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Abstract In this work, we consider a class of impulsive non-autonomous stochastic neural
networks with mixed delays. By establishing a new generalized Halanay inequality with
impulses, we obtain some sufficient conditions ensuring global mean square exponential
stability of the addressed neural networks. The sufficient conditions are easily checked in
practice by simple algebra methods and have a wider adaptive range. An example is given to
illustrate our results.
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1 Introduction

In the past few years, there has been increasing interest in neural networks due to their exten-
sive applications in many fields such as pattern recognition, parallel computing, associative
memory, signal and image processing and combinatorial optimization. As is well known, in
both biological and man-made neural networks, delays occur due to finite switching speed of
the amplifiers and communication time. The stability analysis problem for neural networks
with delays has gained much research attention, and a large amount of results related to this
problem have been published, (see, e.g., [1–12]).

However, besides delay, impulsive effects are also likely to exist in the neural network
system. For example, in implementation of electronic networks in which state is subject to
instantaneous perturbations and experiences abrupt change at certain moments, which may
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be caused by switching phenomenon, frequency change or other sudden noise, that is, does
exhibit impulsive effects. Some interesting results about the stability for impulsive neural
networks with delays have been obtained [13–18].

On the other hand, a real system is usually affected by external perturbations which in
many cases are of great uncertainty and hence may be treated as random, as pointed out
by [19] that in real nervous systems synaptic transmission is a noisy process brought on by
random fluctuations from the release of neurotransmitters, and other probabilistic causes.
Therefore, it is significant and of prime importance to consider stochastic effects to the
dynamics behavior of impulsive neural networks with delays[20,21]. In recent years, a large
number of stability criteria of neural networks with impulsive and stochastic effects have
been reported, see [22–27]. For example, Song and Wang [26] investigated the existence,
uniqueness and exponential p-stability of the equilibrium point for impulsive stochastic
Cohen-Grossberg neural networks with mixed time delays by employing a combination of
the M-matrix theory and stochastic analysis technique. In [27], Wang et al. studied the
impulsive stochastic Cohen-Grossberg neural networks with mixed delays by establishing
an L-operator differential inequality with mixed delays and using the properties of M-cone
and stochastic analysis technique. In [22–24], Zhang et al. studied the dynamical behavior
of impulsive stochastic autonomous nonlinear systems.

It is well known that the non-autonomous phenomenon often occurs in many realistic
systems. Particularly, when we consider a long-term dynamical behavior of a system, the
parameters of the system are usually subjected to environmental disturbances and frequently
vary with time. In this case, non-autonomous neural network model can even accurately
depict evolutionary processes of networks. Thus the research on the non-autonomous neural
networks is also important like on autonomous neural networks [28–35]. Motivated by the
above discussions, in this work, we consider a class of impulsive non-autonomous stochastic
neural networks with mixed delays. By establishing a new generalized Halanay inequality
with impulses which improves the generalized Halanay inequality with impulses established
by Li in [18], we obtain some sufficient conditions ensuring global mean square exponential
stability of the addressed neural networks.

The rest of this paper is organized as follows. In the next section, we introduce our
notations and some basic definitions. Section 3 is devoted to the global exponential stability
of the following Eq. (1). We end this paper in Sect. 4 with an illustrative example.

2 Preliminaries

For convenience, we introduce several notations and recall some basic definitions.
Let N = {1, 2, . . . , n}. C(X, Y ) denotes the space of continuous mappings from the

topological space X to the topological space Y . Especially, C
�= C((−∞, 0] , Rn) .

PC(J, H) =
{
ψ(t) : J → H | ψ(t) is continuous for all but at most countable points s∈ J

and at these points s ∈ J, ψ(s+) and ψ(s−) exist, ψ(s+) = ψ(s)
}
,

where J ⊂ R is an interval, H is a complete metric space, ψ(s+) and ψ(s−) denote

the right-hand and left-hand limit of the function ψ(s), respectively. Especially, let PC
�=

PC ((−∞, 0] , Rn).
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℘ =
{
ψ(t) : R+ → R+ | ψ(t) is piecewise continuous and

∫ ∞

0
eλ0sψ(s) dt < ∞

}
,

where λ0 is a positive constant.
For any ϕ ∈ C or ϕ ∈ PC , we always assume that ϕ is bounded and introduce the

following norm:

‖ϕ‖ = sup
−∞<s≤0

|ϕ(s)|.

