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Abstract In this paper, the exponential stability of a class of competitive neural networks
with multi-proportional delays is studied. First, through suitable transformations, a class of
competitive neural networks with multi-proportional delays can be equivalently turned into
a class of competitive neural networks with multi-constant delays and variable coefficients.
By using fixed point theorem, the existence and uniqueness of equilibrium point of the
system is proved. Furthermore by constructing appropriate delay differential inequality, two
delay-independent and delay-independent sufficient conditions for the exponential stability
of equilibrium point are obtained. Finally, several examples and their simulations are given
to illustrate the effectiveness of the obtained results.

Keywords Competitive neural networks · Proportional delays · Exponential stability ·
Fixed point theorem · Delay differential inequality

1 Introduction

In 1996, Meyer-Baese studied and put forward competitive neural network model in [1].
As one of the popular artificial neural networks, competitive neural networks have received
significant attention. From the view of biology, there are two kinds of the human memories:
short-term-memory (STM) and long-term-memory (LTM), STM prestnts fast neural activity
and LTM presents unsupervised and slow synaptic modifications. Competitive neural net-
works contain two timescales, the one dealing with the fast change of the state and the other
one with the slow change of the synapse by external stimulation. It is a kind of unsuper-
vised learning neural networks, which refers to the whole interconnection between input
and output of the single layer neural networks and is widely used in optimization design,
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pattern recognition, signal processing and control theory and so on [1–3]. Dynamics of com-
petitive neural networks with different time scales can be found in [4–10]. No matter in
biological or man-made neural networks, the synapse between neurons inevitably appear
time delay effect, and connection weight between neurons is time-varying which may lead
to oscillation, divergence, so as to instability. At present, a variety of dynamic behaviors
about competitive neural networks with delays have been studied, such as singular perturba-
tion [1], periodicity [11], stability [4,12–17], synchronization [8,10,18–22] and so on. And
the dynamic behaviors of competitive neural networks with delays mainly focus on constant
delays [4,11,12,18], bounded time-varying delays [8,13,14,16,17,19,20], mixed delays (i.e.
bounded time-varying delay and distributed delay) [15,21,22], etc.

It is well known that stability has played a very important role in the applications of com-
petitive neural networks. Thus, various stabilities of competitive neural networks with delays
have been widely studied and a great deal of results have been obtained (see, [4,12–17]).
Global exponential stability of competitive neural networks with constant and time-varying
delays had been studied by constructing Lyapunov functional in [4,14], respectively. In [12],
existence and global exponential stability of equilibrium of competitive neural networks with
different time scales and multiple delays had been discussed by nonlinear Lipschitz measure
method and constructing suitable Lyapunov functional. In [13], exponential stability of com-
petitive neural networks with time-varying and distributed delays were studied by inequality
techniques and properties of an M-matrix. In [15,16], multi-stability of competitive neural
networks with time-varying and distributed delays had been studied by using inequality
technique. Global stability and convergence of equilibrium point for delayed competitive
neural networks with different time scales and discontinuous activations were investigated
by employing the Leray-Schauder alternative theorem in multi-valued analysis, linear matrix
inequality technique and generalized Lyapunov-like method in [17].

