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Abstract We address the problem of unsupervised visual domain adaptation for transfer-
ring category models from one visual domain or image data set to another. We present a new
unsupervised domain adaptation algorithm based on subspace alignment. The core idea of
our approach is to reduce the discrepancy between the source domain and the target domain
in a latent discriminative subspace. Specifically, we first generate pseudo-labels for the target
data by applying spectral clustering to a cross-domain similarity matrix, which is built from
sparse coefficients found in a low-dimensional latent space. This coarse alignment between
the two domains exploits the assumption that the collection of data of different classes from
both domains can be viewed as samples from a union of low-dimensional subspaces. Then,
we create discriminative subspaces for both domains using partial least squares correla-
tion. Finally, a mapping which aligns the discriminative source subspace into the target one
is learned by minimizing a Bregman matrix divergence function. Experimental results on
benchmark cross-domain visual object recognition data sets and cross-view scene classifica-
tion data sets demonstrate that the proposed method outperforms the baselines and several
state-of-the-art competing methods.

Keywords Unsupervised domain adaptation · Sparse subspace clustering ·
Partial least square correlation · Subspace alignment

1 Introduction

Traditional learning based image classification algorithms rely heavily on the assumption
that data used for training and testing are drawn from the same distribution. However,
many real-world applications challenge this assumption. For a typical object recognition
task, the labeled training data are often obtained from well-established object database such
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Fig. 1 Dataset bias for visual recognition. a Example images from BACK-PACK category in Caltech-256,
Amazon, Webcam and DSLR [3]. b Example images from RIVER and INDUSTRIAL categories in two
ground view scene datasets Scene-15 [4] and SUN database [2] and two overhead view scene datasets 19-class
satellite scene dataset [5] and UCMERCED aerial scene dataset [6]

as Caltech-256 [1] while the testing data may be street daily shots acquired by mobile
cameras. The same object model in both domains is subject to arbitrary shifts due to a
combination of factors including different views, illuminations, object location and pose,
resolutions and background clutter. For a more challenging cross view scene classifica-
tion task, we want to transfer the semantic knowledge of scene models learned from rich
annotated ground view images such as SUN database [2] to overhead view aerial or satel-
lite scene images where the scarce of semantic annotations impedes the understanding of
remote sensing images (see Fig. 1 for the dataset bias for the same set of object and scene
categories).
Recent studies have demonstrated a significant degradation in the performance of state-of-

the-art image classifiers under mismatched training and testing conditions [7]. Visual domain
adaptation aims to address the problem of transferring object models or scene models from
one visual domain to another. Depending on the availability of labeled training examples
from the target domain, two scenarios are often differentiated: (i) the unsupervised setting
where the training data consists of labeled source data and unlabeled target data and (ii) the
semi-supervised setting where a large number of labels are available for the source domain
and only a few labels are provided for the target domain. In this paper, we focus on the
unsupervised case where the common practice of discriminative training is not applicable.
Without target labels, it is not even clear how to define the right discriminative loss on the
target domain.

In this letter, we introduce a new unsupervised visual domain adaptation algorithm based
on subspace alignment. The contributions of our approach are twofold: (i) we propose to
roughly align the two domains using sparse subspace clustering. Cross-domain sparse sub-
space clustering provides a natural way of passing down the label information from the source
domain to the target domain and is robust to noise and outliers. (ii) we present a discrimina-
tive subspace alignment algorithm which maximizes the correlation between data and their
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labels in the projected subspace and minimizes the data divergence by transforming source
data to the target aligned source subspace.

The rest of this letter is organized as follows. Section 2 reviews related work and Sect. 3
introduces themotivation of ourmethod. In Sect. 4, a detailed description of the discriminative
sparse subspace clustering and alignment is presented. Section 5 reports the experimental
results. Section 6 presents the discussion. Finally, Sect. 7 concludes the paper.

2 Related Work

Techniques for building classifiers that are robust to mismatched distributions have been
investigated under the names of domain adaptation, covariate shift, or transfer learning.
Recently, considerable effort has been devoted to domain adaptation in computer vision
and machine learning communities. Several reviews can be found in [8–11]. Existing visual
domain adaptation methods either try to find a common feature space where the data diver-
gence between the source domain and the target domain can be significantly reduced or
explicitly learn a new classifier model which minimizes the generalization error in the target
domain.

