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Abstract Based on the recently proposed twin support vector machine and twin bounded
support vector machine, in this paper, we propose a novel twin support vector machine
(NTSVM) for binary classification problems. The significance of our proposed NTSVM
is that the objective function is changed in the spirit of regression, such that hyperplanes
separate as much as possible. In addition, the successive overrelaxation technique is used
to solve quadratic programming problems to speed up the training process. Experimental
results obtained on several artificial and UCI benchmark datasets show the feasibility and
effectiveness of the proposed method.

Keywords Pattern recognition · Binary classification · Twin support vector machine ·
Successive overrelaxation technique (SOR)

1 Introduction

Image classification is one of the most fundamental problems in computer vision and pat-
tern recognition, which is to assign one or more category labels to an image. However,
image classification is a complex process that may be affected by many factors. There are
several stages in image classification such as preprocessing, sample selection, feature extrac-
tion and classifier design and so on. In those stages, feature extraction and classifier design
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are especially important. In feature extraction, there are a lot of different methods, such
as PCA [1], LDA [2], 2DPCA [3], STL [4] and GTDA [5] and so on. Actually, varied
features describe different properties of the same image. In order to make full use of vari-
ous features, multi-view learning [6,7] and multiple feature fusion [8,9] have been widely
studied. In classifier design, support vector machine (SVM) [10,11], as a powerful tool for
pattern classification and regression, has been widely used to a variety of real-world prob-
lems such as pattern recognition [12,13], bioinformatics [14], text categorization [15,16]
and financial applications [17]. Moreover, some related works with regard to SVM are also
worthy of attention [18–20]. In order to improve the performance of SVM-based relevance
feedback in image retrieval, the asymmetric bagging and random subspace for SVM was
proposed [18]. In order to address the problems in LR-based (Laplacian regularization)
image annotation, Liu and Tao [19] proposed a multiview framework of SVM for image
annotation. Furthermore, aiming to solve the class separation problem, Tao et al. [20] dis-
cussed subspace learning for SVM. However, SVM is computationally expensive because
its solution follows from solving a quadratic programming problem (QPP) with numerous
constraints, especially when handing large-scale data. In addition, SVM seeks only a sep-
arating plane such that it cannot well cope with the complex XOR problems. Recently,
in order to improve the generalization ability and computational speed of SVM, multi-
hyperplane support vector machine, which seeks two nonparallel hyperplanes instead of
one hyperplane in SVM, has been widely investigated. In 2006, Mangasarian and Wild [21]
proposed a generalized eigenvalue proximal support vector machine (GEPSVM), which is
originally motivated to solve XOR problem and reduce the computing time of SVM. In
this approach, training points of each class are proximal to one of two nonparallel hyper-
planes. Next year, Jayadeva, Khemchandani and Chandra [22] proposed another nonparallel
hyperplane classifier named twin support vector machine (TWSVM), which aims at seeking
two nonparallel hyperplanes such that each hyperplane is close to one of the two classes
and is as far as possible from the other simultaneously. Experimental results in [22] and
[23] have shown the effectiveness of TWSVM over both standard SVC and GEPSVM, at
the same time, TWSVM can also well deal with the XOR problems. Therefore, from then
on, the methods of constructing the nonparallel hyperplanes support vector machine have
been extensively studied, such as twin bounded support vector machine (TBSVM) [24],
TPMSVM [25], RTSVM [26], STSVM [27], PPSVC [28] and NHSVM [29] and so on.
Similarly, the methods of finding two projection directions [30–34] and two hyperspheres
[35,36] also have been widely investigated, such as MVSVM [30], PTSVM [31] and TSVH
[36].

However, the above nonparallel hyperplane methods [22–24,29] are almost in seeking
two nonparallel hyperplanes wT

1 x +b1 = 0, wT
2 x +b2 = 0 and minimizing ||Aw1 + e1b1||22

or ||Bw2 + e2b2||22. Inspired by [37], in this paper, we propose a novel twin support vector
machine, which aims at seeking two hyperplanes wT

1 x + b1 = 1, wT
2 x + b2 = −1 and

minimizing ||Aw1+e1b1−e1||22 or ||Bw2+e2b2+e2||22 such that the twohyperplanes separate
as much as possible. Furthermore, a regularization term is used to overcome overfitting and
singularity problem, which is similar to [24]. Thus, the structural risk minimization principle
is implemented.

