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Abstract Using the exponential dichotomy of linear dynamic equations on time scales, a
fixed point theorem and the theory of calculus on time scales, we obtain some sufficient con-
ditions for the existence and global exponential stability of pseudo almost periodic solutions
for a class of neutral type high-order Hopfield neural networks with delays in leakage terms
on time scales. Our results show that the continuous-time neural network and its discrete-
time analogue have the same dynamical behaviors. Finally, we give a numerical example and
simulation to illustrate the feasibility of our results. Results of this paper are completely new
even if the time scale T = R or Z.

Keywords Pseudo almost periodic solution · High-order Hopfield neural networks ·
Exponential stability · Time scales

1 Introduction

Neural networks are widely applied in signal processing, pattern recognition, static image
processing, associative memory, and combinatorial optimization. In such applications, it is
major importance to ensure that the designed neural network is stable [1,2]. Since high-order
Hopfield neural networks (HHNNs) have stronger approximation property, faster conver-
gence rate, great stronger capacity and higher fault tolerance, HHNNs have been extensively
applied in psychophysics, robotics, adaptive pattern recognition and image processing.
Hence, HHNNs have been widely studied in recent years. For instance, in [3–6], authors
studied the absolute stability, robust stability, global asymptotic stability and exponential
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stability of HHNNs, respectively; in [7], by using coincidence degree theory and Lyapunov
functional, authors studied the existence and global exponential stability of periodic solu-
tions for delayedHHNNs, respectively; in [8], the author obtained sufficient conditions on the
existence and exponential stability of anti-periodic solutions for HHNNs; in [9,10], by using
a fixed point theorem, Lyapunov functional method and differential inequality techniques,
authors obtained sufficient conditions on the existence and exponential stability of almost
periodic solutions for HHNNs.

In fact, it is natural and important that systems will contain some information about the
derivative of the past state to further describe and model the dynamics for such complex
neural reactions [11], many authors investigated the dynamical behaviors of neutral type
neural networks. For example, authors in [12–17] studied the stability for different classes
of neutral type neural networks; authors in [18] obtained some sufficient conditions for the
existence of periodic solutions for neutral type cellular neural networks with delays; authors
in [19–21] studied almost periodic solutions of several classes of neural networkswith neutral
delays.

On the other hand, very recently, a leakage delay, which is the time delay in the leakage
term of the systems and a considerable factor affecting dynamics for the worse in the systems,
is being put to use in the problem of stability for neural networks (see [22,23]). Such time
delays in the leakage term are difficult to handle but has great impact on the dynamical
behavior of neural networks. Therefore, it is meaningful to consider neural networks with
time delays in leakage terms. For example, authors of [24–27] studied the stability of some
classes of neural networks with leakage delays; authors of [28] studied the equilibrium point
of two classes fuzzy neural networks with delays in leakage terms; authors of [29] studied the
global attractive periodic solutions of BAM neural networks with continuously distributed
delays in the leakage term; authors of [30,31] studied almost periodic solutions of a classes
of neural networks with leakage delays.

Also, as we all know that both continuous time and discrete time neural networks have
equal importance in various applications. But it is troublesome to study the dynamical prop-
erties for continuous and discrete time systems, respectively. Hence, the theory of time scales,
which was initialed by Hilger [32] in his Ph.D. thesis to contain both difference and differen-
tial calculus in a consistent way, has recently received a lot of attention from many scholars.
By choosing the time scale to be the set of real numbers and the set of integers, results on time
scales yield results concerning with differential equations and difference equations, respec-
tively. Besides, results on time scales can also be extended to other types of equations, for
example, q-difference equations. Therefore, it is significant to study the dynamical behaviors
of neural networks on time scales. For instance, in [33], authors studied periodic solutions
of BAM neural networks on time scales; in [34], authors studied almost periodic solutions
of neural networks on time scales.

In reality, almost periodicity is much universal than periodicity. And the concept of the
pseudo-almost periodicity on time scales, which is the central question in this paper, was
introduced by Li and Wang [35] in 2012, as a natural generalization of the well-known
almost periodicity. However, to the best of our knowledge, there is no paper published on
the pseudo almost periodic of high-order Hopfield neural networks with variable delays in
leakage terms on time scales.