Let (�,F , {Ft }t≥0, P) be a complete probability space with a filtration {Ft }t≥0 satisfy-
ing the usual conditions (i.e, it is right continuous and F0 contains all P-null sets). Denote
by PCb

F0
((−∞, 0] , Rn) the family of all boundedF0-measurable, PC-valued randomvari-

ables ϕ, satisfying ‖ϕ‖2
L2 = sup

−∞<s≤0
E |φ (s)|2 < ∞ , where E[ f ] means the mathematical

expectation of f .
In this work, we consider the following impulsive non-autonomous stochastic neural

networks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t) = −ai (t) xi (t) +
n∑
j=1

bi j (t) f j
(
x j (t)

)+
n∑
j=1

ci j (t) g j
(
x j
(
t − τi j (t)

))

+
n∑
j=1

di j (t)
∫ t
−∞ k j (t − s) h j

(
x j (s)

)
ds

+
n∑
j=1

σi j
(
t, xi (t) , xi

(
t − τi j (t)

))
dw j (t), t ≥ t0, t 	= tk,

xi (tk) =
n∑
j=1

wk
i j x j

(
t−k
)+

n∑
j=1

eki j x j
(
t−k − τ

)
, t = tk,

xi (t0 + s) = ϕi (s), −∞ < s ≤ 0, i = 1, 2, . . . , n,

(1)

where n corresponds to the number of units in a neural network; xi (t) corresponds to
the state of the i th unit at time t ; f j (x j (t)), g j (x j (t)) and h j (x j (t)) denote the activa-
tion functions of the j th unit at time t ; ai (t) ≥ 0 represents the rate with which the ith
unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs; (bi j (t))n×n , (ci j (t))n×n and (di j (t))n×n are connection matri-
ces; the delay kernels k j (t), j = 1, 2, . . . , n, are piecewise continuous and satisfy that
|k j (t)| ≤ k(t) ∈ ℘; 0 ≤ τi j (t) ≤ τ is the transmission delay, where τ is a positive
constant. σ (·, ·, ·) = (σ1 (·, ·, ·) , . . . , σn (·, ·, ·)) : [t0,∞) × Rn × Rn → Rn×n is the diffu-
sion coefficient matrix; w(t) = (w1(t), · · · , wn(t))T is an n-dimensional Brownian motion
defined on (�,F , {Ft }t≥0, P). The initial condition ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s))T ∈
PCb

F0
((−∞, 0], Rn) . t0 < t1 < t2 < · · · are fixed impulsive points with lim

k→∞ tk = ∞,

k = 1, 2, . . . .
As a standing hypothesis, we assume that for any initial value ϕ ∈ PCb

F0
((−∞, 0], Rn)

there exists one solution of system (1) which is denoted by x(t, t0, ϕ), or, x(t), if no confusion
occurs.Wewill also assume that f j (0) = 0, g j (0) = 0, h j (0) = 0, and σi j (t, 0, 0) = 0, i ∈
N , t ≥ t0, for the stability purpose of this work. Then system (1) admits an equilibrium
solution x(t) ≡ 0.

Definition 2.1 The zero solution of system (1) is said to be mean square globally exponen-
tially stable if there exist positive constants α and K ≥ 1 such that for any solution x(t, t0, ϕ)

with the initial condition ϕ ∈ PCb
F0

((−∞, 0], Rn),

E ‖x (t, t0, ϕ)‖2 ≤ K ‖ϕ‖2L2 e
−α(t−t0), t ≥ t0. (2)
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3 Global Exponential Stability

In this section, we will first establish a generalized Halanay inequality with impulses and
then give some sufficient conditions on the global exponential stability of zero solution for
Eq. (1).

