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Abstract In this paper, we propose an artificial neural network (ANN) model for prediction
of color properties, including color yield (in terms of K/S value) and CIE L, a and b values of
1005 cotton knitted fabrics under the effect of laser engraving process with different process
parameters. Fabric factors to be examined in the ANN model included fiber composition,
fabric density, mass of fabric, fabric thickness, linear density of yarn, yarn twist, direction
of yarn twist and crimp. After obtaining the ANN model, its performance was compared
with linear regression model. It is noted that the ANN model produced superior results in
prediction of color properties of laser engraved 100 % cotton knitted fabrics. The relative
importance of the examined factors influencing color properties was also investigated.

Keywords Artificial neural network (ANN) · Cotton knitted fabric · Color properties ·
Laser engraving · K/S value · CIE L, a, and b values

1 Introduction

Recently, fashion and apparel trends have been dominated by faded and torn looks, resulting
in garment manufacturers fading and tearing textile products. Faded garment, e.g. blue jean,
can be sold at a higher price than non-faded one. The lure of higher profits is leading fabric
manufacturers to develop new techniques to improve the visual aspect of fabrics, especially
the faded and torn looks [1–4]. Conventional technologies involve creating designs by fading
the color in certain areas of fabric, e.g., in denim fabric, using processes such as sanding, sand
blasting, brushing, pre-washing, rinsing, stone washing, sand washing, snow washing, stone
washing with enzymes, bleaching, dyeing, printing and finishing. Although the desired faded
and torn effects can be achieved by such methods, the following problems are encountered
[4,5]:
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(i) difficulty in application and time consuming due to problems in work flow;
(ii) decrease in wear resistance of the product;
(iii) inability to create standard and reproducible designs;
(iv) successful application of designs is not possible on all textile surfaces;
(v) inability to create required nuances in shading;
(vi) inability to produce identical designs on both sides of the products;
(vii) insufficient visual effects;
(viii) loss of quality; and
(ix) inability to apply the original writings and designs onto the product.

In addition, production of faded and torn looks in fabric using conventional technologies,
such as enzyme washing and stone washing, involve consumption of large quantities of water
and the effluents would be highly contaminated by chemical products used in the process.
Also the time-consuming and old-fashioned conventional processes are not suitable to just-
in-time andmass-customised production and, therefore, are not cost effective. In order to deal
with these problems, laser treatment, being a dry treatment, has recently the potential to be an
alternative to conventional technologies [6–9]. Although laser technology has been used in
textile and apparel sector for many years, it is limited for marking textile surfaces and cutting.
However, with further technological developments, the laser technology can now be used to
transfer graphics of desired variety, size and intensity on all kinds of textile surfaces with
precision and without damaging the texture of the materials [10,11]. Literature has discussed
application of laser engraving on textile materials but it has been mainly focused on effect
on color properties of denim fabric [10,11]; little or no exploration of 100 % cotton knitted
fabric has been reported. On the other hand, when literature review shows that artificial neural
network (ANN)has been used inmany engineeringfields [12,13]. In applications in the textile
industry, ANN is mainly used in yarn and fabric technologies [14–18]; no comprehensive
model seems to have been proposed for predicting color properties of textile materials dyed
after laser treatment. Due to this reason, we explored the possibility of using ANN model
on predicting the colour properties of different textile materials of different properties and
nature such as (i) knitted fabrics with mixed fiber composition [6], (ii) 100 % cotton woven
fabrics [7], (iii) cotton-spandex fabrics [8], and (iv) denim fabric [9] under the effect of laser
engraving process. Thus, in this paper, we propose an artificial neural network (ANN) model
for prediction of color properties, including color yield (in terms of K/S value) and CIE
L, and a and b values of 100 % cotton knitted fabrics under the effect of laser engraving
with consideration of factors such as fiber composition, fabric density, mass of fabric, fabric
thickness, linear density of yarn, yarn twist, direction of yarn twist and crimp.

2 Experimental Methods and Hypothesis

2.1 Material

Four different colored knitted fabric materials were used with specifications as shown in
Table 1.