Different from above mentioned delays, proportional delay is an unbounded time-varying
delay. The proportional delay functions τ(t) = (1− q)t, 0 < q < 1 is a kind of unbounded
delay, which often rises in many fields such as physics, biology systems and control theory.
At the same time, since the differences between proportional delay and other delays, the past
results about the stability of neural networks with delays can not be directly applied to neural
networks with proportional delays. The category of proportional delayed differential equa-
tion, which the neural networks with proportional delays belongs to, is an important kind
of unbounded delay differential equation and is widely used in many fields, such as light
absorption in the star substance and nonlinear dynamic systems. Hence, researches on the
dynamic behaviors of neural networks with proportional delays have important theoretical
and practical value. The dynamical behaviors of neural networks with proportional delays
have been studied in [23–31]. In [23], dissipativity of a class of cellular neural networks
(CNNs) with proportional delays was investigated by using the inner product properties.
In [24–26,28], Zhou had discussed the global exponential stability and asymptotic stability
of CNNs with multi-proportional delays by employing matrix theory and constructing Lya-
punov functional, respectively. Delay-dependent exponential synchronization of recurrent
neural networks (RNNs) with multiple proportional delays was studied in [28] by construct-
ing appropriate Lyapunov functional. A few results about dynamical behaviors of neural
networks with proportional delays in [24–26,28] mainly used to establish appropriate Lya-
punov functionals. It iswell known that constructing newLyapunov functions is very difficult,
and no general method can be found. At present, there are many other research methods,
for example, by constructing nonlinear delay differential inequality, Zhou had studied the
global exponential stability of the bidirectional associative memory neural networks with
proportional delays in [27] and [29]. In [30], stability criteria for high-order networks with
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proportional delay was studied based onmatrix measure and Halanay inequality. In [31], new
explicit conditions ensuring that the state trajectories of the system do not exceed a certain
threshold over a pre-specified finite time interval was obtained by matrix inequalities.

The advantage of neural networks with proportional delays is that the network’s running
time can be controlled according to the network allowed delays. Thus, it is not only theo-
retically interesting but also practical to establish sufficient conditions for stability of neural
networks with proportional delays. Until now, the results on exponential stability of compet-
itive neural networks with proportional delays has not been obtained. Inspired by [27], the
aim of this paper is to discuss exponential stability of competitive neural networks with pro-
portional delays. By using fixed point theorem, the existence and uniqueness of equilibrium
point of the system is proved. Furthermore, by constructing appropriate delay differential
inequality, two delay-independent and delay-dependent sufficient conditions for the expo-
nential stability of equilibrium are obtained. Finally, two examples and their simulations are
given to illustrate the effectiveness of the obtained results.

The rest of the paper is organized as follows. In Sect. 2, models and preliminaries are
presented that will be used later. Through transformations, competitive neural networks with
multi-proportional delays can be turned into competitive neural network with multi-constant
delays and variable coefficients. In Sect. 3, some novel sufficient conditions are derived for
the existence, uniqueness and stability of the equilibrium point. In Sect. 4, several examples
and their simulations are given to show the effectiveness of the obtained results. In Sect. 5,
conclusions are provided.

2 Model and Preliminaries

Consider the following competitive neural networks with multi-proportional delays
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

STM : ε
dxi (t)
dt = −ai xi (t) +

n∑

j=1
bi j f j (x j (t)) +

n∑

j=1
ci j f j (x j (q j t))

+Bi
n∑

j=1
d jmi j (t) + Ii ,

LTM : dmi j (t)
dt = −mi j (t) + d j fi (xi (t)),

(2.1)

for t ≥ 1, i, j = 1, 2, . . . , n. Where xi (t) denotes the neuron currrent activity level; mi j (t)
are synaptic efficiency; ai > 0 is the changing rate for neurons i ; bi j and ci j (t) are constants
which denote the strengths of connectivity between the cells j and i at time t and connection
weights at q j t time respectively; d j is a given arbitrarily constant; q j is proportional delay
factor and satisfies 0 < q j ≤ 1, q j t = q j ∗ t , q j t = t − (1 − q j )t , in which (1 − q j )t
corresponds to the time delay function, and (1 − q j )t → +∞ as q j �= 1, t → +∞;
q = min

1≤ j≤n
{q j }; Ii denotes external input; Bi > 0 is an external stimulus intensity; ε is a fast

time scale decided by STM and ε > 0. In this paper, taking ε = 1 for convenience. fi (xi (t))
is the nonlinear activation function.