Theorem 3.1 Let u(t) be a solution of the impulsive integro-differential inequality

⎧⎨
⎩

D+u (t) ≤ −α (t) u (t) + β (t) [u(t)]τ + γ (t)
∫∞
0 k (s) u (t − s)ds, t ≥ t0, t 	= tk

u (tk) ≤ pku
(
t−k
)+ qku(t−k − τ), k = 1, 2, . . . ,

u (t0 + s) ≤ φ (s) , s ∈ (−∞, 0],
(3)

where u(t) is continuous at t 	= tk , t ≥ t0, φ ∈ PC, k(s) is the same as defined in Sect. 2,
α(t), β(t) and γ (t) are nonnegative continuous functions with α(t) ≥ α0 > 0 and 0 ≤
β(t) + γ (t)

∫∞
0 k(s)ds < qα(t) for all t ≥ t0 with 0 ≤ q < 1. Further assume that there

exits a constant ρ > 0 such that

n∏
k=1

δk ≤ eρ(tn−t0), n = 1, 2, . . . , (4)

where δk := max
{
1, |pk | + |qk | eλτ

}
. Then

u (t) ≤ ‖φ‖e−(λ−ρ)(t−t0), t ≥ t0, (5)

where λ ∈ (0, λ0) is defined as

0 < λ < λ∗ = inf
t≥t0

{
λ (t) : λ (t) − α (t) + β(t)eλ(t)τ + γ (t)

∫ ∞

0
k (s) eλ(t)sds = 0

}
.

(6)

Proof Denote

H (λ) = λ − α (t) + β (t) eλτ + γ (t)
∫ ∞

0
k (s) eλsds.

By assumption α(t) ≥ α0 > 0 and 0 ≤ β(t) + γ (t)
∫∞
0 k(s)ds < qα(t) for all t ≥ t0

with 0 ≤ q < 1, then for any given fixed t ≥ t0, we see that H (0) = −α (t) + β (t) +
γ (t)

∫∞
0 k(s)ds ≤ − (1 − q) α (t) ≤ − (1 − q) α0 < 0, lim

λ→∞ H (λ) = ∞, and the fact that

H(λ) is a strictly increasing function. Therefore, for any t ≥ t0 there is a unique positive λ(t)
such that λ (t)−α (t)+β (t) eλ(t)τ +γ (t)

∫∞
0 k (s) eλ(t)sds = 0. From the definition, one has

λ∗ ≥ 0. We have to prove λ∗ > 0. Suppose this is not true. Fix q̃ satisfying 0 ≤ q < q̃ < 1
and pick a small enough ε > 0 satisfying eετ < 1

q̃ ,
∫∞
0 k (s) eεsds < 1

q̃

∫∞
0 k(s)ds, and

ε <
(
1 − q

q̃

)
α0. Then there is a t∗ ≥ t0 such that λ(t∗) < ε and

λ
(
t∗
)− α

(
t∗
)+ β

(
t∗
)
eλ(t∗)τ + γ (t∗)

∫ ∞

0
k (s) eλ(t∗)sds = 0.

123



Global Mean Square Exponential Stability… 755

Now we have

0 = λ
(
t∗
)− α

(
t∗
)+ β

(
t∗
)
eλ(t∗)τ + γ (t∗)

∫ ∞

0
k (s) eλ(t∗)sds

< ε − α
(
t∗
)+ β

(
t∗
)
eετ + γ

(
t∗
) ∫ ∞

0
k (s) eεsds

< ε − α
(
t∗
)+ 1

q̃
β
(
t∗
)+ 1

q̃
γ
(
t∗
) ∫ ∞

0
k(s)ds

≤ ε −
(
1 − q

q̃

)
α
(
t∗
)

≤ ε −
(
1 − q

q̃

)
α0 < 0,

this contradiction shows that λ∗ > 0, so there at least exists a constant λ such that 0 < λ <

min{λ0, λ∗}, that is, the definition of λ for (6) is reasonable.
As φ ∈ PC , we always have

u (t) ≤ ‖φ‖e−λ(t−t0), −∞ < t ≤ t0. (7)

We first prove for any given k > 1,

u (t) < k‖φ‖e−λ(t−t0) = v(t), t ∈ [t0, t1). (8)

If (8) is not true, then from (7) and the continuity of u(t) for t ∈ [t0, t1), there must exist a
t̂ ∈ [t0, t1) such that

u
(
t̂
) = v

(
t̂
)
, D+u

(
t̂
) ≥ v

′ (
t̂
)
, (9)

u (t) ≤ v (t) , −∞ < t ≤ t̂ . (10)