Techniques that modify the representation of the data attempt to adjust the distributions
of either the source or the target data, or both, to ultimately obtain a well-aligned feature
space. In particular, subspace based visual domain adaptation methods have demonstrated
good performance. Si et al. [12] introduced the Bregman divergence based regularization
to several popular subspace learning algorithms for cross-domain face recognition and text
categorization. Tuia et al. [13] proposedmanifold alignment of different modalities of remote
sensing images. Pan et al. [14] introduced transfer component analysis, which tries to learn
some transfer components across domains in a reproducing kernel Hilbert space using max-
imum mean discrepancy. In [15], Chang transforms the source data into an intermediate
representation such that each transformed source sample can be linearly reconstructed by the
target samples. In [16], Shao et al. present a low-rank transfer subspace learning technique
which exploits the locality aware reconstruction in a similar way to manifold learning. In
[17], Gopalan et al. generate intermediate representations in the form of subspaces along the
geodesic path connecting the source subspace and the target subspace on theGrassmannman-
ifold. In [3], Gong et al. propose a geodesic flow kernel which models incremental changes
between the source and target domains. In both [3] and [17], a set of intermediate subspaces
are used to model the domain shift. Baktashmotlagh et al. [18] propose to learn a projection
of the data to a low-dimensional latent space where the distance between the empirical distri-
butions of the source and target samples is minimized. Fernando et al. [19] propose to align
PCA based source subspace and PCA target subspace directly. Their method seeks a domain
invariant feature space by learning a mapping function which aligns the source subspace with
the target one. The solution of the corresponding optimization problem can be obtained in a
simple closed form, leading to an extremely fast algorithm.

Previous research [3,17–19] suggests that partial least squares (PLS) is preferred over
other supervised dimensionality reduction techniques for subspace based domain adaptation
when label information is available. PLS locates and emphasizes group structure in the data
and is closely related with canonical correlation analysis (CCA) and linear discriminant
analysis (LDA). The PLS family consists of PLS correlation (PLSC) (also sometimes called
PLS-SVD), PLS regression (PLSR) and PLS path modeling (PLS-PM). In this letter, we use
PLSC to model the correlation between data samples and their labels.
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3 Motivation

As suggested by [20], a reduction of the data distribution divergence between the source
domain and the target domain is required to adapt well. From a mutual information point
of view, let H(χS) denotes the entropy of the source data and H(χS, χT ) denotes the cross
entropy between the source data and the target data, the mutual information between the two
domains can then be given as follows:

MI (χS;χT ) = H(χS) + H(χT ) − H(χS, χT )

= H(χT ) − DKL (χS ||χT ) (1)

According to Eq. (1), if we want to maximize the mutual information between the source
distribution and the target distribution, we need to simultaneously increase the target entropy
and reduce the data divergence between the two domains. If we project data from all domains
to a target subspace, it will increase the term H(χT ) and hence the mutual information. It will
further improve the classification performance if a discriminative target subspace is used. For
cross-domain data discrepancy reduction in low-dimensional subspaces, subspace alignment
[19] provides a simple but effective framework for unsupervised scenario.However, it projects
all data into a PCA based target subspace, which is not optimal for classification tasks. We
aim to create a discriminative target subspace when no labels are available from the target
domain and project all data from both domains into the generated subspace to minimize the
data divergence.

Despite the shift that has occurred, samples belonging to the same category from both
domains can be well represented by a low-dimensional subspace of the high-dimensional
ambient space. The collection of data frommultiple classes lies in a union of low-dimensional
subspace. Cross-domain subspace clustering provides a natural way of passing down the
labels from the source data to the target data, which can then be exploited for discriminative
target subspace creation. Sparse representation and low-rank approximation based subspace
clustering methods [21,22] have gained attention in recent years as they can handle noise and
outliers in data, and they do not need to know the dimensions and the number of subspaces
a priori.