The rest paper is organized as follows. Section 2 gives a brief overview of TWSVM and
TBSVM. Section 3 proposes our linear novel twin support vector machine (NTSVM) and
extends to nonlinear NTSVM. Experimental results are described in Sect. 4, and finally,
conclusions are given in Sect. 5.
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2 Brief Reviews of TWSVM and TBSVM

2.1 TWSVM

Consider a binary classification problem ofm1 data points in positive class andm2 data points
in negative class. Suppose that all of the data points in positive class are denoted by a matrix
A ∈ Rm1×n and the data points in negative class are denoted by a matrix B ∈ Rm2×n . Ai is
the i-th row of A which is a row vector in Rn . For linear case, TWSVM [22] determines two
nonparallel hyperplanes:

wT
1 x + b1 = 0 and wT

2 x + b2 = 0 (1)

where wi ∈ Rn, bi ∈ R, i = 1, 2. The TWSVM aims at seeking a pair of nonparallel
hyperplanes for the two classes such that each hyperplane is close to one of the two classes
and is at a distance at least one from the other class. The primal problems of TWSVM are

min
w1,b1,ξ2

1

2

∣
∣
∣
∣
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∣
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Aw1 + e1b1

∣
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2
+ c1e

T
2 ξ2 s.t. − (Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0 (2)

min
w2,b2,ξ1
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∣
∣
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Bw2 + e2b2
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∣
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∣

∣
∣
∣
∣

2

2
+ c2e

T
1 ξ1 s.t. (Aw2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0 (3)

where c1 and c2 are the positive penalty parameters, ξ1 and ξ2 are nonnegative slack variables,
e1 and e2 are vectors of all ones of appropriate dimensions. By introducing the Lagrangian
multipliers, the Wolfe dual of quadratic programming problems (QPPs) (2) and (3) can be
represented as follows, respectively.

max
α

eT2 α − 1

2
αT G(HT H)−1GTα s.t. 0 ≤ α ≤ c1e2 (4)

max
γ

eT1 γ − 1

2
γ T H(GTG)−1HT γ s.t. 0 ≤ γ ≤ c2e1 (5)

where G = [B e2], H = [A e1] and α ∈ Rm2 , γ ∈ Rm1 are Lagrangian multipliers.
The nonparallel hyperplanes (1) can be obtained from the solutions α and γ to the opti-

mization problems (4) and (5) by

v1 = −(HT H)−1GTα, where v1 =
[

wT
1 b1

]T

, (6)

v2 = (GTG)−1HT γ, where v2 =
[

wT
2 b2

]T

, (7)

A new data point x ∈ Rn is then assigned to the positive class W1 or negative class W2,
depending on which of the hyperplanes in (1) it lies closer to, i.e.

x ∈ Wi , i = arg min
i=1,2

∣
∣
∣
∣
wT
i x + bi

∣
∣
∣
∣

(8)

where | · | is the absolute value.
2.2 TBSVM

Following the basic idea of SVC and TWSVM, TBSVM [24] also seeks a pair of nonparallel
hyperplanes such that each hyperplane is proximal to the data points of one class and far
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from the data points of another class. The main different between TBSVM and TWSVM is
that the structural risk minimization principle is implemented by adding the regularization
term in TBSVM. The primal problems of TBSVM are

min
w1,b1,ξ2
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(

||w1||2 + b21
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s.t. − (Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0 (9)
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s.t. (Aw2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0 (10)

where c1 and c2 are the positive penalty parameters, c3 and c4 are the positive trade-off
parameters, ξ1 and ξ2 are nonnegative slack variables, e1 and e2 are vectors of all ones of
appropriate dimensions. By introducing the Lagrangian multipliers, the Wolfe dual of QPPs
(9) and (10) can be represented as follows.

max
α

eT2 α − 1

2
αT G

(

HT H + c3 I

)−1

GTα s.t. 0 ≤ α ≤ c1e2 (11)

max
γ

eT1 γ − 1

2
γ T H

(

GTG + c4 I

)−1

HT γ s.t. 0 ≤ γ ≤ c2e1 (12)

where G = [B e2], H = [A e1], I is an identity matrix andα ∈ Rm2 , γ ∈ Rm1 are
Lagrangian multipliers.