Let si (t) =
n∑

j=1
d jmi j (t), then (2.1) can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

STM : dxi (t)
dt = −ai xi (t) +

n∑

j=1
bi j f j (x j (t)) +

n∑

j=1
ci j f j (x j (q j t))

+Bi si (t) + Ii ,
LTM : dsi (t)

dt = −si (t) + α fi (xi (t)),

(2.2)
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for t ≥ 1, with the initial values
{
xi (t) = xi0,
si (t) = si0,

t ∈ [q, 1], (2.3)

where α =
n∑

j=1
d2j > 0. xi0 and si0, i = 1, 2, . . . , n are constants. x(0) = (x10, x20,

. . . , xn0)T , and s(0) = (s10, s20, . . . , sn0)T as t ∈ [q, 1].

Assumption 1 f j (·) is bounded and satisfies Lipschitz condition, that is there exists Ai > 0,
L j > 0, for ∀ς, ζ ∈ R, such that

{ | f j (·)| < A j , f j (0) = 0,
| f j (ς) − f j (ζ )| ≤ L j |ς − ζ |, j = 1, 2, . . . , n.

(2.4)

Assumption 2 si (·) is bounded, that is there exists Ci > 0, such that

|si (·)| ≤ Ci < +∞, i = 1, 2, . . . , n.

Remark 2.1 In (2.1), (1 − q j )t → +∞ as q j �= 1, t → +∞, so those stability results in
[4,12–17] can not be directly applied to (2.1).

Consider the following transformations defined by

yi (t) = xi (e
t ), ui (t) = si (e

t ), i, j = 1, 2, . . . , n, (2.5)

then (2.1) can be equivalently turned into competitive neural networks with multi-constant
delays and variable coefficients (See, [25])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

STM : dyi (t)
dt = et {−ai yi (t) +

n∑

j=1
bi j f j (y j (t)) +

n∑

j=1
ci j f j (y j (t − τ j ))

+
n∑

j=1
Biui (t) + Ii },

LTM : dui (t)
dt = et {−ui (t) + α fi (yi (t))},

(2.6)

for t ≥ 0, with the initial values
{
yi (t) = ϕi (t),
ui (t) = ψi (t),

t ∈ [−τ, 0], (2.7)

where τ = max
1≤ j≤n

{τ j }, in which τ j = − log q j ≥ 0, ϕi (t) = xi0, ψi (t) = si0, t ∈ [−τ, 0].
y(0) = (y10, y20, . . . , yn0)T , u(0) = (u10, u20, . . . , un0)T .

It follows from Assumption 2 that

|ui (t)| = |si (et )| ≤ Di < +∞, (2.8)

namely, ui (t) is bounded.

Remark 2.2 It is very easy to verify that (2.2) and (2.6) have the same equilibriums. For
considering the stability of equilibrium of (2.2), we just need to consider the stability of
equilibrium of (2.6).
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3 Main Results

In this section, we shall establish some sufficient conditions to ensure the global exponential
stability of system (2.6).

Theorem 3.1 Under Assumptions 1 and 2, if the following conditions
⎧
⎨

⎩

ai −
n∑

j=1
(|bi j | + |ci j |)L j > Bi ,

1 > αLi , i = 1, 2, . . . , n
(3.1)

hold, then system (2.6) has a unique equilibrium point.

Proof (y∗, u∗)T is said to be an equilibrium of system (2.6), if this point (y∗, u∗)T satisfies
the following equations

⎧
⎨

⎩

ai y∗
i =

n∑

j=1
(bi j + ci j ) f j (y∗

j ) + Biu∗
i + Ii ,

u∗
i = α fi (y∗

i ),

(3.2)

in which y∗ = (y∗
1 , y

∗
2 , . . . , y

∗
n )

T , u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T .

