MAPE = 1

N

N∑

t=1

∣∣∣∣
targett − outputt

outputt

∣∣∣∣. (18)

Clearly, the lower the value of MAPE, the closer is the desired results from the predicted
ones.

4.2.3 POCID: Prediction on Change in Direction

ThemeasurementPOCID [53] demonstrates the percentage of the number of correct decisions
when predicting whether the value of the time series will increases or decreases in the next
time interval. POCID is defined as:

POCID = 100

∑N
t=1 Dt

N
(19)

having the value of Dt determined by:

Dt =
{
1
0

i f (targett − targett−1)(outputt − outputt−1) > 0,
otherwise.

(20)

The values that POCID assumes are in between 0 and 100, so that, the closer the values are
to 100, the better is the model prediction. This measurement is important when applied to the
stock market, because a correct prediction on the direction of the series of the stock quotation
affects directly the financial gains and losses on the investment.

4.3 Ensemble Construction and Experimental Results

First, 600 ELM networks were used to assemble the proposed Stacking ELM. The numbers
of hidden neurons for each TSP problem are chosen among [1:60]. Therefore, 60 ELMs
could be constructed. Meantime, with 10 different TWSs processing time series to form 10
different training dataset for learning algorithm, we can obtain 600 ELM networks. These
600 ELM networks are used as the level-0 learners for Stacking algorithm. We name using
ELM model as level-1 generalizer to Stacking ELM networks without (or with) the level-0
learners pruning procedure as ELMSTOFELM-ALL (or ELMSTOFELM-pruned) and using
averaging as level-1 generalizer to Stacking ELM networks without (or with) the level-0
learners pruning procedure as AVSTOFELM-ALL (or AVSTOFELM-pruned).

Then, 200 SVRmodels are constructed for the comparison purpose. The 200 SVRmodels
are constructed basedondifferent internalmodel parameters of ε-SVRalgorithmanddifferent
TWSs. Trade-off and kernels are crucial internal parameters for ε-SVR algorithm. Suppose
use k1 TWSs, k2 trade-offs, k3 kernels, we can construct (k1 ∗ k2 ∗ k3) SVR models.
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Table 1 The SVRs models with training parameters

Ensemble Parameters

Time
window size

Trade-off (C) Polynomial
kernels (d)

RBF kernels (γ )

200 Models
(10*2* (2+8))

[1:10] [10, 100] Degree = [2, 3] [0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1, 2]

Table 2 RMSE on the test set of Dow Jones Industrial Average (∧DJI), GlaxoSmithKline plc. (GSK), Hang
Seng Index (∧HSI), Johnson Outdoors, Inc. (JOUT) time series

RMSE Time series

∧DJI GSK ∧HSI JOUT

Ensemble

BSM–SVR 0.0257 0.0161 0.0202 0.0451

BSM–ELM 0.0011 0.0092 0.0032 0.0120

AVSTOFSVR-ALL 0.0462 0.0190 0.0723 0.0385

AVSTOFELM-ALL 0.0023 0.0115 0.0146 0.0157

ELMSTOFSVR-ALL 0.0390 0.2597 0.0287 0.1341

ELMSTOFELM-ALL 0.0023 0.2083 5.7989 6899.9512

Method

AVSTOFSVR-pruned 0.0125 0.0115 0.0140 0.0278

AVSTOFELM-pruned 0.0010 0.0092 0.0033 0.0121

ELMSTOFSVR-pruned 0.0013 0.0127 0.0088 0.0854

ELMSTOFELM-pruned 0.0011 0.0133 0.0035 0.0355

The boldface indicates the algorithm which performed best on each time series

In this work, we set ε = 0.1, and two kernels (polynomial kernels and RBF kernels) are
used. Table1 describes the values of parameters that we use to train SVR models.

After the level-0 models have been generated, the ELM and simple averaging is also used
as the level-1 generalizer. We use 10-fold cross-validation to determine the optimal number
of hidden neurons for ELM from a set [1:30].

Correspondingly, we name using ELM model as level-1 generalizer to Stacking SVR
networks without (or with) the level-0 learners pruning procedure as ELMSTOFSVR-ALL
(or ELMSTOFSVR-pruned) and using averaging as level-1 generalizer to Stacking ELM
networks without (or with) the level-0 learners pruning procedure as AVSTOFSVR-ALL (or
AVSTOFSVR-pruned).