The nonparallel hyperplanes (1) can be obtained from the solutions α and γ to the opti-
mization problems (11) and (12) by

v1 = −
(

HT H + c3 I

)−1

GTα, where v1 =
[

wT
1 b1

]T

(13)

v2 =
(

GTG + c4 I

)−1

HT γ, where v2 =
[

wT
2 b2

]T

(14)

Once the solutions [wT
1 b1] and [wT

2 b2] to (11) and (12) are obtained from (13) and (14),
a new data point x ∈ Rn is assigned to the positive classW1 or negative classW2, depending
on which of the hyperplanes in (1) it lies closer to, i.e.

x ∈ Wi , i = argmin
i=1,2

|wT
i x + bi |
||wi || (15)

where | · | is the absolute value.

3 Novel Twin Support Vector Machines

3.1 Linear NTSVM

Now, let us construct our linear NTSVM. Following the idea of PSVM [37] and TBSVM
[24], we propose our method, which seeks two nonparallel hyperplanes:

wT
1 x + b1 = 1 and wT

2 x + b2 = −1 (16)
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by considering the following primal problems.

min
w1,b1,ξ2
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where c1 and c2 are the positive penalty parameters, c3 and c4 are the positive trade-off
parameters, ξ1 and ξ2 are nonnegative slack variables, e1 and e2 are vectors of all ones of
appropriate dimensions.

Then,we discuss the difference between the primal problems of TBSVMand ourNTSVM,
bycomparingoptimizationproblems (9) and (17).Obviously,minimizing ||Aw1+e1b1−e1||22
in (17) instead of minimizing ||Aw1 + e1b1||22 in (9) means our NTSVM aims to obtain
[wT

1 b1] such that the positive data points are proximal to the hyperplanewT
1 x + b1 = 1

and the negative data points are far away from it at the same time. Based on this change,
our optimization problem will be similar to regression problem, i.e., we generate a function
f1(x) = wT

1 x + b1 to fit the positive class label +1. Meanwhile, we find another function
f2(x) = wT

2 x + b2 to fit the negative class label −1. In addition, similar to TBSVM, our
NTSVM also adds a regularization term to the objective function in (17). Thus, the structural
risk minimization principle is considered.

In order to get the solutions to problems (17) and (18), we need to derive their dual
problems. For (17), by introducing the Lagrangian multipliers, the Lagrangian function is
given by

L(w1, b1, ξ2, α, β) = 1

2
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||w1||22 + b21
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2
+ c1e

T
2 ξ2

−αT
[

− (Bw1 + e2b1) + ξ2 − e2

]

− βT ξ2 (19)

where α ∈ Rm2 and β ∈ Rm2 are the vectors of Lagrangian multipliers. By using Karush-
Kuhn-Tucker (KKT) conditions, we can get

∇w1 = c3w1 + AT (Aw1 + e1b1 − e1) + BTα = 0 (20)

∇b1 = c3b1 + eT (Aw1 + e1b1 − e1) + eT2 α = 0 (21)

∇ξ2 = c1e2 − α − β = 0 (22)

−(Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0 (23)

αT (Bw1 + e2b1 − ξ2 + e2) = 0, βT ξ2 = 0 (24)

α ≥ 0, β ≥ 0 (25)

Since β ≥ 0, from (22) and (25), we can get

0 ≤ α ≤ c1e2 (26)

Let G = [B e2], H = [A e1], v1 = [wT
1 b1]T , (20) and (21) imply that

(

HT H + c3 I

)

v1 − HT e1 + GTα = 0 (27)
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Thus, we can get the augmented vector

v1 =
(

HT H + c3 I

)−1[

HT e1 − GTα

]

(28)

where I is an identity matrix. Then putting (28) into (19) and using (20–22), omitting the
constant term, we obtain the Wolfe dual problem of (17) as follows

max
α

[

eT2 + eT1 H

(

HT H + c3 I

)−1

GT
]

α − 1

2
αT G

(

HT H + c3 I

)−1

GTα

s.t. 0 ≤ α ≤ c1e2 (29)

In the same way, we can obtain the Wolfe dual problem of (18) as follows

max
γ

[

eT1 + eT2 G

(

GTG + c4 I

)−1

HT
]

γ − 1

2
γ T H

(

GTG + c4 I

)−1

HT γ

s.t. 0 ≤ γ ≤ c2e1 (30)

where α ∈ Rm2 , γ ∈ Rm1 are Lagrangian multipliers.
The nonparallel hyperplanes (16) can be obtained from the solutions α and γ to the

optimization problems (29) and (30) by

v1 =
(

HT H + c3 I

)−1[

HT e1 − GTα

]