By using (3),(6) and (10), we obtain that

D+u
(
t̂
) ≤ −α

(
t̂
)
u (t) + β

(
t̂
) [u(t̂)]τ + γ

(
t̂
) ∫ ∞

0
k (s) u

(
t̂ − s

)
ds

≤ −α
(
t̂
)
k‖φ‖e−λ(t̂−t0) + β

(
t̂
)
eλτ k‖φ‖e−λ(t̂−t0)

+γ
(
t̂
) ∫ ∞

0
k (s) k‖φ‖e−λ(t̂−s−t0)ds

=
[
−α
(
t̂
)+ β

(
t̂
)
eλτ + γ

(
t̂
) ∫ ∞

0
k (s) eλsds

]
k‖φ‖e−λ(t̂−t0)

<

[
−α
(
t̂
)+ β

(
t̂
)
eλ(t̂)τ + γ

(
t̂
) ∫ ∞

0
k (s) eλ(t̂)sds

]
k‖φ‖e−λ(t̂−t0)

= −λ
(
t̂
)
k‖φ‖e−λ(t̂−t0)

< −λk‖φ‖e−λ(t̂−t0) = v
′ (
t̂
)
,

which contradicts the inequality in (9), and so (8) holds for t ∈ [t0, t1). Letting k → 1, then
we have

u (t) ≤ ‖φ‖e−λ(t−t0), t ∈ [t0, t1). (11)
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Using the result above and the discrete part of (3), we can get

u (t1) ≤ p1u
(
t−1
)+ q1u

(
t−1 − τ

)

≤ (|p1| + |q1| eλτ )‖φ‖e−λ(t1−t0)

≤ δ1‖φ‖e−λ(t1−t0).

Therefore

u (t) ≤ δ1‖φ‖e−λ(t1−t0), t ∈ (−∞, t1] .

Suppose for all q = 1, 2, . . . , k, the inequalities

u (t) ≤ δ0δ1 · · · δq−1‖φ‖e−λ(t1−t0), t ∈ [tq−1, tq
)
. (12)

hold, where δ0 = 1. Then, from (12), the discrete part of (3) satisfies that

u (tk) ≤ pku
(
t−k
)+ qku

(
t−k − τ

)

≤ ( |pk | + |qk | eλτ
)‖φ‖e−λ(tk−t0)

≤ δk‖φ‖e−λ(tk−t0). (13)

This, together with (12), leads to

u (t) ≤ δ0δ1 · · · δk‖φ‖e−λ(t−t0), t ∈ [tk, tk+1) .

By the mathematical induction, we can conclude that

u (t) ≤ δ0δ1 · · · δk−1‖φ‖e−λ(t−t0) ≤ ‖φ‖e−(λ−ρ)(t−t0), t ∈ [tk−1, tk) , k = 1, 2, . . . .

The proof is completed. �
Remark 3.1 If α(t) ≡ α, β(t) ≡ β and γ (t) ≡ γ , t ≥ t0, Theorem 3.1 becomes the lemma
1 in [18].

Theorem 3.2 [18, Lemma 1] Let α, β, γ and pk, k = 1, 2, . . . , denote nonnegative con-
stants and let u(t) be a solution of the impulsive integro-differential inequality

⎧⎨
⎩

D+u (t) ≤ −αu (t) + β[u(t)]τ + γ
∫∞
0 k (s) u (t − s)ds, t ≥ t0, t 	= tk

u (tk) ≤ pku
(
t−k
)+ qku

(
t−k − τ

)
, k ∈ N ,

u (t0 + s) ≤ φ (s) , s ∈ (−∞, 0],
(14)

where u(t) is continuous at t 	= tk , t ≥ t0, φ ∈ PC, k(s) is the same as defined in Sect. 2.
Assume that

(i) α > β + γ
∫∞
0 k (s) ds;

(ii) there exits a constant ρ > 0 such that
n∏

k=1

δk ≤ eρ(tn−t0), n = 1, 2, . . . ,

where δk := max
{
1, |pk | + |qk | eλτ

}
.