Table2 gives the specifications of RMSE performance on four financial time series. From
the results, it shows that BSM–ELMprovides a slightly better RMSE performance on average
than our proposed Stacking ELMalgorithm.A smaller standard error indicates the underlying
network has more consistent performance through all the runs. In order to estimate whether
there are great difference between the BSM–ELMalgorithm and our proposed Stacking ELM
algorithm (AVSTOFELM and ELMSTOFELM) on the RMSE performance measurement,
we implement the paired t-test on each time series at the 5% significance level. The results
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Table 3 T-test on RMSE for BSM–ELM and AVSTOFELM algorithms

Time series ∧DJI GSK ∧HSI JOUT

T-test (RMSE) h = 0 h = 0 h = 0 h = 0

p = 0.7691 p = 0.9826 p = 0.9858 p = 0.9294

Table 4 T-test on RMSE for BSM–ELM and ELMSTOFELM algorithms

Time series ∧DJI GSK ∧HSI JOUT

T-test (RMSE) h = 0 h = 0 h = 0 h = 0

p = 0.8402 p = 0.3941 p = 0.8202 p = 0.1651

Table 5 The prediction error (MAPE) on the test set of Dow Jones Industrial Average (∧DJI), GlaxoSmithK-
line plc. (GSK), Hang Seng Index (∧HSI), Johnson Outdoors, Inc. (JOUT) time series

MAPE Time series

∧DJI GSK ∧HSI JOUT

Ensemble

BSM–SVR 0.1812 0.0326 0.0288 0.1073

BSM–ELM 0.0143 0.0221 0.0185 0.0483

AVSTOFSVR-ALL 0.2488 0.0375 0.1072 0.0797

AVSTOFELM-ALL 0.0143 0.0221 0.0185 0.0483

ELMSTOFSVR-ALL 0.0666 0.0574 0.1754 1.8440

ELMSTOFELM-ALL 0.0206 0.0424 0.2472 0.1557

Method

AVSTOFSVR-pruned 0.0854 0.0217 0.0187 0.0668

AVSTOFELM-pruned 0.0056 0.0176 0.0037 0.0439

ELMSTOFSVR-pruned 0.0103 0.0282 0.0117 0.1400

ELMSTOFELM-pruned 0.0066 0.0197 0.0039 0.0644

The boldface indicates the algorithm which performed best on each time series

are showed in Tables3 and 4. And it has clearly shown from Tables3 and 4 that our proposed
PS-ELMs algorithm performs basically the same with BSM–ELM algorithm.

Table5 gives the specifications of MAPE performance on four financial time series. From
the results, it is clear that the AVSTOFELM-pruned algorithm performs the best on these
four financial time series. Basically AVSTOFELM obtains a smaller MAPE error. A smaller
standard error indicates the underlying network has more consistent performance through
all the runs. Additionally, the AVSTOFELM has a slight improvement over ELMSTOFELM
network. This implies that constructing PS-ELMs with far cheaper averaging operator other
than the ELM is efficient for TSP problem for MAPE performance measure measurement.

Besides the above two evaluation measures, we also test the performance of the PS-ELMs
algorithm on POCID evaluation measure which reflects the tendency of time series. Table4
gives the specifications of POCID performance on these four financial time series. Results
showed in Table6 that PS-ELMs has obvious advantage over the comparable models for
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Table 6 The prediction error (POCID) on the test set of Dow Jones Industrial Average (∧DJI), GlaxoSmithK-
line plc. (GSK), Hang Seng Index (∧HSI), Johnson Outdoors, Inc. (JOUT) time series

POCID Time series

∧DJI GSK ∧HSI JOUT

Ensemble

BSM–SVR 64.3679 53.2065 65.9985 59.0952

BSM–ELM 78.6567 53.3462 82.4434 66.3310

AVSTOFSVR-ALL 54.7666 54.1302 66.3899 59.0973

AVSTOFELM-ALL 78.6567 53.3462 82.4434 66.3310

ELMSTOFSVR-ALL 78.4214 62.1940 74.8875 56.1811

ELMSTOFELM-ALL 80.2392 59.4070 81.0192 61.5881

Method

AVSTOFSVR-pruned 58.7349 54.8178 69.0207 59.3380

AVSTOFELM-pruned 80.8779 60.6056 83.0808 67.6079

ELMSTOFSVR-pruned 78.7385 54.5364 68.3801 58.7935

ELMSTOFELM-pruned 80.3205 70.7558 83.4754 64.4373

The boldface indicates the algorithm which performed best on each time series

Table 7 Pruning rates for AVSTOFELM-pruned algorithm and AVSTOFSVM-pruned (SVM) algorithm