4 Discriminative Subspace Alignment

4.1 Cross-Domain Subspace Clustering

We adopt the latent space sparse subspace clustering algorithm [21] for cross-domain sub-
space clustering. Let X = [x1, . . . , xN ] ∈ RD×N be a collection of N samples drawn from a
union of n linear subspaces S1∪ S2∪· · ·∪ Sn of dimensions {d�}n�=1 in RD . LetX� ∈ RD×N�

be a submatrix of X of rank d� with N� > d� points that lie in S�. It is easy to see that each
point in X can be efficiently represented by a linear combination of at most d� other points
in X. That is, one can represent xi as

xi = Xci , cii = 0, ‖ci‖0 ≤ d� (2)

where ci = [ci1, ci2, . . . , ci N ]T ∈ RN are the coefficients. For sparse subspace clustering,
the following minimization problem is solved to obtain the coefficients:

min ‖c‖1 s.t.xi = Xci , cii = 0 (3)
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Let P ∈ Rd×D denotes a linear transformation that maps signals from the original space
RD to a latent output space of dimension d , latent space sparse subspace clustering learns
the mapping and finds the sparse codes simultaneously by minimizing the following cost
function:

[P∗,C∗] = min
P,C

J (P,C,X), s.t. PPT = I, diag(C) = 0 (4)

J(P,C,X) = ||C||1 + λ1||PX − PXC||2F + λ2||X − PTPY||2F (5)

where X = [XS;XT ] ∈ RD×N is the multi-class data from both domains, C ∈ RN×N is
the sparse coefficient matrix, λ1 and λ2 are non-negative constants that control sparsity and
regularization. The first two terms promote sparsity of data in the latent subspace. The second
term ensures that the projection preserves the main statistics of the data.

The problem can be efficiently solved by using the classical alternating direction method
of multiplier. Once C is found, spectral clustering is applied on the affinity matrix W =
|B| + |C|T to obtain the segmentation of the data. Each sample from the target domain can
then be assigned a pseudo-label by majority voting of source sample labels in each cluster.

4.2 Discriminative Subspace Creation

Let XT denotes a NT by D data matrix from target domain where the rows are observations
and the columns are variables and YT denotes the corresponding NT by C pseudo-label
matrix coded in the following way:

YT =

⎛
⎜⎜⎜⎝

1n1 0n1 ... 0n1
0n2 1n2 ... 0n2
...

...
. . .

...

0nc 0nc ... 1nc

⎞
⎟⎟⎟⎠

NT ×C

(6)

where 1k×1 is a k × 1 vector of all ones and likewise 0k×1 is a k × 1 vector of all zeros, C
is the number of categories common to both domains. Each column of XT is z-normalized
(i.e. of zero mean and unit standard deviation). The correlation matrix is then computed
as: RT = YT

TXT .The SVD of RT decomposes it into three matrices: RT = UT�VT
T .The

subspace basis for XT is obtained as: LXT = XTVT . Similarly, we use PLSC to create a
discriminative source subspace LXS .

4.3 Discriminative Subspace Alignment

A mapping function M ∈ Rd×d that transforms the source subspace LXS into the target
subspace LXT is learned by minimizing the following Bregman matrix divergence:

F(M) = ||LXSM − LXT ||2F (7)

where || · ||2F is the Frobenius norm. Because the Frobenius norm is invariant to orthonormal
operations, the objective function can be written as:

M∗ = argminM ||LXSM − LXT ||2F
= argminM ||L−1

XS
LXSM − L−1

XS
LXT ||2F

= argminM ||M − L−1
XS

LXT ||2F (8)
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The optimal M∗ is obtained as M∗ = L−1
XS

LXT = LT
XS

LXT and it transforms the source
subspace coordinate system into the target subspace coordinate system by aligning the source
basis vectors with the target ones. When the source and target domains are the same, and
thenM∗ is the identity matrix. The pseudo-code of the proposed unsupervised discriminative
subspace alignment algorithm is presented in Algorithm 1.

Algorithm 1 Discriminative Subspace Alignment 
Input: Source data SX , source labels SY , target data TX , sparsity level 1λ , regularization parameter 2λ .
Step 1: *

1 2( , , , )T S T Scross domain clustering λ λ←Y [X ;X ] Y ;
Step 2: ( , )

S S SPLSC←XL X Y and *( , )
T T TPLSC←XL X Y ;

Step 3: Transform source data by
~

S S T
S S= T

X X XX X L L L ;

Step 4: Transform target  data by 
~

T
T T= XX X L ;

Step 5: Predict TY by
~ ~

( , , )S TSNN classifier− X Y X .
Output: Predicted target labels TY .

5 Experimental Results

We evaluate our methods in the context of cross-domain visual object recognition and cross-
view scene classification. All baseline methods and other competing unsupervised domain
adaptation methods project the original high-dimensional feature to a new feature space
where a nearest neighbor (NN) classifier is trained on the labeled source data and tested on
the unlabeled target data. NN is chosen as the base classifier as it does not require tuning
cross-validation parameters. Under our experimental setup, it is difficult to tune the optimal
parameters using cross-validation since labeled and unlabeled data are sampled fromdifferent
distributions.