Then

u (t) ≤ ‖φ‖e−(λ−ρ)(t−t0), t ≥ t0,

where λ ∈ (0, λ0) is defined as

λ − α + βeλτ + γ

∫ ∞

0
k (s) eλsds ≤ 0.
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We remark here that the autonomous condition (14) is replaced by the non-autonomous
condition (3), it is more useful for practical purpose, please see the following example.

Example 3.1
⎧⎪⎨
⎪⎩

dx(t)
dt = − (1+2t) x (t)+( 14 + 1

2 t
)
x(t−1)+( 14 + 1

2 t
) ∫∞

0 e−s x (t−s) ds, t≥0, t 	= tk,

x (tk) = −e0.2k x
(
t−k
)
,

x (0 + s) = sin s, −∞ < s ≤ 0,
(15)

where tk = tk−1 + 2k, k = 1, 2, . . .. It is clear that Theorem 3.2 fails to apply to Eq.
(15). However, from Theorem 3.1, we can easily see that the trivial solution of (15) satisfies
x (t) ≤ e−0.1t , t ≥ 0.

Theorem 3.3 Assume that
(A1) There exist nonnegative constants L

f
j , L

g
j , and Lh

j , j = 1, . . . n, such that

∣∣ f j (x) − f j (y)
∣∣ ≤ L f

j |x − y| , ∣∣g j (x) − g j (y)
∣∣ ≤ Lg

j |x − y| ,∣∣h j (x) − h j (y)
∣∣ ≤ Lh

j |x − y| , ∀x, y ∈ Rn .

(A2) There exist nonnegative continuous functions αi (t) and βi (t), i = 1, 2, . . . , n, such
that

σi (t, x, y) σ T
i (t, x, y) ≤ αi (t) x

2 + βi (t) y
2.

(A3) There exist nonnegative continuous functions η(t), ζ(t) and ρ(t) , t ≥ t0, such that

η(t) ≥ η0 > 0, 0 ≤ ζ(t) + ρ(t)
∫ ∞

0
k(s)ds < qη(t), 0 ≤ q < 1,

where

η (t) = min
1≤i≤n

⎧⎨
⎩2ai (t) −

n∑
j=1

∣∣bi j (t)
∣∣ L f

j −
n∑
j=1

∣∣b ji (t)
∣∣ L f

i −
n∑
j=1

∣∣ci j (t)
∣∣ Lg

j

−
n∑
j=1

∣∣di j (t)
∣∣ Lh

j − αi (t)

⎫⎬
⎭ ,

ζ (t) = max
1≤i≤n

⎧⎨
⎩

n∑
j=1

∣∣c ji (t)
∣∣ Lg

i + βi (t)

⎫⎬
⎭ , and ρ (t) = max

1≤i≤n

⎧⎨
⎩

n∑
j=1

∣∣d ji (t)
∣∣ Lh

i

⎫⎬
⎭ .

(A4) There exists a positive constant γ satisfying

ln γk

tk − tk−1
≤ γ < λ, k = 1, 2, . . . , (16)

where γk = max

{
1, 2nmax

1≤i≤n

{
n∑
j=1

(
wk
i j

)2}+ 2nmax
1≤i≤n

{
n∑
j=1

(
eki j

)2}
eλτ

}
and 0 < λ ≤ λ0

is defined as

0 < λ < λ∗ = inf
t≥t0

{
λ (t) : λ (t) − η (t) + ζ (t)

∫ ∞

0
k (s) eλ(t)sds = 0

}
. (17)

Then the zero solution of (1) is mean square globally exponentially stable.
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Proof By a similar argument with (6), one can know that the λ defined by (17) is reasonable.
By the assumptions (A1)–(A4), the theorem 4.1 in [36], and the following proof, we know

that for any ϕ ∈ PCb
F0

((−∞, 0], Rn), there exists a unique global solution x(t) through
(t0, ϕ).