Algorithms AVSTOFELM-pruned AVSTOFSVM-pruned

∧DJI GSK ∧HSI JOUT ∧DJI GSK ∧HSI JOUT

Total models 600 200

Ensemble size 5 5 5 10 20 30 20 40

Pruning rates (%) 99.17 99.17 99.17 98.33 90 85 90 80

Table 8 Pruning rates for ELMSTOFELM-pruned algorithm and ELMSTOFSVR-pruned algorithm

Algorithms ELMSTOFELM-pruned ELMSTOFSVR-pruned

∧DJI GSK ∧HSI JOUT ∧DJI GSK ∧HSI JOUT

Total models 600 200

Ensemble size 5 10 5 20 30 5 5 10

Pruning rate (%) 99.17 98.33 99.17 96.67 85 97.5 97.5 98.33

POCID performance measurement. This implies that constructing PS-ELMs is efficient for
financial TSP when we pay much attention on predicting tendency of time series.

Besides the prediction performance, the pruning rates indicate that how much models
should be pruned to obtain a good prediction performance for the ensemble. Tables7 and
8 show the detail of the pruning rate for different prediction algorithms and we can find
PS-ELMs is more robust than using the SVM as level-0 learners Stacking algorithms.

In order to estimate whether there are great difference between AVSTOFELM-pruned
network and ELMSTOFELM-pruned level-1 generalizer for performance, we implement
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Table 9 T-test on RMSE for averaging and ELM level-1 generalizer

T-test (RMSE) Time series

∧DJI GSK ∧HSI JOUT

AVSTOFELM–
ELMSTOFELM-pruned

p = 0.6244 p = 0.3972 p = 0.9275 p = 0.1686

h = 0 h = 0 h = 0 h = 0

Table 10 T-test on MAPE for averaging and ELM level-1 generalizer

T-test (RMSE) Time series

∧DJI GSK ∧HSI JOUT

AVSTOFELM–
ELMSTOFELM-pruned

p = 0.5955 p = 0.7535 p = 0.8865 p = 0.5901

h = 0 h = 0 h = 0 h = 0

Table 11 T-test on POCID for averaging and ELM level-1 generalizer

T-test (RMSE) Time series

∧DJI GSK ∧HSI JOUT

AVSTOFELM–
ELMSTOFELM-pruned

p = 0.5936 p = 0.1002 p = 0.5505 p = 0.4614

h = 0 h = 0 h = 0 h = 0

the paired t-test on the two methods at the 5% significance level. The results are showed
in Tables7, 8 and 9. From the results, we can find that these two networks are in the same
performance level (Tables10, 11).

Next, we use figures to visualize the predictive performance of the PS-ELMs algorithm.
As has been mentioned in Sect. 4.1, 5-fold cross-validation approach has been adopted in
our experiments. Therefore, the forecasting results based on the test dataset obtained by the
fifth fold cross-validation procedure are reported in detail in the following figures (Figs. 4,
5, 6, 7).

From the above comparisons, we can conclude that PS-ELMs has better generalization
performance than its comparison methods on financial TSP problems. In addition, we found
that the prediction performance of averaging level-1 generalizer was not remarkable dif-
ference from ELM Stacking level-1 generalizer. Therefore, it is not useful to apply ELM
algorithm to combine members of level-0 learners in a PS-ELMs for financial time series
problems.

5 Conclusions

The ELM algorithm needs much less training time compared to the popular BP algorithm
and SVM/SVR. What’s more, the prediction accuracy of the basic ELM algorithm is usually
better than BP and similar to SVM/SVR in many classification and regression applications.
However, a single ELM network simply assigns input weights and biases at random, instead
of explicit training as in the gradient-decent based network. It also ineluctably brings about
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Fig. 5 GlaxoSmithKline plc. (GSK)

uncertainty and susceptibility to errors in the reason of certain stochastic behaviors of ELM. In
order to overcome the above-mentioned shortcomings of ELM, we use an ensemble of ELM
models instead of selecting a best single ELM for TSP task in this work, since an ensemble
is usually superior to a single predictor given the same amount of training information.