, where v1 =
[

wT
1 b1

]T

(31)

v2 =
(

GTG + c4 I

)−1[

− GT e2 + HT γ

]

, where v2 =
[

wT
2 b2

]T

(32)

Once v1 and v2 are obtained from (31) and (32), the two nonparallel hyperplanes (16) are
known. A new data point x ∈ Rn is then assigned to the positive class W1 or negative class
W2, depending on which of the hyperplanes in (16) it lies closer to, i.e.

x ∈ Wi , i = argmin
i=1,2
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}

(33)

where | · | is the absolute value.
3.2 Nonlinear NTSVM

In this subsection, we show that our NTSVM can be extended to nonlinear case. Here, we
consider the following kernel-generated hyperplanes

K (xT ,CT )w1 + b1 = 1 and K (xT ,CT )w2 + b2 = −1 (34)

where C = [A B] ∈ R(m1+m2)×n and K is an appropriate kernel. Similar to linear case, the
nonlinear optimization problems can be expressed as

min
w1,b1,η2
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s.t.

(

K (A,CT )w2 + e1b2

)

+ η1 ≥ e1, η1 ≥ 0 (36)

By using the Lagrangian method and KKT conditions, we can obtain Wolfe dual problems
as follows

max
α

[

eT2 + eT1 H̃

(

H̃ T H̃ + c3 I

)−1

G̃T
]

α − 1

2
αT G̃

(

H̃ T H̃ + c3 I

)−1

G̃Tα

s.t. 0 ≤ α ≤ c1e2 (37)

max
γ

[

eT1 + eT2 G̃

(

G̃T G̃ + c4 I

)−1

H̃ T
]

γ − 1

2
γ T H̃

(

G̃T G̃ + c4 I

)−1

H̃ T γ

s.t. 0 ≤ γ ≤ c2e1 (38)

where G̃ = [K (B,CT ) e2], H̃ = [K (A,CT ) e1]. From (35)-(38), and the augmented
vectors v1 = [wT

1 b1]T and v2 = [wT
2 b2]T can be obtained by

v1 =
(

H̃ T H̃ + c3 I

)−1[

H̃ T e1 − G̃Tα

]

(39)

v2 =
(

G̃T G̃ + c4 I

)−1[

− G̃T e2 + H̃ T γ

]

(40)

Once the augmented vector v1 and v2 are obtained from (39) and (40), the two nonparallel
hyperplanes (34) are known. A new data point x ∈ Rn is then assigned to the positive class
W1 or negative class W2, depending on which of the hyperplanes in (34) it lies closer to, i.e.

x ∈ Wi , i = argmin
i=1,2

{ ∣
∣
∣
∣
wT
1 K (xT ,CT ) + b1 − 1

∣
∣
∣
∣
,

∣
∣
∣
∣
wT
2 K (xT ,CT ) + b2 + 1

∣
∣
∣
∣

}

(41)

where | · | is the absolute value.
3.3 Implementation

In this subsection, we discuss the implementation of our proposed NTSVM. In our NTSVM,
the dual problem can be rewritten as the following unified form

min
α

1

2
αT Qα − f Tα

s.t. 0 ≤ α ≤ ce (42)

where Q is a positive definite matrix and f is a vector. For example, if we choose Q =
G(HT H+c3 I )−1GT and f = [eT2 +eT1 H(HT H+c3 I )−1GT ]T , the problem (42) becomes
the problem (29). Similarly, the problem (42) becomes problem (37), when we choose Q =
G̃(H̃ T H̃ + c3 I )−1G̃T and f = [eT2 + eT1 H̃(H̃ T H̃ + c3 I )−1G̃T ]T .
Algorithm 1. SOR Algorithm
Step 1. Select the parameter t ∈ (0, 2) and the initial vector α0, set k = 0;
Step 2. Compute αk+1 by αk+1 = (αk − t · D−1(Qαk − f + L(αk+1 − αk)))#; where Q
and f are set according to (29), (30), (37) and (38). (u)# denotes the 2-norm projection on
the feasible region, that is

((u)#)i =
⎧

⎨

⎩

0, if ui ≤ 0
ui , if 0 < ui < c
c, if ui ≥ c
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And define L + D + LT = Q, where L and D are the strictly lower triangular matrix and
the diagonal matrix, respectively;
Step 3. Stop if ||αk+1 − αk || < ε, where ε is desired tolerance; else replace αk by αk+1, k
by k + 1 and go to Step2.