2.2 Laser Engraving Process

Knitted fabric samples were laser engraved with a CO2 source laser engraving machine
(GFK, Spain), having specifications as shown in Table 2. Resolution of the laser beam was
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Table 1 Fabric specifications

Fabric no. 1 2 3 4

Composition (cotton) (%) 100 100 100 100

Density (wale/cm) 16.54 6.30 8.66 14.96

Density (course/cm) 17.72 7.87 10.63 18.90

Mass (g/m2) 125.1 199.0 169.4 141.7

Thickness (mm) 0.44 1.30 1.00 0.42

Linear density (Ne) 8.25 2.20 7.32 7.77

Yarn twist Single yarn
Z twist

Single yarn
Z twist

Single yarn
Z twist

Single yarn
Z twist

Twist level (twist/cm) 9.71 9.95 13.39 8.30

Crimp (%) 262.5 354.0 303.3 288.0

Table 2 Specifications of laser
engraving machine Manufacturer/model GFK Marcetex FLEXI-150

Excitation frequency 81MHz

Laser medium CO2

Wavelength 10.6μm

Wave mode Pulsed

Power (W)/energy (mJ/p) Power: 100 W (60–230 W)

Pulse energy: 5–230 mJ

Pulse activation time: <45 μs

Polarization Linear polarization perpendicular to the
bottom of the laser head

set to 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68 and 72 dot per inch (DPI) with pixel time
of 100, 110, 120, 130, 140, 150, 160 and 170 μs. Resolution is defined as a parameter to
control the intensity of laser spots in a particular area, expressed in terms of DPI. Higher
DPI means higher resolution. Meanwhile, pixel time is defined as a parameter in computer
graphical file types to control the duration of time for which the laser head attacks the fabric,
in μs. Longer pixel time means more energy will be focused on the fabric, causing a higher
degree of engraving effect. Different knitted fabric samples (20 cm × 20 cm) were engraved
in accordance with various combinations of resolution and pixel time.

2.3 Colour Measurement

Colour measurement was performed by using a spectrophotometer of GretagMacbeth Color-
Eye7000A. Parameters of D65 Daylight with a 10◦ standard observer were used during color
measurement. Totally, four measurements were taken for each sample. The samples were
conditioned at 20 ±2 ◦C and relative humidity of 65 ± 2% before taking the measurements.
K/S (in terms of summation of individualK/S values over thewavelength from400 to 700 nm)
and CIE L, a and b values were obtained.

2.4 Artificial Neural Network Model

Laser treated knitted fabrics were tested. Two parameters, DPI and pixel time, were found
to be closely related to effects of coloring. After laser treatment, four colour-related data,
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Fig. 1 Basic structure of ANN [7]

i.e. K/S (color-ks), CIE L value (color-l), CIE a value (color-a) and CIE b value (color-b)
were obtained. In order to find the optimal neural network, ANN models having different
topologies were formulated. The basic topology of the network is shown in Fig. 1. In the
ANN model, fabric specifications, including composition, density, mass, thickness, linear
density, yarn twist and crimp were put in the input layer. Besides, DPI and pixel time were
also two important input nodes in case of laser treated samples. For the output layer, the four
nodes were corresponding to color-ks, color-l, color-a and color-b.

In this study, according to Fig. 1, the basic ANN model is same. The only difference is
the structure (number of hidden layers and nodes) for the ANN. Each colour property was
evaluated separately because the colour properties varies a lot as shown in the experimental
data and they cannot be adapted to the sameANN. The Levenberg-Marquardt method and the
Matlab Neural Network Toolbox were used for the ANN analysis. We did the experiments
for several times and each with different random initial values.

For training the ANN model, a typical three-layer network with Bayesian regulation
backpropagationwas used. It is considered as themost popular learning algorithm for learning
of a multi-layered feed forward neural network [19]. For activation function, the sigmoid
function is typically used [20], and in this case, was given by

sigmoid(a) = 1

1 + e−a

This function can range between 0 and 1, and is differentiable. Other parameters of the
network were set as shown in Table 3.

In addition, determining the number of hidden layers and the number of nodes in each
layer is not straightforward; this has still not been solved perfectly. There are a number of
theoretical results concerning the number of hidden layers in a network. Specifically, Hetcht-
Nielsen [21] has shown that a network with two hidden layers can approximate any arbitrary
nonlinear function and generate any complex decision region for classification problems
[21]. Later it was shown by Cybenko [20] that a single layer is enough to form an arbitrarily
close approximation to any nonlinear decision boundary [20]. Hornik and Stinchombe [19]
have come up with a more general theoretical result. They have shown that a single hidden
layer feed forward network with arbitrary sigmoid hidden layer activation functions can well
approximate an arbitrary mapping from one finite dimensional space to another [19].
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Table 3 Artificial neural
network parameters