Stacking is a widely used ensemble technique for combining learners and improving
prediction accuracy. One major problem of Stacking is how to obtain the right combination
of level-0 classifiers and the meta-classifier, specifically in relation to each specific dataset.
While in this work, we are aimed at exploring the performance of the ELM algorithm as the
meta-model for Stacking due to the many outstanding features that ELM has.
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What’s more, the chosen of suitable level-0 learners is another critical issue of Stack-
ing. The ensembles generated by existing techniques are sometimes unnecessarily large,
which can lead to extra memory usage, computational costs, and occasional decreases in
effectiveness. And a necessary condition to create a good ensemble of learners is that the
error predictions made by level-0 learners are uncorrelated. In this work, we apply ensemble
pruning technique to search for a good subset of ensemble members. And a well-understood
and high-performance pruning strategy for TSP task, i.e., the ReTSP-Trend pruning method,
which has been proposed in our previous work, is used.
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To sum up, in this work, a PS-ELMs algorithm is proposed by us for TSP. It uses ELM
as the level-0 learning algorithm to train a series of models, uses the ReTSP-Trend pruning
method to prune the level-0 ELMs, and applies the Stacking method to combine a pruned
committee of ELM networks. Finally, ELM is also used as the meta-learning algorithm for
Stacking in comparison with simple averaging as the meta-learning algorithm.

Our motivations behind the development of PS-ELMs, and meanwhile, our contribution
of this work are summarized as below.

Firstly, PS-ELMs naturally inherits those salient advantages of ELM, including: extremely
fast learning speed, better generalization capability and the avoidance of local minima prob-
lem.

Secondly, with PS-ELMs, we hope to ameliorate those specific defects of ELM to some
extent, with the help of ensemble pruning paradigm.

Thirdly, we attempt to use the ensemble pruning technique to enhance the robustness and
accuracy of the time series forecasting model, while it is found by us that there are very few
works studying the application of ensemble pruning technique on time series forecasting. We
wish that with the development of PS-ELMs, we could promote the application research of
ensemble pruning technique on TSP.

Fourthly, in PS-ELMs, our previously proposed pruning measure ReTSP-Trend is
employed, which taking into consideration the time series trend and the forecasting error
direction, and could indeed guarantee that the remaining predictor which supplements the
subensemble the most will be selected. We hope that, with the help of our proposed ReTSP-
Trend pruning method, we can further improve the predictive accuracy achieved by our
system on time series forecasting.

Finally, we wish that the development of PS-ELMs will promote our investigation to the
popular ensemble technique of Stacked Generalization. We attempt to solve the difficult
problems existed in Stacked Generalization with the help of ELM and our proposed ReTSP-
Trend pruning method.

The simulation experiments conducted by us show that the proposed PS-ELMs algorithm
possesses a high predictive performance on financial TSP. It could not only improve the
generalization of the single ELM model but also remove the needless members from the
level-0 models. This can be attributed to that the ReTSP-Trend pruning method is effective
in pruning the correlated error predictions of level-0 models. Moreover, the prediction time
of the ensemble can be reduced sharply in comparison with that of the traditional Stacking
without pruning procedure for the level-0 models.

What’s more, different choices of level-1 generalizer are implemented and compared. We
can find that the averaging and ELM level-1 generalizer are not remarkably different for the
prediction performance on the four financial datasets. It indicates that the averaging would
be the first choice when using the PS-ELMs algorithm to make predictions on financial time
series.

Acknowledgments This work is supported by the National Natural Science Foundation of China under the
Grant No. 61473150.

References

1. Neto A, Calvalcanti GD, Ren TI (2009) Financial time series prediction using exogenous series and
combined neural networks. In: International joint conference on neural networks, 2009. IJCNN 2009, pp
149–156

2. Abu-Mostafa YS, Atiya AF (1996) Introduction to financial forecasting. Appl Intell 6:205–213

123



Selected an Stacking ELMs for Time Series… 855

3. Jiang H, He W (2012) Grey relational grade in local support vector regression for financial time series
prediction. Expert Syst Appl 39:2256–2262

4. Crone SF, Hibon M, Nikolopoulos K (2011) Advances in forecasting with neural networks? Empirical
evidence from the NN3 competition on time series prediction. Int J Forecast 27:635–660

5. White H (1988) Economic prediction using neural networks: the case of IBM daily stock returns. In:
IEEE international conference on neural networks, 1988, pp 451–458

6. Zhiqiang G, HuaiqingW, Quan L (2013) Financial time series forecasting using LPP and SVM optimized
by PSO. Soft Comput 17:805–818