In our proposed NTSVM, most of the computational cost is incurred in solving the dual
QPP (42). In order to solve the above QPP quickly, we use a very efficient optimization
technique called successive overrelaxation (SOR) algorithm,which can be seen in [24,29,38].
SOR is an excellent QPP solver because it is able to deal with very large datasets that need not
reside in memory [38]. The experimental results in the following section will show that the
SOR technique has remarkable acceleration effect on our proposed NTSVM. Note that the
SOR technique can also be used in the original TBSVM [24] and NHSVM [29]. In practice,
for nonlinear NTSVM, if the number of training points in positive class or negative class is
large, then the rectangular kernel technique [39] can be applied to reduce the dimensionality
of (37) and (38).

4 Experimental Results

In order to evaluate the proposed NTSVM, we investigate its classification accuracies and
computational efficiencies on two artificial datasets, a number of real-world UCI benchmark
datasets and five NDC datasets. In the experiments, we focus on the comparison between
our proposed NTSVM and some state-of-the-art classifiers, e.g. GEPSVM [21], TWSVM
[22], TBSVM [24] and NHSVM [29]. All methods were implemented in MATLAB R2013a
on a personal computer (PC) with an Intel (R) Core (TM) processor (3.40GHz) and 4 GB
random-access memory (RAM). TBSVM, NHSVM and our proposed NTSVM are solved
by SOR algorithm. The eigenvalue problem in GEPSVM is solved by MATLAB function
‘eig.m’ and the QPP problems in TWSVM are solved by the optimization toolbox QP in
MATLAB. In our evaluation of the classifiers, we used “Accuracy” which is defined as
Accuracy = (TP+TN)/(TP+FP+TN+FN), where TP, TN, FP and FN are the number of true
positives, true negatives, false positives and false negatives, respectively. Note that all of these
classifiers contained different parameters, which were selected from the set {2−8, . . . , 28}
by employing the standard 10-fold cross-validation methodology [40]. The parameters used
with the different classifiers for linear case are listed in Table 1.

4.1 Toy Examples

In this subsection, two artificial datasets, including crossplane (XOR) and Ripley’s synthetic
datasets [41] have been used to show that our proposed NTSVM can deal with linearly
inseparable problems. Ripley’s synthetic dataset contains 250 training points and 1000 test
points. The average results of linear GEPSVM, TWSVM, TBSVM, NHSVM and our pro-
posed NTSVM on crossplane (XOR) dataset are reported in Table 2 and the average results

Table 1 The parameters for different classifiers for linear kernel

GEPSVM TWSVM TBSVM NHSVM NTSVM

δ (c1, c2, ε) (c1, c2, c3, c4) (c1, c2) (c1, c2, c3, c4)
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Table 2 Classification accuracy (%) on crossplane (XOR) datasets

Datasets GEPSVM TWSVM TBSVM NHSVM NTSVM

Acc ± Std (%) Acc ± Std (%) Acc ± Std (%) Acc ± Std (%) Acc ± Std (%)

Time (s) Time (s) Time (s) Time (s) Time (s)

Crossplane 99.00 ± 2.11 96.55 ± 1.57 97.80 ± 1.06 98.50 ± 2.42 99.00 ± 2.11

200 × 2 0.0003 0.0033 0.0043 0.0034 0.0183

Bold values indicate best accuracy

Table 3 Classification accuracy (%) on ripley datasets

Datasets GEPSVM TWSVM TBSVM NHSVM NTSVM

Acc % Acc % Acc % Acc % Acc %

Ripley 1000 × 2 84.80 86.40 87.20 90.20 89.20

Bold value indicates best accuracy
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Fig. 1 Crossplane and the hyperplanes of our proposed NTSVM

of nonlinear GEPSVM, TWSVM, TBSVM, NHSVM and our proposed nonlinear NTSVM
with Gaussian kernels on Ripley’s synthetic dataset are listed in Table 3.

From Table 2, we can observe that all method above can gain good performance on cross-
plane (XOR) problem and our proposed NTSVM get the best performance. From Table 3,
we can find that the accuracy of our proposed NTSVM is 89.20 %, which is little lower than
NHSVM but better than other methods. Figure 1 illustrates the crossplane (XOR) dataset and
hyperplanes of our proposed NTSVM. Ripley’s dataset and the hyperplanes of GEPSVM,
TWSVM, TBSVM, NHSVM and our proposed nonlinear NTSVM are shown in Fig. 2.