Parameter name Value Description

net.trainParam.epochs 1000 Maximum number of epochs
to train

net.trainParam.goal 1e−6 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment
parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e10 Maximum value for mu

net.trainParam.max_fail 10 Maximum validation failures

net.trainParam.min_grad 1e−10 Minimum performance
gradient

Table 4 Artificial neural network topology

No. N1 N2 N3 N4 N5 N6 N7 N8 N9

Topology

Hidden layer 1 1 1 1 1 2 2 2 2

Nodes 10 15 20 25 30 10–5 10–10 15–10 20–10

Generally speaking, with more nodes in hidden layer, the network’s ability of approxima-
tion is increased while the generalization ability is decreased. Therefore, the structure of the
ANN is usually decided by experience together with trials [22]. On top of that, the size of
the training set and the number of input/output nodes also affect the topology of the optimal
neural network [23].

In this survey, nine different topologies of the neural network were constructed and tested.
According to experience and practice, considering the fact that the data size (totally 327
terms) and the number of input/output nodes are small, an ANN with more than 30 nodes
in the hidden layer is not necessary in this case. This is because more nodes cannot get
better performance and considerable training time is required to be spent, which may be
computationally expensive. Smaller networks require less memory to store the connection
weights and can be implemented in hardware more easily and more economically. Training a
smaller network usually requires less computation because each iteration is computationally
less expensive. Also, smaller networks have very short propagation delays from inputs to
outputs. This is very important in the testing phase of the network, where fast responses are
usually required. Details of the ANN topology are shown in Table 4.

In the experiment, there are 327 vectors for each group. These data were randomly divided
into three sets: training (60%), cross validation (20%) and test (20%) in order to meet the
requirements of both accuracy and generalization.

3 Results and Discussion

3.1 ANN Model

In order to evaluate the effect of ANN model, the MAE (mean absolute error), MSE (mean
square error) and RMSE (rooted mean square error) are calculated. These three functions
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are widely used in evaluation of the effect of fitting. In this study, MSE is the mainly used
evaluation function and played the most important role in deciding the quality of different
ANN models. MAE and RMSE are calculated for reference purpose. The definitions are as
follows:

MAE = 1

n

n∑

i=1

(abs(ti − oi ))

MSE = 1

n

n∑

i=1

(ti − oi )
2

RMSE = √
MSE

In the function, ti and oi are target output and ANN predicted output, respectively.
As mentioned before, the whole dataset was divided into training, validation and test

sets. After training the networks, the models are expected to be used in large scale prediction
works. So, theywere validated by an unseen testing data set to predict color values. Therefore,
besidesMAEandMSE, test error, which is usually indicative of robustness and generalization
of the model, is also an important factor in judging the quality of the neural network.

Besides, some other statistical information was also collected. Detailed results for color
properties, K/S value, CIE L, CIE a and CIE b values are shown Tables 5, 6, 7, and 8,
respectively. Here, for simplicity, only the network with the smallest MSE for validation set
is highlighted as the best network model.

It can be seen from the above tables that for two hidden layer neural networks, training
errors are normally smaller than the single hidden layer network. But it does not matter for

Table 5 ANN statistical data for color-ks prediction

Network No. N1 N2 N3 N4 N5 N6 N7 N8 N9

MSE for different sets

Train error 70.926 51.693 67.918 73.678 70.751 68.789 61.101 65.048 72.453

Validate error 65.015 86.343 41.887 48.182 64.601 39.538 97.879 82.435 78.837

Test error 49.919 55.969 56.807 62.33 68.568 71.716 61.193 49.636 70.98

For total data

MAE 4.729 4.138 4.572 4.780 4.875 4.473 4.675 4.673 4.756

MSE 65.576 59.431 60.535 66.354 69.094 63.556 68.430 65.441 73.429

RMSE 8.099 7.709 7.780 8.146 8.312 7.972 8.272 8.0905 8.569

Min error 0.006 0.002 0.005 0.0001 0.014 0.008 0.027 0.003 0.006

Max error 54.789 55.390 61.065 64.225 52.863 53.807 53.831 53.098 66.606

Relative error distribution

0–1% 71 79 68 63 74 71 73 68 76

1–5% 155 185 164 165 158 175 164 169 163

5–10% 49 43 36 49 45 47 40 39 29

10–50% 51 20 57 47 48 33 50 48 56

>50% 1 0 2 3 2 1 0 3 3

Network no. 6 gives the best performance in ANN models related to color-ks prediction with the smallest
MSE validate value of 39.538
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Table 6 ANN statistical data for color-l prediction