Define the mapping Q(θ) = (F(θ),G(θ))T , where θ = (y, u)T ,
F(θ) = (F1(θ), F2(θ), . . . , Fn(θ))T , G(θ) = (G1(θ),G2(θ), . . . ,Gn(θ))T ,
in which

⎧
⎨

⎩

Fi (θ) = a−1
i [

n∑

j=1
(bi j + ci j ) f j (y j ) + Biui + Ii ],

Gi (θ) = α fi (yi ).
(3.3)

Then it follows from (3.3) and Assumption 1 that
⎧
⎪⎨

⎪⎩

|Fi (θ)| ≤ a−1
i

[
n∑

j=1
(|bi j | + |ci j |)A j + Bi Di + |Ii |

]

≤ r,

|Gi (θ)| ≤ αAi ≤ r,

(3.4)

where r = max{r1, r2}, in which r1 and r2 are respectively:
⎧
⎪⎪⎨

⎪⎪⎩

r1 = max
1≤i≤n

{

a−1
i

[
n∑

j=1
(|bi j | + |ci j |)A j + Bi Di + |Ii |

]}

,

r2 = max
1≤i≤n

{
αAi

}
.

(3.5)

Then we have θ = (y, u)T ∈ [−r, r ]2n 
⇒ Q(θ) = (F(θ),G(θ))T ∈ [−r, r ]2n , because
of the continuity of f j (·), it follows that the mapping Q : [−r, r ]2n → itself is continuous.
By Brouwer’s fixed point theorem, there exists at least one fixed point(y∗, u∗)T of Q , i.e.,
an equilibrium point of system (2.6).

Next we prove the uniqueness of equilibrium (y∗, u∗)T . Suppose system (2.6) has another
equilibrium (y∗∗, u∗∗)T , there must be y∗

i = y∗∗
i , u∗

i = u∗∗
i , i = 1, 2, . . . , n.

Case 1 if y∗∗ �= y∗∗, u∗ = u∗∗, there are some components y∗
i , y∗∗

i among y∗, y∗∗, such
that y∗

d �= y∗∗
d , y∗

j = y∗∗
j , j �= d , u∗

i = u∗∗
i , i = 1, 2, . . . , n. From (3.1),(3.2), we can get

{
[ad − (|bdd | + |cdd |)]Ld |y∗

d − y∗∗
d | ≤ 0,

0 = |u∗
i − u∗∗

i | ≤ αLi |y∗
i − y∗∗

i |, (3.6)

y∗
d = y∗∗

d which is a contradiction, so the assumption is not established.
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Case 2 if y∗∗ �= y∗∗, u∗ �= u∗∗, there must be components y∗
d �= y∗∗

d among y∗, y∗∗,
u∗
k �= u∗∗

k among u∗, u∗∗.
when d = k, it follows from (3.2) that

{[ad − (|bdd | + |cdd |)]Ld |y∗
d − y∗∗

d | ≤ Bd |u∗
d − u∗∗

d |,
|u∗

d − u∗∗
d | ≤ αLi |y∗

d − y∗∗
d | ≤ |y∗

d − y∗∗
d |, (3.7)

By (3.1) and (3.7), we get {|y∗
d − y∗∗

d | ≤ |u∗
d − u∗∗

d |,
|u∗

d − u∗∗
d | ≤ |y∗

d − y∗∗
d |, (3.8)

which is a contradiction.
when d �= k, it follows from (3.2) that

{[ad − (|bdd | + |cdd |)]Ld |y∗
d − y∗∗

d | ≤ Bd |u∗
k − u∗∗

k |,
|u∗

k − u∗∗
k | ≤ αLi |y∗

d − y∗∗
d | ≤ |y∗

d − y∗∗
d | < 0.