Motivated by the above, in this paper, we consider the following neutral type high-order
Hopfield neural networks with variable delays on time scales:
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x�
i (t) = −ci (t)xi (t − τi (t)) +

n∑

j=1

ai j (t) f j (x
�
j (t − δi j (t)))

+
n∑

j=1

n∑

l=1

bi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t))) + Ii (t), t ∈ T, (1.1)

where T is an almost periodic time scale, i = 1, 2, . . . , n, n corresponds to the number of
units in a neural network; xi (t) corresponds to the state vector of the i th unit at the time t ; ci (t)
represents the rate with which the i th unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs; ai j (t) and bi jl(t) are the first-order
and second-order connection weights of the neural network; τi (t) > 0 with t − τi (t) ∈ T

denotes time delay in the leakage term; δi j (t) ≥ 0, σi jl(t) ≥ 0, ζi jl(t) ≥ 0 correspond to the
transmission delays and satisfy t − δi j (t) ∈ T, t − σi jl(t) ∈ T, t − ζi jl(t) ∈ T; Ii (t) denote
the external inputs at time t ; f j and g j are the activation functions of signal transmission,
j = 1, 2, . . . , n.

Remark 1.1 If we take T = R, then (1.1) reduces to the following form

x ′
i (t) = −ci (t)xi (t − τi (t)) +

n∑

j=1

ai j (t) f j (x
′
j (t − δi j (t)))

+
n∑

j=1

n∑

l=1

bi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t)))

+ Ii (t), i = 1, 2, . . . , n, t ∈ R; (1.2)

if we take T = Z, then (1.1) reduces to the following form

xi (k + 1) − xi (k) = − ci (k)xi (k − τi (k)) +
n∑

j=1

ai j (k) f j (x j (k + 1 − δi j (k + 1))

− x j (k − δi j (k)))

+
n∑

j=1

n∑

l=1

bi jl(k)g j (x j (k − σi jl(k)))gl(xl(k − ζi jl(k)))

+ Ii (k), i = 1, 2, . . . , n, k ∈ Z. (1.3)

To the best of our knowledge, there is no paper published on the existence and exponential
stability of pseudo almost periodic solutions for (1.2) and (1.3).

Our main purpose of this paper is to study the existence and global exponential stability
of pseudo almost periodic solutions for (1.1). Our results of this paper are completely new
even if the time scale T = R or Z. Our results show that the existence and exponential
stability of almost periodic solutions for system (1.1) not only depends on the delays in the
leakage term, but also depends on the neutral terms in the network. Our results also show
that the continuous-time neural network (1.2) and its discrete-time analogue (1.3) have the
same dynamical behaviors, which provides a theoretical basis for the numerical simulation
of continuous-time neural network system (1.2).

For convenience, we denote [a, b]T = {t |t ∈ [a, b]∩T}. For a bounded function f : T →
R, denote f + = sup

t∈T
| f (t)|, f − = inf

t∈T | f (t)|. We denote by R the set of real numbers, by
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R
+ the set of positive real numbers, by E

n a real Banach space with the norm || · ||, by D a
subset of En and by BC(T× D,En) the set of all En-valued bounded continuous functions.

The initial condition of (1.1) is the following

xi (s) = ϕi (s), x�
i (s) = ϕ�

i (s), s ∈ [−θ, 0]T,

where θ = max
{
max
1≤i≤n

τ+
i ,max

(i, j)
{δ+

i j , σ
+
i jl , ζ

+
i jl}
}
, ϕi ∈ C1([−θ, 0]T,R), i = 1, 2, . . . , n.

This paper is organized as follows: In Sect. 2, we introduce some notations and definitions
and state some preliminary results which are needed in later sections. In Sect. 3, we establish
some sufficient conditions for the existence of pseudo almost periodic solutions of (1.1) and
prove that the pseudo almost periodic solution is globally exponentially stable. In Sect. 4, we
give an example to illustrate the feasibility of our results obtained in previous sections.

2 Preliminaries

In this section, we introduce some definitions and state some preliminary results.

Definition 2.1 [36] Let T be a nonempty closed subset (time scale) of R. The forward and
backward jump operators σ, ρ : T → T and the graininess μ : T → R+ are defined,
respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and μ(t) = σ(t) − t.

Lemma 2.1 [36] Assume that p, q : T → R are two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(i i) ep(t, s) = 1

ep(s,t)
= e	p(s, t);

(i i i) ep(t, s)ep(s, r) = ep(t, r);
(iv) (ep(t, s))� = p(t)ep(t, s).

Lemma 2.2 [36] Let f, g be �-differentiable functions on T , then

(i) (ν1 f + ν2g)� = ν1 f � + ν2g�, for any constants ν1, ν2;
(i i) ( f g)�(t) = f �(t)g(t) + f (σ (t))g�(t) = f (t)g�(t) + f �(t)g(σ (t));

Lemma 2.3 [36] Assume that p(t) ≥ 0 for t ≥ s, then ep(t, s) ≥ 1.