Define V (t) =
n∑

i=1
x2i (t). From (1), (A1), and Itô formula [37] we have

dV (t) = LV (t) dt +
n∑

i=1

2xi (t)
n∑
j=1

σi j
(
t, xi (t) , xi

(
t − τi j (t)

))
dw j (t) , (18)

where LV (t) is defined by

LV (t) =
n∑

i=1

2xi (t)

⎧⎨
⎩−ai (t) xi (t) +

n∑
j=1

bi j (t) f j
(
x j (t)

)

+
n∑
j=1

ci j (t) g j
(
x j
(
t − τi j (t)

))+
n∑
j=1

di j (t)
∫ t

−∞
k j (t − s) h j

(
x j (s)

)
ds

⎫⎬
⎭

+
n∑

i=1

σi
(
t, xi (t) , xi

(
t − τi j (t)

))
σ T
i

(
t, xi (t) , xi

(
t − τi j (t)

))
.

It follows from (A1) − (A3) that

LV (t) ≤ −2
n∑

i=1

ai (t) x
2
i (t) + 2

n∑
i=1

n∑
j=1

∣∣bi j (t)
∣∣ |xi (t)| L f

j

∣∣x j (t)
∣∣

+ 2
n∑

i=1

n∑
j=1

∣∣ci j (t)
∣∣ |xi (t)| Lg

j

∣∣x j
(
t − τi j (t)

)∣∣

+ 2
n∑

i=1

n∑
j=1

∣∣di j (t)
∣∣ |xi (t)| Lh

j

∫ ∞

0
k j (s)

∣∣x j (t − s)
∣∣ ds

+
n∑

i=1

αi (t) x
2
i (t) +

n∑
i=1

βi (t) x
2
i

(
t − τi j (t)

)

≤ −2
n∑

i=1

ai (t) x
2
i (t) +

n∑
i=1

n∑
j=1

∣∣bi j (t)
∣∣L f

j

(
x2i (t) + x2j (t)

)

+
n∑

i=1

n∑
j=1

∣∣ci j (t)
∣∣Lg

j

(
x2i (t) + x2j

(
t − τi j (t)

))

+
n∑

i=1

n∑
j=1

∣∣di j (t)
∣∣Lh

j

∫ ∞

0
k j (s)

(
x2i (t) + x2j (t − s)

)
ds

+
n∑

i=1

αi (t) x
2
i (t) +

n∑
i=1

βi (t) x
2
i

(
t − τi j (t)

)
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≤ − min
1≤i≤n

{2ai (t)−
n∑
j=1

∣∣bi j (t)
∣∣ L f

j −
n∑
j=1

∣∣b ji (t)
∣∣ L f

i −
n∑
j=1

∣∣ci j (t)
∣∣ Lg

j

−
n∑
j=1

∣∣di j (t)
∣∣ Lh

j − αi (t)

⎫⎬
⎭

n∑
i=1

x2i (t)

+ max
1≤i≤n

⎧⎨
⎩

n∑
j=1

∣∣c ji (t)
∣∣ Lg

i + βi (t)

⎫⎬
⎭

n∑
i=1

x2i
(
t − τi j (t)

)

+ max
1≤i≤n

⎧⎨
⎩

n∑
j=1

∣∣d ji (t)
∣∣ Lh

i

⎫⎬
⎭
∫ ∞

0
k j (s)

n∑
i=1

x2i (t − s)ds

≤ −η(t)V (t) + ζ(t)[V (t)]τ + ρ(t)
∫ ∞

0
k(s)V (t − s)ds. (19)

Integrating (18) from tk to t , t ∈ [tk, tk+1), k = 0, 1, 2, . . . , we have

V (t) = V (tk) +
∫ t

tk
LV (s) ds +

∫ t

tk

n∑
i=1

2xi (s)
n∑
j=1

σi j
(
s, xi (s) , xi

(
s − τi j (s)

))
dw j (s).