(3.9)

By (3.1) and (3.9), we get |u∗
k − u∗∗

k | ≤ |y∗
d − y∗∗

d | < 0, which is a contradiction. All in all,
the equilibrium of system (2.6) is unique. �

Suppose
⎧
⎪⎨

⎪⎩

K1 = max
1≤i≤n

{
sup

−τ≤s≤0
|yi (t) − y∗

i |
}
,

K2 = max
1≤i≤n

{
sup

−τ≤s≤0
|ui (t) − u∗

i |
}
,

(3.10)

where either K1 or K2 is positive. For example, if K1 > 0, we assume that K2 = 0; when
K2 = 0, we have ui (t) = u∗

i , for t ∈ [−τ, 0].
Theorem 3.2 Under Assumptions 1 and 2, if (3.1) holds and there exists positive constants
η and K such that {|yi (t) − y∗

i | ≤ Ke−ηt ,

|ui (t) − u∗
i | ≤ Ke−ηt ,

(3.11)

for t ≥ 0, i = 1, 2, . . . , n. Where K = max
{
K1, K2

}
> 0, K1, K2 are given by (3.10), then

equilibrium point (y∗, u∗)T of system (2.6) is globally exponentially stable.

Proof From Theorem 3.1, system (2.6) has a unique equilibrium point (y∗, u∗)T , next we
prove it is globally exponentially stable. By (2.6), for t > 0, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D+|yi (t) − y∗
i | ≤ et

{

− ai |yi (t) − y∗
i | +

n∑

j=1
|bi j ||L j ||y j (t) − y∗

j |

+
n∑

j=1
|ci j ||L j ||y j (t − τ j ) − y∗

j | + Bi |ui (t) − u∗
i |

}

,

D+|ui (t) − u∗
i | ≤ et

{ − |ui (t) − u∗
i | + αLi |yi (t) − y∗

i |}.

(3.12)

Defining functions as follows,
⎧
⎨

⎩

�i (μi ) = ai − μi −
n∑

j=1
(|bi j | + |ci j |eμi τ )L j − Bi ,

�i (υi ) = 1 − υi − αLi ,

(3.13)

where μi , υi ∈ [0,+∞). Note that (3.1), we have
⎧
⎨

⎩

ai −
n∑

j=1
(|bi j | + |ci j |)L j − Bi ≥ ς,

1 − αLi ≥ ς, i = 1, 2, . . . , n,

(3.14)
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where ς = min{ς1, ς2}, in which
⎧
⎪⎨

⎪⎩

ς1 = min
1≤i≤n

{
ai −

n∑

j=1
(|bi j | + |ci j |)L j − Bi

}
> 0,

ς2 = min
1≤i≤n

{
1 − αLi

}
> 0.

(3.15)

It follows from (3.13) and (3.14) that �i (0) ≥ ς and �i (0) ≥ ς . Obviously, �i (μi ) and
�i (υi ) are continuous, and �i (μi ) → −∞, �i (υi ) → −∞ as μi → +∞, υi → +∞. So
there are μ̃i , υ̃i ∈ (0,+∞) such that

⎧
⎨

⎩

�i (μ̃i ) = ai −
n∑

j=1
(|bi j | + |ci j |eμ̃i τ )L j − μ̃i − Bi = 0,

�i (υ̃i ) = 1 − υ̃i − αLi = 0.
(3.16)

Thus, there exists a constant η, which satisfies 0 < η < min
1≤i≤n

{
μ̃i , υ̃i

}
, such that

⎧
⎨

⎩

�i (η) = ai − η −
n∑

j=1
(|bi j | + |ci j |eητ )L j − Bi > 0,

�i (η) = 1 − η − αLi > 0.
(3.17)

Accordingly, define functions Yi (t) and Ui (t) as follows
{
Yi (t) = eηt |yi (t) − y∗

i |,
Ui (t) = eηt |ui (t) − u∗

i |, t ∈ [−τ,+∞). (3.18)

We obtain the following inequalities

D+Yi (t) = ηeηt |yi (t) − y∗
i | + eηt D+|yi (t) − y∗

i |

≤ η Yi (t) + eηt
{

− aie
t |yi (t) − y∗

i | + et
n∑

j=1

|bi j |L j |y j (t) − y∗
j |

+et
n∑

j=1

|ci j |L j |y j (t − τ j ) − y∗
j | + Bie

t |ui (t) − u∗
i |

}

= ηYi (t) + et
{

− aie
ηt |yi (t) − y∗

i | + eηt
n∑

j=1

|bi j |L j |y j (t) − y∗
j |

+eηt
n∑

j=1

|ci j |L j |y j (t − τ j ) − y∗
j | + Bie

ηt |ui (t) − u∗
i |

}

= ηYi (t) + et
{

− aiYi (t) +
n∑

j=1

|bi j |L jYi (t)