Network no. N1 N2 N3 N4 N5 N6 N7 N8 N9

MSE for different sets

Train error 0.220 0.339 0.439 0.368 0.232 0.401 0.288 0.368 0.303

Validate error 0.431 0.475 0.450 0.368 0.329 0.436 0. 256 0.308 0.484

Test error 0.350 0.391 0.317 0.379 0.457 0.315 0.384 0.407 0.332

For total data

MAE 0.402 0.446 0.482 0.447 0.395 0.466 0.406 0.446 0.430

MSE 0.288 0.376 0.417 0.370 0.296 0.391 0.301 0.364 0.345

RMSE 0.536 0.613 0.646 0.609 0.544 0.625 0.548 0.603 0.587

Min error 0.001 0.001 0.002 0.002 0.007 0.002 0.0004 0.003 0.0002

Max error 2.051 3.177 2.524 2.236 2.686 2.692 1.919 2.279 2.375

Relative error distribution

0–1% 192 185 177 187 194 178 203 192 191

1–5% 128 136 143 131 128 141 119 129 128

5–10% 7 4 7 9 5 8 5 6 8

10–50% 0 2 0 0 0 0 0 0 0

>50% 0 0 0 0 0 0 0 0 0

Network no. 7 gives the best performance in ANN models related to color-l prediction with the smallest MSE
validate value of 0.256

Table 7 ANN statistical data for color-a prediction

Network no. N1 N2 N3 N4 N5 N6 N7 N8 N9

MSE for different sets

Train error 0.039 0.0407 0.043 0.041 0.035 0.039 0.041 0.029 0.027

Validate error 0.040 0.041 0.038 0.041 0.041 0.036 0.046 0.042 0.041

Test error 0.033 0.035 0.029 0.038 0.026 0.026 0.012 0.038 0.042

For total data

MAE 0.120 0.124 0.124 0.129 0.117 0.116 0.113 0.110 0.107

MSE 0.038 0.0390 0.039 0.040 0.034 0.036 0.036 0.033 0.033

RMSE 0.195 0.197 0.198 0.2000 0.185 0.189 0.189 0.182 0.182

Min error 0.001 0.0002 0.0007 0.0010 0.0000 0.0001 0.0002 0.0003 0.0002

Max error 0.877 0.842 0.891 0.838 0.702 0.709 0.762 0.897 0.848

Relative error distribution

0–1% 75 75 82 71 77 81 83 87 99

1–5% 106 89 92 87 100 98 110 88 91

5–10% 47 50 51 54 44 45 44 61 52

10–50% 65 74 68 70 75 71 60 60 53

>50% 34 39 34 45 31 32 30 31 32

Network no. 6 gives the best performance in ANNmodels related to color-a prediction with the smallest MSE
validate value of 0.036

123



646 C. W. Kan, L. J. Song

Table 8 ANN statistical data for color-b prediction

Network no. N1 N2 N3 N4 N5 N6 N7 N8 N9

MSE for different sets

Train error 0.038 0.042 0.039 0.040 0.038 0.037 0.032 0.0226 0.036

Validate error 0.039 0.042 0.058 0.055 0.060 0.047 0.032 0.044 0.055

Test error 0.063 0.051 0.053 0.045 0.061 0.039 0.044 0.072 0.043

For total data

MAE 0.158 0.169 0.161 0.159 0.167 0.145 0.138 0.140 0.151

MSE 0.043 0.044 0.046 0.044 0.047 0.039 0.034 0.036 0.041

RMSE 0.208 0.2106 0.213 0.209 0.217 0.198 0.185 0.190 0.204

Min error 0.001 0.001 0.002 0.002 0.0003 0.0002 0.0003 0.001 0.0001

Max error 0.883 0.748 0.848 0.8908 0.767 0.724 0.723 0.768 0.809

Relative error distribution

0–1% 83 58 88 86 80 100 93 99 90

1–5% 183 208 175 184 173 173 190 180 189

5–10% 44 46 49 42 57 38 31 35 32

10–50% 14 13 13 13 13 13 10 11 14

>50% 3 2 2 2 4 3 3 2 2

Network No. 7 gives the best performance in ANNmodels related to color-b prediction with the smallest MSE
validate value of 0.032

the test error. On the other hand, the one layer network can also perform well in test error,
which means it is more robust in most cases.