7. Huang G-B, Zhu Q-Y, Siew C-K (2006) Real-time learning capability of neural networks. IEEE Trans
Neural Netw 17:863–878

8. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocom-
puting 70:489–501

9. He Y-L, Geng Z-Q, Xu Y, Zhu Q-X (2015) A robust hybrid model integrating enhanced inputs based
extreme learning machine with PLSR (PLSR-EIELM) and its application to intelligent measurement.
ISA Trans 58:533–542

10. Peng Y, Wang S, Long X, Lu B-L (2015) Discriminative graph regularized extreme learning machine and
its application to face recognition. Neurocomputing 149:340–353

11. Na W, Zhu Q, Su Z, Jiang Q (2015) Research on well production prediction based on improved extreme
learning machine. Int J Model Identif Control 23:238–247

12. WongKI,VongCM,WongPK,Luo J (2015) SparseBayesian extreme learningmachine and its application
to biofuel engine performance prediction. Neurocomputing 149:397–404

13. ShamshirbandS,MohammadiK,TongCW,PetkovićD,PorcuE,MostafaeipourAet al (2015)Application
of extreme learning machine for estimation of wind speed distribution. Clim Dyn 1–15. doi:10.1007/
s00382-015-2682-2

14. WangW,YuL, LiuH, Sun F (2015) Extreme learningmachine for linear dynamical systems classification:
application to human activity recognition. In: Proceedings of ELM-2014, vol 2. Springer, Switzerland,
pp 11–20

15. Daliri MR (2012) A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm
and fuzzy extreme learning machines. J Med Syst 36:1001–1005

16. Daliri MR (2015) Combining extreme learning machines using support vector machines for breast tissue
classification. Comput Methods Biomech Biomed Eng 18:185–191

17. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme
learning machine. IEEE Trans Neural Netw 21:158–162

18. Gonzalez-Carrasco I, Garcia-Crespo A, Ruiz-Mezcua B, Lopez-Cuadrado JL (2012) An optimization
methodology for machine learning strategies and regression problems in ballistic impact scenarios. Appl
Intell 36:424–441

19. Gonzalez-Carrasco I, Garcia-Crespo A, Ruiz-Mezcua B, Lopez-Cuadrado JL, Colomo-Palacios R (2014)
Towards a framework for multiple artificial neural network topologies validation by means of statistics.
Expert Syst 31:20–36

20. Lai KK, Yu L, Wang S, Wei H (2006) A novel nonlinear neural network ensemble model for financial
time series forecasting. In: Computational science—ICCS 2006. Springer, Berlin, pp 790–793

21. Kim D, Kim C (1997) Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans Fuzzy
Syst 5:523–535

22. Qian B, Rasheed K (2010) Foreign exchange market prediction with multiple classifiers. J Forecast
29:271–284

23. Khashei M, Bijari M (2012) A new class of hybrid models for time series forecasting. Expert Syst Appl
39:4344–4357

24. Hernández-Lobato D, Martínez-Muñoz G, Suárez A (2011) Empirical analysis and evaluation of approx-
imate techniques for pruning regression bagging ensembles. Neurocomputing 74:2250–2264

25. Margineantu DD, Dietterich TG (1997) Pruning adaptive boosting. In: ICML, 1997, pp 211–218
26. Prodromidis AL, Stolfo SJ (2001) Cost complexity-based pruning of ensemble classifiers. Knowl Inf Syst

3:449–469
27. Martınez-Munoz G, Suárez A (2004) Aggregation ordering in bagging. In: Proceedings of the IASTED

international conference on artificial intelligence and applications, 2004, pp 258–263
28. Zhou Z-H, Tang W (2003) Selective ensemble of decision trees. In: Rough sets, fuzzy sets, data mining,

and granular computing. Springer, Berlin, pp 476–483
29. Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models.