Taking the mathematical expectation, we get that

EV (t) = EV (tk) +
∫ t

tk
ELV (s) ds, (20)

and for small enough �t > 0,

EV (t + �t) = EV (tk) +
∫ t+�t

tk
ELV (s) ds. (21)

Thus, from (20) and (21), it follows that

EV (t + �t) − EV (t) =
∫ t+�t

t
ELV (s) ds,

together with (19), which implies

D+EV (t) = ELV (t)

≤ −η (t) EV (t) + ζ (t) [EV (t)]τ + ρ (t)
∫ ∞

0
k (s)EV (t − s) ds. (22)

123



760 D. Li, B. Li

On the other hand, from (1) and Hölder inequality, we can get

EV (tk) = E
n∑

i=1

x2i (tk) = E
n∑

i=1

⎛
⎝

n∑
j=1

wk
i j x j

(
t−k
)+

n∑
j=1

eki j x j
(
t−k − τ

)
⎞
⎠

2

≤ 2E
n∑

i=1

⎡
⎣

n∑
j=1

(
wk
i j

)2 n∑
j=1

x2j
(
t−k
)+

n∑
j=1

(
eki j

)2 n∑
j=1

x2j
(
t−k − τ

)
⎤
⎦

≤ 2nmax
1≤i≤n

⎧⎨
⎩

n∑
j=1

(
wk
i j

)2
⎫⎬
⎭ E

n∑
i=1

x2i
(
t−k
)+ 2nmax

1≤i≤n

⎧⎨
⎩

n∑
j=1

(
eki j

)2
⎫⎬
⎭ E

n∑
i=1

x2i
(
t−k − τ

)

= 2nmax
1≤i≤n

⎧⎨
⎩

n∑
j=1

(
wk
i j

)2
⎫⎬
⎭ EV

(
t−k
)+ 2nmax

1≤i≤n

⎧⎨
⎩

n∑
j=1

(
eki j

)2
⎫⎬
⎭ EV

(
t−k − τ

)
, k = 1, 2, . . . .

It follows from (16) in condition (A4) that

n∏
k=1

γk ≤
n∏

k=1

eγ (tk−tk−1) = eγ (tn−t0), n = 1, 2, . . . . (23)

Then, all conditions of Theorem 3.1 are satisfied by (22), (23) and condition (A3), so

EV (t) ≤ E‖V (t0)‖∞e−(λ−γ )(t−t0), t ≥ t0.

i.e,

E ‖x (t, t0, ϕ)‖2 ≤ ‖ϕ‖2L2 e
−(λ−γ )(t−t0), t ≥ t0.

The proof is complete. �
Remark 3.2 The stability of non-autonomous neural networks has been investigated in
Refs.[32,33]. However, the parameters appearing in [32,33] are bounded. Note in our results,
we do not require that the parameters ai (t), bi j (t) ci j (t), di j (t), i, j = 1, 2, . . . , in the sys-
tem (1) are bounded.

If wk
i j = 0, i 	= j, eki j = 0, i, j = 1, 2, . . . n, k = 1, 2, . . ., then the model (1) reduces

the following simpler impulsive system.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t) = −ai (t) xi (t) +
n∑
j=1

bi j (t) f j
(
x j (t)

)+
n∑
j=1

ci j (t) g j
(
x j
(
t − τi j (t)

))

+
n∑
j=1

di j (t)
∫ t
−∞ k j (t − s) h j

(
x j (s)

)
ds

+
n∑
j=1

σi j
(
t, xi (t) , xi

(
t − τi j (t)

))
dw j (t), t ≥ t0, t 	= tk,

xi (tk) = wk
ii xi

(
t−k
)
, t = tk,

xi (t0 + s) = ϕi (s), −∞ < s ≤ 0, i = 1, 2, . . . , n,

(24)

Corollary 3.1 Assume that (A1) − (A3) and (A4) with γk = max{1, (wk
ii )

2} hold. Then the
zero solution of (24) is mean square globally exponentially stable.

Proof The proof is similar to that of Theorem 3.3. So we omit it. �
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Remark 3.3 In the particular case when the parameters ai (t), bi j (t), ci j (t), di j (t) and
σi j (t, xi (t), xi (t − τi j (t))), i, j = 1, 2, . . . , in the system (1) are independent on t , by using
Theorem 3.2 with qk = 0, k = 1, 2, . . . , and the same Lyapunov function V (t) defined in
Theorem 3.3, Li[25] obtain some sufficient conditions ensuring global mean square exponen-
tial stability of the system (24). As Theorem 3.1 generalizes Theorem 3.2 from autonomous
case to non-autonomous case, Corollary 3.1 also generalizes Theorem 3.2 in [25] from
autonomous case to non-autonomous case.