4.2 UCI Datasets

To further compare our proposedNTSVMwithGEPSVM,TWSVMandTBSVM,we choose
13 datasets from the UCI machine learning repository [42]. The numerical results of their
linear version are given in Table 4. We also list the mean accuracy for each of the classifiers
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Fig. 2 Ripley’s dataset and results of nonlinear methods on Ripley’s dataset

and the best accuracy is shown in boldface. According to the W-T-L summarization, we
can find that the accuracy of our proposed linear NTSVM is better than that of GEPSVM,
TWSVM and TBSVM on most of the datasets. For example, for the Australian dataset, the
accuracy of our NTSVM is 87.54 %, while that of GEPSVM is 85.65 %, TWSVM is 86.81
% and TBSVM is 86.96 %.
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Table 4 Ten-fold testing percentage accuracy of linear classifiers

Datasets GEPSVM TWSVM TBSVM NTSVM

Accuracy %
Time(s)

Accuracy %
Time(s)

Accuracy %
Time(s)

Accuracy %
Time(s)

Australian 85.65 ± 4.12 86.81 ± 4.07 86.96 ± 2.65 87.54±2.57

(690 × 14) 4.2621e−04 0.3891 0.4269 0.5505

BUPA liver 56.48 ± 7.81 69.53 ± 6.70 69.53 ± 9.45 70.45±4.98

(345 × 6) 3.2295e−04 0.0630 0.0338 0.1620

House votes 94.02 ± 3.95 95.18 ± 5.11 95.64 ± 2.96 95.86±2.62

(435 × 16) 4.6331e−04 0.0754 0.0569 0.1098

Heart-c 82.84 ± 5.80 85.17 ± 7.45 85.86±6.45 85.49±6.64

(303 × 14) 3.3979e−04 0.0210 0.0303 0.0848

Heart-Statlog 83.70 ± 5.30 84.81 ± 4.77 85.19 ± 4.28 85.56±4.43

(270 × 13) 3.5582e−04 0.0332 0.0456 0.0258

Ionosphere 79.18 ± 6.51 91.18 ± 5.42 91.16 ± 4.15 92.88±4.30

(351 × 34) 0.0014 0.0385 0.0183 0.0526

Monk2 58.08 ± 7.75 67.16 ± 7.62 67.17 ± 7.80 67.18±8.49

(432 × 7) 3.2721e−04 0.1620 0.1102 0.0416

Monk3 81.01 ± 6.06 87.49±7.42 81.71 ± 6.25 83.34 ± 3.38

(432 × 7) 2.1785e−04 0.0460 0.0697 0.1036

Musk 80.01 ± 4.60 85.91 ± 3.89 86.55 ± 3.48 88.23±5.44

(476 × 166) 0.0739 0.2313 0.1701 0.1554

Pima-Indian 76.43 ± 2.84 77.49 ± 5.10 78.00 ± 5.49 78.13±3.05

(768 × 8) 2.8757e−04 0.2740 0.2028 0.4703

Sonar 78.90 ± 7.41 78.76 ± 7.22 80.26 ± 9.50 80.79±9.39

(208 × 60) 0.0046 0.0315 0.0125 0.0667

Spect 79.40 ± 8.79 80.19 ± 6.97 81.28±7.24 80.93 ± 7.79

(267 × 44) 0.025 0.0632 0.0293 0.0680

Wpbc 78.87 ± 10.38 82.89 ± 5.23 82.95 ± 8.48 83.37±7.77

(198 × 34) 0.0013 0.1867 0.0668 0.0873

Mean Accuracy 78.04 82.51 82.48 83.06

W-T-L 13-0-0 12-0-1 11-0-2

Bold values indicate best accuracy

Table 5 displays the experimental results for nonlinear GEPSVM, TWSVM, TBSVM and

our NTSVM on the above chosen UCI datasets. The Gaussian kernel K (x, y) = e− ||x−y||2
2σ2

is used. The kernel parameter σ is obtained by searching in the range from 2−8 to 28. The
accuracy and the training CPU time for these methods are also listed. The results in Table 5
are similar to those in Table 4, and therefore confirm the observation above.