In: Proceedings of the twenty-first international conference on machine learning, 2004, p 18
30. Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP (2005) Ensemble diversity measures and their

application to thinning. Inf Fusion 6:49–62

123

http://dx.doi.org/10.1007/s00382-015-2682-2
http://dx.doi.org/10.1007/s00382-015-2682-2


856 Z. Ma, Q. Dai

31. Martínez-Muñoz G, Suárez A (2006) Pruning in ordered bagging ensembles. In: Proceedings of the 23rd
international conference on machine learning, 2006, pp 609–616

32. Martínez-Muñoz G, Suárez A (2007) Using boosting to prune bagging ensembles. Pattern Recognit Lett
28:156–165

33. Zhou Z-H, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell
137:239–263

34. Ma ZC, Dai Q, Liu NZ (2015) Several novel evaluation measures for rank-based ensemble pruning with
applications to time series prediction. Expert Syst Appl 42:280–292

35. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12:993–
1001

36. Grigorievskiy A, Miche Y, Ventelä A-M, Séverin E, Lendasse A (2014) Long-term time series prediction
using OP-ELM. Neural Netw 51:50–56

37. ZhaoG, ShenZ,MiaoC,GayRK (2008) Enhanced extreme learningmachinewith stacked generalization.
In: IJCNN, 2008, pp 1191–1198

38. Huang G-B (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks.
IEEE Trans Neural Netw 14:274–281

39. HuangG-B, ZhuQ-Y, SiewC-K (2004) Extreme learningmachine: a new learning scheme of feedforward
neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, pp
985–990

40. LedezmaA, Aler R, Sanchis A, Borrajo D (2010) GA-stacking: evolutionary stacked generalization. Intell
Data Anal 14:89–119

41. Dietterich TG (2000) Ensemble methods in machine learning. In: Multiple classifier systems. Springer,
Heidelberg, pp 1–15

42. Ting KM, Witten IH (1999) Issues in stacked generalization. J Art Intel Res 10:271–289
43. Dzeroski S, Zenko B (2002) Is combining classifiers better than selecting the best one? In: ICML, 2002,

pp 123–130
44. Merz CJ (1999) Using correspondence analysis to combine classifiers. Mach Learn 36:33–58
45. Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259
46. Tamon C, Xiang J (2000) On the boosting pruning problem. In: Machine learning: ECML 2000. Springer,

Berlin, pp 404–412
47. Partalas I, Tsoumakas G, Vlahavas I (2009) Pruning an ensemble of classifiers via reinforcement learning.

Neurocomputing 72:1900–1909
48. Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship

with the ensemble accuracy. Mach Learn 51:181–207
49. Martinez-Munoz G, Hernández-Lobato D, Suárez A (2009) An analysis of ensemble pruning techniques

based on ordered aggregation. IEEE Trans Pattern Anal Mach Intell 31:245–259
50. Assaad M, Boné R, Cardot H (2008) A new boosting algorithm for improved time-series forecasting with

recurrent neural networks. Inf Fusion 9:41–55
51. Yahoo Finance. http://finance.yahoo.com/. Accessed 7 July 2015
52. CrossValidated. http://stats.stackexchange.com/questions/14099/using-k-fold-cross-validation-for-time

-series-model-selection. Accessed 7 July 2015
53. Neto A, Calvalcanti G, Ren TI (2009) Financial time series prediction using exogenous series and com-

bined neural networks. In: International joint conference on neural networks, 2009. IJCNN 2009, pp
149–156

54. Root-mean-square deviation. http://en.wikipedia.org/wiki/Root-mean-square_deviation.Accessed 7 July
2015

55. Mean absolute percentage error. http://en.wikipedia.org/wiki/Mean_absolute_percentage_error.
Accessed 7 July 2015

123

http://finance.yahoo.com/
http://stats.stackexchange.com/questions/14099/using-k-fold-cross-validation-for-time-series-model-selection
http://stats.stackexchange.com/questions/14099/using-k-fold-cross-validation-for-time-series-model-selection
http://en.wikipedia.org/wiki/Root-mean-square_deviation
http://en.wikipedia.org/wiki/Mean_absolute_percentage_error

	Selected an Stacking ELMs for Time Series Prediction
	Abstract
	1 Introduction
	2 Preview with ELM
	3 The Proposed Pruned Stacking ELMs (PS-ELMs) Algorithm for Time Series Prediction
	3.1 Stacked Generalization
	3.2 ReTSP-Trend Pruning Technique
	3.3 The Proposed Pruned Stacking ELMs (PS-ELMs) Algorithm for Time Series Prediction

	4 Empirical Analysis and Evaluation
	4.1 Research Data and Data Pre-processing
	4.2 Performance Measurement
	4.2.1 RMSE: Root Mean Square Error
	4.2.2 MAPE: Mean Absolute Percentage Error
	4.2.3 POCID: Prediction on Change in Direction

	4.3 Ensemble Construction and Experimental Results

	5 Conclusions
	Acknowledgments
	References