From Tables 5, 6, 7, and 8 above, it can also be seen that in ANN model, the relative error
distributes mostly in the range of 0–5%, which is an acceptable range. The only exception
is in Table 7, which predicts Color-a values. However, considering the fact that values for
Color-a are mostly very small, it is unavoidable that the relative errors become bigger. The
maximum error for Color-a is below 1, which proves that the prediction result is acceptable.

3.2 Linear Regression Model

In this study, a traditional linear regression model was also established for the sake of com-
parison. In general, response variable y may be related to k regression variables. The function
is as in the following:

y = β0 + β1x1 + β2x2 + ... + βk xk + ε

Parameters βi are called regression coefficients. This model describes a hyperplane in k-
dimensional space of regression variables. The method of least squares is typically used
to estimate regression coefficients in a multiple linear regression model. Here, the linear
regression model is applied in the above experiment data. The results are shown in Table 9.

3.3 Comparison Between ANN and LR

It is evident from the tables that the predictive power of the ANN model is the best. From
Table 9, all evaluation numbers are obviously much greater than those of Tables 5, 6, 7, and
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Table 9 LR model statistical
data

Color-ks Color-l Color-a Color-b

MAE 23.849 1.721 1.357 1.001

MSE 1151.4 4.918 3.148 1.684

RMSE 33.932 2.218 1.774 1.298

Min error 0.018 0.041 0.005 0.005

Max error 176.564 8.914 7.438 5.888

Relative error distribution

0–1% 15 53 3 8

1–5% 36 157 28 41

5–10% 51 71 54 91

10–50% 168 46 47 157

>50% 57 0 195 30

Fig. 2 a ANN model fitting for Color-ks. b LR model fitting for Color-ks

8, which mean applying LR model for prediction in this case is worse than the ANN model.
Figs. 2, 3, 4, and 5 below depict the comparison graphically.

3.4 The Relative Importance of Input Variables

In order to find out the relative importance of various input variables, an additional experiment
was performed. In this experiment, all input variables except one designated variable were
retained. Then MAE, MSE and other statistical information of the new ANN model were
calculated and further compared with the optimized one. Here, for simplicity, the increase in
MSE value was treated as the indicator of importance of the excluded input. The results are
shown in Table 10.

It can be seen that DPI and pixel time are the two dominant variables, as expected. Among
these two variables, DPI is significantly more important than pixel time. The remaining
variables are far less dominant. Eliminating one of them usually causes increase of MSE to
about 10–30%.

4 Conclusions

In the experiment, we predicted color values for four fabric materials after some laser treat-
ment using both ANN established by different topologies and LR models. Several statistical
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Fig. 3 a ANN model fitting for Color-l. b LR model fitting for Color-l

Fig. 4 a ANN model fitting for Color-a. b LR model fitting for Color-a

Fig. 5 a ANN model fitting for Color-b. b ANN model fitting for Color-b

tests were conducted to examine the performance of these experiments. Experimental results
suggest that changes in number of nodes of the neural network model affect the performance
of the model.

Results reflect that color values accurately with the help of the ANNmodel. These predic-
tion results demonstrate the usefulness of laser treatment before coloring and may find good
applications for future use by the textile industry. Compared with the ANN, the LR model
did not perform well in the experiment due to limitations of the model itself.
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Table 10 Relative importance of the input variables

Excluded
variable

DPI Pixel
time

Composition Density Mass Thickness Linear
density

Twist Crimp

Color-ks (optimized MSE is 59.431)

MSE 1182.70 323.62 76.80 75.72 66.09 68.18 70.09 72.50 72.61

% Increase 1890.04 444.53 29.23 27.41 11.20 14.71 17.93 21.99 22.18

Color-l (optimized MSE is 0.296)

MSE 5.26 1.13 0.39 0.34 0.41 0.35 0.40 0.41 0.35

% Increase 1674.87 280.23 32.130 15.14 37.71 16.53 35.73 37.99 16.48

Color-a (optimized MSE is 0.033)

MSE 4.25 0.26 0.03 0.04 0.04 0.04 0.04 0.04 0.04

% Increase 12763.40 674.32 1.55 13.67 10.70 22.06 18.73 20.65 12.42

Color-b (optimized MSE is 0.034)

MSE 3.13 0.40 0.04 0.05 0.05 0.05 0.05 0.04 0.04

% Increase 9025.46 1057.80 22.44 44.09 37.08 39.87 58.38 12.44 25.23
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