Definition 2.2 [36] A function p : T → R is called regressive provided 1 + μ(t)p(t) 
= 0
for all t ∈ T

k ; p : T → R is called positively regressive provided 1 + μ(t)p(t) > 0 for all
t ∈ T

k . The set of all regressive and rd-continuous functions p : T → R will be denoted by
R = R(T,R) and the set of all positively regressive functions and rd-continuous functions
will be denoted by R+ = R+(T,R).

Lemma 2.4 [36] Suppose that p ∈ R+, then

(i) ep(t, s) > 0, for all t, s ∈ T;
(i i) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Lemma 2.5 ([36]) If p ∈ R and a, b, c ∈ T, then

[ep(c, ·)]� = −p[ep(c, ·)]σ
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and

∫ b

a
p(t)ep(c, σ (t))�t = ep(c, a) − ep(c, b).

Lemma 2.6 [36] Let a ∈ T
k, b ∈ T and assume that f : T×T

k → R is continuous at (t, t),
where t ∈ T

k with t > a. Also assume that f �(t, ·) is rd-continuous on [a, σ (t)]. Suppose
that for each ε > 0, there exists a neighborhood U of τ ∈ [a, σ (t)] such that

| f (σ (t), τ ) − f (s, τ ) − f �(t, τ )(σ (t) − s)| ≤ ε|σ(t) − s|, ∀s ∈ U,

where f � denotes the derivative of f with respect to the first variable. Then

(i) g(t) := ∫ ta f (t, τ )�τ implies g�(t) := ∫ ta f �(t, τ )�τ + f (σ (t), t);

(i i) h(t) := ∫ bt f (t, τ )�τ implies h�(t) := ∫ bt f �(t, τ )�τ − f (σ (t), t).

In the following, we recall some definitions, notations and basic results of almost period-
icity and pseudo almost periodicity on time scales. For more details, we refer the reader to
[35,37].

Definition 2.3 [37] A time scale T is called an almost periodic time scale if

� := {τ ∈ R : t ± τ ∈ T, ∀t ∈ T
} 
= {0}.

In this paper, we restrict our discussion on almost periodic time scales.

Definition 2.4 [37] Let T be an almost periodic time scale. A function f (t) : T → R
n is

said to be almost periodic on T, if for any ε > 0, the set

E(ε, f ) = {τ ∈ � : | f (t + τ) − f (t)| < ε, ∀ t ∈ T}

is relatively dense, that is, for any ε > 0, there exists a constant l(ε) > 0 such that each
interval of length l(ε) contains at least one τ ∈ E(ε, f ) such that

| f (t + τ) − f (t)| < ε, ∀ t ∈ T.

The set E(ε, f ) is called the ε-translation set of f (t), τ is called the ε-translation number of
f (t), and l(ε) is called the inclusion of E(ε, f ).

Definition 2.5 [37] Let T be an almost periodic time scale. A function f ∈ C(T × D,En)

is said to be almost periodic in t uniformly for x ∈ D, if for any ε > 0 and for each compact
subset S ⊂ D, there exists a constant l(ε) > 0 such that each interval of length l(ε) contains
at least one τ ∈ E(ε, f ) such that

| f (t + τ, x) − f (t, x)| < ε, ∀ t ∈ T, x ∈ S.
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In the following, we introduce some notations

AP(T × D)n = { f ∈ C(T × D,En) : f is almost periodic in t uniformly for x ∈ D},
AP(T)n = { f ∈ C(T,En) : f is almost periodic},

PAP0(T)n =
{
f ∈ BC(T,En) : f is � − measurable such that

lim
r→+∞

1

2r

∫ t0+r

t0−r
| f (s)|�s = 0,where t0 ∈ T, r ∈ �

}
,

PAP0(T × D)n =
{
f ∈ BC(T × D,En) : f (·, x) ∈ PAP0(T) for each x ∈ D and

lim
r→+∞

1

2r

∫ t0+r

t0−r
‖ f (s, x)‖�s = 0 uniformly for x ∈ D,

where t0 ∈ T, r ∈ �

}
.

Definition 2.6 [35] Let T be an almost periodic time scale. A function f ∈ C(T × D,En)

is said to be pseudo almost periodic in t uniformly for x ∈ D, if f = g + ϕ, where
g ∈ AP(T× D)n and ϕ ∈ PAP0(T× D)n . We denote by PAP(T× D)n the set of all such
functions.

Definition 2.7 [35] Let T be an almost periodic time scale. A function f ∈ C(T,En) is said
to be pseudo almost periodic, if f = g + ϕ, where g ∈ AP(T)n and ϕ ∈ PAP0(T)n . We
denote by PAP(T)n the set of all such functions.