5.1 Cross-Domain Visual Object Recognition

In order to evaluate the effectiveness of our method for transferring object models from
one visual domain to another, we use the benchmark Office+Caltech-10 [3] dataset for
cross-domain visual object recognition. The dataset includes four visual domains: Ama-
zon (A: images downloaded from online merchants), Webcam (W: low-resolution images by
a web camera), DSLR (D: high-resolution images by a digital SLR camera) and Caltech-256
dataset (C). It consists of 2533 images of 10 classes common to all four domains: BACK-
PACK, TOURING-BIKE, CALCULATOR, HEAD-PHONES, COMPUTER-KEYBOARD,
LAPTOP-101, COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-MUG, and
VIDEO-PROJECTOR. There are 8 to 151 samples per category per domain. Figure 2 shows
the differences among these domains with example images from the category of MONITOR.

Fig. 2 Example images from the MONITOR category in Caltech-256, Amazon, DSLR, and Webcam
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By randomly selecting two different domains as the source domain and target domain
respectively, there exist 12 different cross domain object recognition problems. In our exper-
iments, we use the same image representation (SURF features encoded with an 800 words
dictionary) and protocol for generating the source and target samples with the literature
[3,17,19]. We set λ1 = λ2 = 0.5 for latent space sparse subspace clustering (LS3C) [22].
We compare our methods to three baselines and several state-of-the-art methods including
SGF (sampling geodesic flow) [17], GFK (geodesic flow kernel) [3], transfer component
analysis (TCA) [14], subspace alignment (SA) [19], and low-rank transfer subspace learning
(LTSL) [16]. The accuracy of pseudo-label generated by LS3C is also reported.

• Baseline-NA (no adaptation): where we use the original feature representation after z-
normalization.

• Baseline-S:whereweproject both source and target data into PCAbased source subspace.
• Baseline-T: where we project both source and target data into PCA based target subspace.

The subspace dimensionality of Baseline-S and Baseline-T is determined by MLE based
domain intrinsic dimensionality estimation [23,24]. For each method, we report the best
accuracy for each case from the corresponding paper in order to avoid any implementation
differences (SGF is based on the implementation of LTSL paper). The results are presented
in Table 1. The best performing methods in each column are in bold font and the second best
group is in italics and underlined. Figure 3 shows the cross-domain similarity matrix built
from LS3C for the case D → C. It can be seen that despite the shift that has occurred, the
cross-domain data from the same category have a strong similarity.

The best performing methods (differences up to one stand ard error) in each column are
in bold font and the second best group is in italics and underlined.

5.2 Cross-View Scene Classification

Wehave collected a cross-view scene dataset from two ground level scene datasets: SUNdata-
base [2] (Source domain 1, S1) and Scene-15 [4] (Source domain 2, S2), and three overhead
remote sensing scene datasets: Banja Luka dataset [25] (Target domain 1, T1), UCMERCED
dataset [6] (Target domain 2, T2), 19-class satellite scene dataset [5] (Target domain 3, T3).
The dataset consists of 2768 images of four common categories (field/agriculture, forest/trees,
river/water and industrial). Figure 4 shows an example of the dataset (one image per category
per dataset). Table 2 gives the statistics of image numbers in the dataset.

For each image in the dataset, the histogram of oriented edges (HOG) feature is extracted
(stacking 2×2 neighboring descriptor of 8×8 pixels cell). HOG descriptors have been quan-
tized into 300 visual words by k-means. With local-constraint linear coding (LLC), three
level spatial histograms are computed on grids of 1×1, 2×2 and 4×4. Each image is finally
represented by a 6300 dimensional z-normalized vector. The subspace dimensionality is
determined by MLE based domain intrinsic dimensionality estimation using the target data
for SGF, GFK, TCA, SA (PCA, PCA), and Baseline-T and using the source data for Baseline-
S. The sampling rate of SGF is set to [0.2, 0.4, 0.6, 0.8]. For SGF, GFK and SA, we use the
implementations provided by the authors.

For each source-target DA problem, 20 images from each category in the source domain
are randomly selected as the training set and all the images in the target domain as the testing
set, the classification accuracies of all the above methods over 20 random trials using a NN
classifier is summarized in Table 3.