Corollary 3.2 Assume that (A1) − (A3) hold. Then the zero solution of (24) is mean square
globally exponentially stable if −1 ≤ wk

ii ≤ 1.

Proof As −1 ≤ wk
ii ≤ 1, a direct calculation shows that when we take γk = 1 and γ = 0,

the condition (A4) is satisfied. It follows fromCorollary 3.1 that zero solution of (24) is mean
square globally exponentially stable. The proof is completed. �

If wk
ii = 1, wk

i j = 0, i 	= j, eki j = 0, i, j = 1, 2, . . . n, k = 1, 2, . . ., then the model (1)
becomes delay stochastic neural networks without impulses
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t) = −ai (t) xi (t) +
n∑
j=1

bi j (t) f j
(
x j (t)

)+
n∑
j=1

ci j (t) g j
(
x j
(
t − τi j (t)

))

+
n∑
j=1

di j (t)
∫ t
−∞ k j (t − s) h j

(
x j (s)

)
ds

+
n∑
j=1

σi j
(
t, xi (t) , xi

(
t − τi j (t)

))
dw j (t), t ≥ t0,

xi (t0 + s) = ϕi (s), −∞ < s ≤ 0, i = 1, 2, . . . , n,

(25)

By using of Theorem 3.3, we can easily get the following corollary.

Corollary 3.3 Assume that (A1) − (A3) hold. Then the zero solution of (25) is mean square
globally exponentially stable with exponential convergent rate λ.

4 Example

In this section, we will give an example to illustrate the exponential stability of (1).

Example 4.1 Consider the following impulsive non-autonomous stochastic neural networks:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1 (t) = [− (3 + 5t) x1 (t) + t arctan x1 (t) + 1
2 t arctan x2 (t)

+ 1
2 sin x1(t − 1) + t sin x2(t − 2)

+ 1
2 (1 + t)

∫ t
−∞ e−(t−s)x1 (s) ds + t

∫ t
−∞ e−(t−s)x2 (s) ds

]
ds

+x1 (t) dw1 (t) + x2 (t) dw2 (t) ,

dx2 (t) = [− (2 + 4t) x2 (t) + t arctan x1 (t) + 1
2 t arctan x2 (t)

+t sin x1(t − 1) + 1
2 sin x2(t − 2)

+t
∫ t
−∞ e−(t−s)x1 (s) ds + 1

3

∫ t
−∞ e−(t−s)x2 (s) ds

]
ds

+x1 (t) dw1 (t) + x2 (t) dw2 (t) , t ≥ 0, t 	= tk,
x1 (tk) = −0.9e0.1k x1

(
t−k
)

x2 (tk) = −e0.1k x2
(
t−k
)

(26)

where tk = tk−1 + k, k = 1, 2, . . . , and
∫∞
0 e−sds = 1 < ∞ satisfying the condition (H).

We can easily find that Conditions (A1) and (A2) are satisfied with L f
j = Lg

j = Lh
j =
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Fig. 1 Simulation result of Example 4.1

1, j = 1, 2, αi (t) ≡ 2, βi (t) ≡ 0, i = 1, 2. By simple computation, we can get from (A3)

that η(t) = 3 + 4t , ζ(t) = 1
2 + t , and ρ(t) = 1

2 + 3
2 t . Let γk = e0.2k = max

{
1, e0.2k

}
and

λ = 0.3 which satisfies inequality (16). Therefore, we obtain that there exists a γ = 0.2 > 0
such that

ln γk

tk − tk−1
= 0.2k

k
= 0.2 ≤ γ < λ.

As all the conditions of Corollary 3.1 are satisfied, we conclude that the solution of (26) is
mean square globally exponentially stable with exponential convergent rate 0.1. We employ
the Euler scheme to discretize this equation, where the integral term is approximated by using
the composite �-rule as a quadrature [38]. The simulation results are illustrated in Fig. 1.

Remark 4.1 Since min
t≥0

{η (t)} = 3, max
t≥0

{ζ (t)} = +∞ and max
t≥0

{ρ (t)} = +∞, It is clear

that the lemma 1 in [15] fails to apply to Eq. (26).
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