+
n∑

j=1

|ci j |L je
ητYi (t − τ j ) + BiUi (t)

}

≤ −(ai − η)et Yi (t) + et

⎡

⎣
n∑

j=1

|bi j | +
n∑

j=1

|ci j |eητ

⎤

⎦ L j sup
s∈[t−τ,t]

Y j (s)

+et BiUi (t), (3.19)
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and

D+Ui (t) = ηeηt |ui (t) − u∗
i | + eηt D+|ui (t) − u∗

i |
≤ ηUi (t) + eηtet {−|ui (t) − u∗

i | + αLi |yi (t) − y∗
i |}

≤ −(1 − η)etUi (t) + αLie
t Yi (t). (3.20)

By (3.10) and (3.18), we know that
{
Yi (t) ≤ K ,

Ui (t) ≤ K ,
t ∈ [−τ, 0]. (3.21)

We claim that {
Yi (t) ≤ K ,

Ui (t) ≤ K ,
t ∈ [0,+∞). (3.22)

First, for d > 1, we prove that there are
{
Yi (t) < dK ,

Ui (t) < dK .
t ∈ [−τ,+∞). (3.23)

Suppose that (3.23) does not hold in this sense that there is one component among Ui (say
Uk) and a first time t1 > 0 such that

Yk(t) < dK , Yk(t1) = dK , t ∈ [−τ, t1),

while Yi (t) < dK , i �= k, andUi (t) < dK , then we have D+Yk(t1) ≥ 0. On the other hand,
it follows from (3.17) and (3.19) that

0 ≤ D+Yk(t1) ≤ −
(

ai − η −
n∑

j=1

(|bi j | + |ci j |eητ )L j − Bi

)

et1dK < 0, (3.24)

which means a contradiction. Thus for t ∈ [−τ,+∞), we have Yi (t) < dK . while d → 1,
we obtain that Yi (t) ≤ K . That is, the claim (3.22)must hold. Namely, the unique equilibrium
(y∗, u∗)T of system (2.6) is globally exponentially stable. �

In view of the proof of Theorem 3.2, we obtained the following delay-dependent sufficient
condition.

Theorem 3.3 Under Assumptions 1 and 2, if there exists a constant η > 0 such that the
following conditions

⎧
⎨

⎩

ai − η −
n∑

j=1
(|bi j | + |ci j |eητ )L j − Bi > 0,

1 − η − αLi > 0, i = 1, 2, . . . , n,

(3.25)

hold, then system (2.6) has a unique equilibrium (y∗, u∗)T . And there exist a positive constant
K such that {|yi (t) − y∗

i | ≤ Ke−ηt ,

|ui (t) − u∗
i | ≤ Ke−ηt ,

(3.26)

hold, where K = max
{
K1, K2

}
> 0, K1 and K2 are given by (3.10), τ = max

1≤ j≤n
{τ j },

τ j = − log q j ≥ 0.
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4 Illustrative Examples

In this section, several examples are given to show the effectiveness of the conditions given
in this paper.

Example 4.1 Consider the following competitive neural networks
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −3x1 + f1(x1(t)) + f1(x1(qt)) + m11(t) + m12(t) − 1,
ẋ2(t) = −4x2 + f2(x2(t)) + 2 f2(x2(qt)) + m21(t) + m22(t) + 2,
ṁ11(t) = −m11(t) + f1(x1(t)),
ṁ12(t) = −m12(t),
ṁ21(t) = −m21(t) + f2(x2(t)),
ṁ22(t) = −m22(t),

(4.1)

where A =
(
3 0
0 4

)

, B =
(
1 0
0 1

)

, C =
(
1 0
0 2

)

, Bτ =
(
1 0
0 1

)

, q = 0.5, d1 = d2 = 1,

fi (yi ) = 0.4 tanh(yi ), i = 1, 2, then L1 = L2 = 0.4, α = d21 + d22 = 2.