The best performing methods (differences up to one standard error) in each column are
in bold font and the second best group is in italics and underlined.
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Fig. 3 Cross-domain similarity matrix built from LS3C for the case D → C

Fig. 4 Example images from the cross-view scene dataset

Table 2 Cross-view scene dataset statistics

Dataset Field/agriculture Forest/trees River/water Industrial

SUN (S1) 84 62 125 41

Scene-15 (S2) 410 328 360 311

Banja Luka (T1) 178 105 77 75

UCMERCED (T2) 100 100 100 100

19-class Scene (T3) 50 53 56 53

SUN database (S1) and Scene-15 (S2) are the source domains while Banja Luka (T1), UCMERCED (T2),
and 19-class Scene (T3) datasets are the target domains

We have also evaluated the performance of our method in the context of transferring scene
categorymodels from aerial scenes to satellite scenes.We have collected 1377 images of nine
common categories from UCMERCED aerial scene dataset [6] and 19-class satellite scene
dataset [5]. Figure 5 shows the images from each category. We adopted the same parameter
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Fig. 5 Nine common categories of satellite scenes from 19-class satellite scene dataset (top row) and aerial
scenes fromUCMERCEDdataset (bottom row). 1Residential, 2 parking lot, 3 port/harbor, 4 industry/building,
5 farmland/ agriculture, 6 viaduct/ overpass, 7 river, 8 forest, 9 beach

settings with the cross-view scene classification experiments and the results are reported in
Table 4. We have carried out the experiments on a machine with 2.80GHZ Intel CPU and
2.98GB RAM based on matlab implementation of our algorithm. The classification time of
different methods is reported in Table 5.

The best performing methods (differences up to one standard error) in each column are
in bold font and the second best group is in italics and underlined.

6 Discussions

The proposed method adopts a coarse-to-fine adaptation strategy based on subspace analysis.
It is a general framework for unsupervised domain adaptation, and can be easily applied to
other signal processing tasks. For cross-domain visual object recognition application, it can
be seen fromTable 1 that the proposedmethod outperforms the baselines and other competing
methods on average.Our algorithmachieves the best performance for four problems (A → D,
A → W, D → W and W → D) and the second best performance for six problems out of
twelve cases. It should be noted that a coarse alignment using cross domain latent subspace
clustering improves by 7% in classification accuracy over no adaptation and outperforms
SGF, GFK, TCA and LTSL-PCA. For cross-view scene classification application, it can be
seen that the proposed method consistently outperforms the baselines and other competing
methods in all six problems. SA achieves the second best performance. The results confirm
the effectiveness of projecting source data into a discriminative target subspace. For aerial-
to-satellite scene classification application, our method improves by 6% in classification
accuracy over the second best performing methods. The computational complexity of our
algorithm mainly comes from two parts. The first part is the cross-domain latent subspace
clustering, which has a complexity of O((K′′wn2 + D′′wn2)), where K and M are related to
the iteration and feature dimensionality, n is number of samples. The second part is the SVD
decomposition of PLSC, which has a complexity of O(L3), where L is number of categories.

Compared with manifold based methods such as SGF and GFK and kernel space based
method such as TCA, the subspace alignment strategy is very simple in theory and can be
solved in a closed form, leading to an extremely fast algorithm. The major improvements of
our method over the original subspace alignment work are twofold: i) a cross-domain latent
subspace clustering step is used to pass down the labels from source data to target data;
ii) PLSC is adopted to model the correlation between data samples and their labels in both
domains. It should be noted that our method relies on the assumption that the target samples
can be represented by a sparse set of source samples in latent subspace.When the assumption
is violated, it is not likely to perform well. Another weakness of our method is that the sparse
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representation step for cross domain subspace clustering is computationally demanding. In
the future, we will try to use some accelerated sparse approximation tools.

7 Conclusions

Inspired by the recent success of sparse subspace clustering and subspace based visual domain
adaptation, we propose a novel discriminative sparse subspace clustering and alignment
framework for unsupervised scenario.We aim to create a discriminative target subspacewhen
no labels are available from the target domain and project all data from both domains into
the generated subspace to minimize the data divergence. Our method consists of three major
components: cross domain latent space sparse subspace clustering, discriminative subspace
creation and subspace alignment. Experimental results on benchmark cross-domain visual
object recognition datasets and cross-view scene datasets demonstrate the effectiveness of
the proposed method.
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