In order to compare the performance of different classifiers, the two-dimensional scatter
plots were used in [19,26,28,30]. The corresponding scatter plots are shown in Fig. 3 for
Australian UCI datasets with about 20 % of data points, where the coordinates (d+

i , d−
i ) are

the respective distances of a test point xi given in (33). In Fig. 3, the figures (a–d) are the
results obtained by GEPSVM, TWSVM, TBSVM and our NTSVM respectively.
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Table 5 Ten-fold testing percentage accuracy of nonlinear classifiers

Datasets GEPSVM TWSVM TBSVM NTSVM

Accuracy%
Time(s)

Accuracy%
Time(s)

Accuracy%
Time(s)

Accuracy%
Time(s)

Australian 86.38 ± 2.83 86.96 ± 4.27 87.10 ± 3.83 87.39±4.38

(690 × 14) 5.3616 0.6897 1.6723 1.1396

BUPA liver 70.47 ± 7.87 74.82 ± 5.75 73.55 ± 8.10 75.35±7.68

(345 × 6) 0.4689 0.2307 0.2391 0.1535

House votes 90.36 ± 5.49 95.87 ± 3.17 95.86 ± 1.80 96.32±1.95

(435 × 16) 1.0466 0.2210 0.4401 0.2831

Heart-c 81.82 ± 5.03 83.49 ± 4.15 85.51±3.76 84.82 ± 5.69

(303 × 14) 0.3666 0.1442 0.1916 0.1751

Heart-Statlog 82.96 ± 7.45 82.59 ± 8.74 84.07 ± 6.54 84.81±5.91

(270 × 13) 0.2488 0.1130 0.1916 0.0975

Ionosphere 87.75 ± 5.73 94.59 ± 2.84 95.72 ± 3.87 96.29±4.05

(351 × 34) 0.5045 0.1352 0.3562 0.2327

Monk2 84.46 ± 7.07 97.46±1.70 93.51 ± 3.07 96.06 ± 3.79

(432 × 7) 0.9839 0.2739 0.3823 0.4029

Monk3 92.36 ± 3.96 97.45 ± 1.72 97.47 ± 2.52 97.68±1.90

(432 × 7) 0.9985 0.1832 0.4620 0.3060

Musk 85.48 ± 7.08 94.77 ± 3.83 95.17 ± 1.74 95.38±1.33

(476 × 166) 1.7225 0.6172 0.9081 0.5824

Pima-Indian 74.61 ± 4.27 78.26 ± 5.83 78.39±3.31 78.24 ± 6.88

(768 × 8) 8.0461 0.6741 1.4226 0.9513

Sonar 86.55 ± 8.02 90.88 ± 4.72 90.95±9.10 90.90 ± 5.20

(208 × 60) 0.1152 0.0706 0.1194 0.1033

Spect 80.93 ± 4.76 82.78 ± 7.50 82.78 ± 6.08 83.90±4.28

(267 × 44) 0.2467 0.0823 0.1644 0.1473

Wpbc 79.76 ± 5.43 82.87 ± 6.24 82.34 ± 5.83 83.87±8.75

(198 × 34) 0.1109 0.0995 0.1260 0.0967

Mean Accuracy 83.38 87.91 87.88 88.54

W-T-L 13-0-0 11-0-2 10-0-3

Bold values indicate best accuracy

As we know, there are four parameters ci (i = 1, 2, 3, 4) and a kernel parameter σ in our
linear NTSVM and nonlinear NTSVM, respectively. We will analyze the effect of ci to linear
NTSVM and the effect of kernel parameter σ to nonlinear NTSVM. All the experiments
in this subsection will be carried out on four benchmark datasets: “Australian”, “House
votes”, “Heart-c” and “Ionosphere”. We first evaluate the influence of the parameters ci (i =
1, 2, 3, 4). In real experiments, for convenience, we assume c1 = c2 and c3 = c4 for each
dataset. The results are depicted in Fig. 4. As we can see, proper selection of parameters
ci will improve the performance of the classifier in a certain extent. We next illustrate the
relationship between kernel parameter σ and classification accuracy in the nonlinear case. To
analyze the effect of kernel parameterσ on the performance ofNTSVMfor the nonlinear case,
the comparison is carried out under the condition that the parameter ci are all selected as 1 for
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Fig. 3 Two-dimensional projection for test points from Australian dataset

convenience. To clarify the influence of the kernel parameter,we draw the parameter-accuracy
curves of above four datasets with parameter σ belongs to the set {2−8, 2−7, · · · , 27, 28}.
Based on the results in Fig. 5, we can see that the performance of NTSVM is closely related
to the chosen of kernel parameters.