Let si (t) =
n∑

j=1
d jmi j (t), system (4.1) can turn into

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = −3x1 + f1(x1(t)) + f1(x1(qt)) + s1(t) − 1,
ẋ2(t) = −4x2 + f2(x2(t)) + 2 f2(x2(qt)) + s2(t) + 2,
ṡ1(t) = −s1(t) + f1(x1(t)),
ṡ2(t) = −s2(t) + f2(x2(t)).

(4.2)

Let yi (t) = xi (et ), ui (t) = si (et ), (4.2) is equivalent to the following
⎧
⎪⎪⎨

⎪⎪⎩

ẏ1(t) = et {−3y1 + f1(y1(t)) + f1(y1(t − τ)) + u1(t) − 1},
ẏ2(t) = et {−4y2 + f2(y2(t)) + 2 f2(y2(t − τ)) + u2(t) + 2},
u̇2(t) = et {−u1(t) + f1(y1(t))},
u̇2(t) = et {−u2(t) + f2(y2(t))}.

(4.3)

We compute and obtain that
⎧
⎨

⎩

a1 −
2∑

j=1
(|b1 j | + |c1 j |)L j − B1 = 1.2 > 0,

1 > αL1 = 0.2 > 0,

and ⎧
⎨

⎩

a2 −
2∑

j=1
(|b2 j | + |c2 j |)L j − B2 = 1.8 > 0,

1 > αL2 = 0.2 > 0.

Therefore, by Theorems 3.1 and 3.2, system (4.2) has a unique equilibrium and it is
globally exponentially stable. By Matlab, we obtain that the equilibrium of (4.2) is
(−0.5257, 0.7516,−0.1884, 0.2485)T , the Matlab simulation result is presented in Fig.1.

Example 4.2 Consider the following competitive neural networks
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −4x1 + 2 f1(x1(t)) + 2 f1(x1(q1t)) + 0.5m11(t) + 0.5m12(t) + 1,
ẋ2(t) = −5x2 + f2(x2(t)) + 5 f2(x2(q2t)) + 0.5m21(t) + 0.5m22(t) + 2,
ṁ11(t) = −m11(t) + 0.5 f1(x1(t)),
ṁ12(t) = −m12(t),
ṁ21(t) = −m21(t) + 0.5 f2(x2(t)),
ṁ22(t) = −m22(t),

(4.4)
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Fig. 1 The trajectories of system (4.2) for (x(0), s(0))T = (−0.2, −0.5, 0.2, −0.8)T

where A =
(
4 0
0 5

)

, B =
(
2 0
0 1

)

, C =
(
2 0
0 5

)

, Bτ =
(
1 0
0 1

)

, q1 = 0.4, q2 = 0.6,

d1 = d2 = 0.5, fi (xi ) = 0.5(tanh(0.4xi ) + cos(0.4xi )), i = 1, 2.

Let si (t) =
n∑

j=1
d jmi j (t), system (4.4) can be turned into

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = −4x1 + 2 f1(x1(t)) + 2 f1(x1(q1t)) + s1(t) + 1,
ẋ2(t) = −5x2 + f2(x2(t)) + 5 f2(x2(q2t)) + s2(t) + 2,
ṡ1(t) = −s1(t) + 0.5 f1(x1(t)),
ṡ2(t) = −s2(t) + 0.5 f2(x2(t)).

(4.5)

Let yi (t) = xi (et ), ui (t) = si (et ), system (4.5) becomes as follows
⎧
⎪⎪⎨

⎪⎪⎩

ẏ1(t) = et {−4y1 + 2 f1(y1(t)) + 2 f1(y1(t − τ1)) + u1(t) + 1},
ẏ2(t) = et {−5y2 + f2(y2(t)) + 5 f2(y2(t − τ2)) + u2(t) + 2},
u̇2(t) = et {−u1(t) + 0.5 f1(y1(t))},
u̇2(t) = et {−u2(t) + 0.5 f2(y2(t))}.

(4.6)

By computing, τ1 = − log q1 = 0.9163, τ2 = − log q2 = 0.5108, τ = max{τ1, τ2} =
0.9163. L1 = L2 = 0.4. α = d21 + d21 = 0.5. Taking η = 0.2. We compute and obtain that

⎧
⎨

⎩

a1 −
2∑

j=1
(|b1 j | + |c1 j |eητ )L j − η − B1 = 1.0391 > 0,

1 − η − αL1 = 0.6 > 0,

and ⎧
⎨

⎩

a2 −
2∑

j=1
(|b2 j | + |c2 j |eητ )L j − η − B2 = 0.9978 > 0,

1 − η − αL2 = 0.6 > 0.

Then it follows from Theorems 3.1 and 3.3, system (4.5) has a unique equilibrium and
it is globally exponentially stable. Though Matlab, the equilibrium point of system (4.5) is
(1.2473, 1.6426, 0.3248, 0.3422)T . The Matlab simulation result is presented in Fig. 2.
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Fig. 2 The trajectories of system (4.5) for (x(0), s(0))T = (2.0, 1.0,−2.0,−1.0)T

Example 4.3 Consider the following competitive neural networks

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

STM : ε
dxi (t)
dt = −ai xi (t) +

2∑

j=1
Di j f j (x j (t)) +

2∑

j=1
Dτ
i j f j (x j (qt))

+ Bi si (t),
LTM : dsi (t)

dt = −si (t) + fi (xi (t)), i = 1, 2,

(4.7)

where ε = 1, A =
(
2.2 0
0 2.2

)

, D =
(−1 0.3
0.3 −1

)

, Dτ =
(−1.2 0.5

0.5 −1.2

)

, B =
(−0.1 0

0 0.3

)

, the activation is given by fi (s) = 0.01 sin(s) with Li = 0.01. q = 0.5.

We compute and obtain that

⎧
⎨

⎩

a1 −
2∑

j=1
(|b1 j | + |c1 j |)L j − B1 = 2.286 > 0,

1 − αL1 = 0.08 > 0,
⎧
⎨

⎩

a2 −
2∑

j=1
(|b2 j | + |c2 j |)L j − B2 = 1.886 > 0,

1 − αL2 = 0.08 > 0.

Then it follows from Theorems 3.1 and 3.2, system (4.7) has a unique equilibrium and it is
globally exponentially stable. the Matlab simulation result is presented in Fig. 3. Except for
time delay and activation function in Example 4.3, the other data are the same as Example 4.1
in [32]. The activation function is discontinuous in [32], in this paper we choose a continuous
and bounded one. The time delay is time-varying and bounded in [32], while in this paper the
time delay is a proportional one which is unbounded and time-varying. Thus, the obtained
results in [32] cann’t directly apply to Example 4.3 in the paper. In terms of time delay terms,
the obtained results in the paper are less conservative than the previous results.
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Fig. 3 The trajectories of system (4.7) for (x(0), s(0))T = (1, 2, −1,−2)T

5 Conclusions

In this paper, by the fixed point theorem and constructing delay differential inequality,
we discuss the global exponential stability of a class of competitive neural networks with
multi-proportional delays. And we obtain two novel delay-independent and delay-dependent
sufficient conditions which ensure the existence and uniqueness, and global exponential sta-
bility of equilibrium of the system. This method is to construct a delay differential inequality
rather than a Lyapunov functional, whose results can be easily checked. Different from the
prior works, delays here are proportional delays which are unbounded and time-varying. In
terms of time delay terms, the obtained results in the paper are less conservative than the
previous results.
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