4.3 NDC Datasets

In this subsection, we conducted experiments on some large datasets, generated using David
Musicants NDC Data Generator [43]. For experiments with NDC datasets, we fixed parame-
ters of all classifiers to be the same (i.e.ci = 1). The training time and accuracy are reported
in Tables 6 and 7, respectively. Table 6 shows the comparison results for linear TWSVM,
TBSVM, NHSVM and our NTSVM onNDC datasets. In Table 6, it is not hard to see that our
NTSVMobtains the comparable or better accuracies and performs faster than other classifiers
on most datasets.

For nonlinear case, Table 7 shows the comparison results of computing times and accu-
racies of all four classifiers considered on several NDC datasets with Gaussian kernel. For
NDC-2k, NDC-3k and NDC-5k datasets, the rectangular Generator [39] is applied by using
10%of total data points. The results on these datasets show that ourNTSVMandTBSVMare
much faster than TWSVM and NHSVM. This is because that the QPP problems in TWSVM
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Fig. 4 Relationship of parameters ci and classification accuracy

are directly solved by the optimization toolbox QP in MATLAB, while our NTSVM and
TBSVM are solved by SOR algorithm. Although the QPP problem in NHSVM is also solved
by SOR algorithm, the computing time is more than NTSVM and TBSVM. The main reason
is that the size of QPP in NHSVM is large than the size of QPPs in NTSVM and TBSVM.
Tables 6 and 7 demonstrate the good generalization ability and efficiency of our NTSVM
when dealing with large-scale problems.

5 Conclusions

For binary classification, an improved twin support vector machine (NTSVM) based on
TWSVM is proposed in this paper. Unlike TWSVM, our proposed NTSVM seeks two non-
parallel hyperplaneswT

1 x+b1 = 1 andwT
2 x+b2 = −1. Similar to TBSVM, a regularization

term is used to overcome overfitting and singularity problem. In addition, SOR technique
is utilized to speed up training process. Experimental results illustrate that our NTSVM is
feasible and effective. It should be pointed out that there are four parameters in our NTSVM,
so the parameter selection is a practical problem and should be investigated in the future.
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Fig. 5 Relationship of kernel parameters σ and classification accuracy

Table 6 Comparison on NDC datasets for linear classifiers

Datasets TWSVM TBSVM NHSVM NTSVM

Train / Test (%) Train / Test (%) Train / Test (%) Train / Test (%)

Time (s) Time (s) Time (s) Time (s)

NDC-500 89.00 / 82.00 88.60 / 84.00 88.80 / 80.00 88.80 / 86.00

0.1709 0.1137 0.2830 0.1028

NDC-1k 86.50 / 89.00 86.50 / 89.00 86.30 / 85.00 86.30 / 89.00

0.6854 0.6094 1.0363 0.5910

NDC-2k 87.15 / 82.50 86.90 / 82.50 87.10 / 78.00 86.85 / 83.00

2.7513 2.5243 7.3447 2.4563

NDC-3k 87.03 / 80.67 86.93 / 81.33 86.87 / 80.67 86.90 / 81.00

7.9149 7.3595 13.2583 7.2345

NDC-5k 86.02 / 83.20 86.10 / 83.20 85.92 / 84.40 86.14 / 83.20

25.6839 21.2434 58.4534 20.8603
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Table 7 Comparison on NDC datasets for nonlinear classifiers

Datasets TWSVM TBSVM NHSVM NTSVM

Train / Test (%) Train / Test (%) Train / Test (%) Train / Test (%)

Time (s) Time (s) Time (s) Time (s)

NDC-500 100 / 90.00 91.60 / 88.00 90.20 / 84.80 91.60 / 88.00

0.5279 0.2629 0.3974 0.1643

NDC-1k 91.80 / 89.00 86.60 / 84.00 85.80 / 84.00 86.00 / 89.00

2.1009 0.7197 0.8276 0.6810

NDC-2k 97.95 / 91.50 88.80 / 85.00 88.55 / 83.50 89.05 / 84.50

6.1606 2.7652 5.9162 2.3355

NDC-3k 98.08 / 92.33 87.87 / 82.67 88.03 / 84.67 88.97 / 83.33

12.6107 6.8310 13.2398 5.8870

NDC-5k 99.62 / 95.20 88.56 / 85.00 88.66 / 86.20 88.48 / 85.80

36.9999 27.4101 49.9451 26.6853

Furthermore, expanding the applications of our NTSVM in practical scenarios and extending
our NTSVM to multi-view learning [44] are also interesting.
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