Definition 2.8 [35] Let X ∈ R
n and A(t) be a n × n matrix-valued function on T, the linear

system

X�(t) = A(t)X (t), t ∈ T (2.1)

is said to admit an exponential dichotomy onT if there exist positive constants ki , αi , i = 1, 2,
projection P and the fundamental solution matrix X (t) of (2.1) satisfying

|X (t)PX−1(s)| ≤ k1e	α1(t, s), s, t ∈ T, t ≥ s,

|X (t)(I − P)X−1(s)| ≤ k2e	α2(s, t), s, t ∈ T, t ≤ s,

where | · | is a matrix norm on T, that is, if A = (ai j )n×m,, then we can take |A| =
( n∑
i=1

m∑
j=1

|ai j |2
) 1
2 .

Lemma 2.7 [35] Suppose that A(t) is almost periodic and g ∈ PAP(T)n, (2.1) admits an
exponential dichotomy, then the following system:

X�(t) = A(t)X (t) + g(t)

has a unique bounded solution X ∈ PAP(T)n and X (t) is expressed as follows

X (t) =
∫ t

−∞
X (t)PX−1(σ (s))g(s)�s −

∫ +∞

t
X (t)(I − P)X−1(σ (s))g(s)�s,

where X (t) is the fundamental solution matrix of (2.1).
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Lemma 2.8 [37] Let ci (t) > 0 and −ci (t) ∈ R+, ∀ t ∈ T. If

min
1≤i≤n

{
inf
t∈T ci (t)

} = m̃ > 0,

then the linear system

x�(t) = diag
(− c1(t),−c2(t), . . . ,−cn(t)

)
x(t) (2.2)

admits an exponential dichotomy on T.

Definition 2.9 Let x∗(t) = (x∗
1 (t), x

∗
2 (t), . . . , x

∗
n (t))

T be a pseudo almost periodic solution
of (1.1) with initial value ϕ∗(s) = (ϕ∗

1 (s), ϕ
∗
2 (s), . . . , ϕ

∗
n (s))

T . If there exist positive con-
stants λ with 	λ ∈ R+ and M > 1 such that such that for an arbitrary solution x(t) =
(x1(t), x2(t), . . . , xn(t))T of (1.1) with initial value ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s))T sat-
isfies

||x − x∗|| ≤ M ||ϕ − ϕ∗||e	λ(t, t0), t0 ∈ [−θ,∞)T, t ≥ t0.

Then the solution x∗(t) is said to be globally exponentially stable.

3 Main Results

In this section, we state and prove our main results.
Let X

∗ = { f | f, f � ∈ PAP(T,Rn)} with the norm || f ||X∗ = max{| f |1, | f �|1},
where | f |1 = max

1≤i≤n
f +
i , | f �|1 = max

1≤i≤n
( f �

i )+. Then X
∗ is a Banach space. Let ϕ0(t) =

(ϕ0
1(t), ϕ

0
2(t), . . . , ϕ

0
n(t))

T , whereϕ0
i (t) = ∫ t−∞ e−ai (t, σ (s))Ii (s)�s, i = 1, 2, . . . , n and L

be a constant satisfying L ≥ max
{||ϕ0||X∗ , max

1≤j≤n
{| f j (0)|}, max

1≤ j≤n
{|h j (0)|}, max

1≤ j≤n
{|g j (0)|}

}
.

Theorem 3.1 Suppose that

(H1) ci ∈ C(T,R+) with −ci ∈ R+ is almost periodic and ai j , bi jl , Ii ∈ C(T,R),
τi , δi j , σi jl , ζi jl ∈ C(T,R+) are pseudo almost periodic, where i, j, l = 1, 2, . . . , n;

(H2) f j , g j ∈ C(R,R) and there exist positive constants N j , L j , Hj such that |g j (u)| ≤
N j , | f j (u) − f j (v)| ≤ L j |u − v|, |g j (u) − g j (v)| ≤ Hj |u − v|, where u, v ∈ R, j =
1, 2, . . . , n;

(H3) max
1≤i≤n

{
θi
c−
i
,
(
1 + c+

i

c−
i

)
θi
} ≤ 1

2 , max
1≤i≤n

{ γi

c−
i
,
(
1 + c+

i

c−
i

)
γi
}

< 1, where θi = c+
i τ+

i +
n∑
j=1

(
a+
i j (L j + 1

2 ) +
n∑

l=1
b+
i jl Nl(Hj + 1

2 )
)
, γi = c+

i τ+
i +

n∑
j=1

(
a+
i j L j +

n∑
l=1

b+
i jl(N j Hl +

Hj Nl)
)
, i = 1, 2, . . . , n,

then (1.1) has a unique pseudo almost periodic solution inX0 = {ϕ ∈ X
∗∣∣ ||ϕ−ϕ0||X∗ ≤ L

}
.

Proof For any given ϕ ∈ X
∗, we consider the following system:

x�
i (t) = −ci (t)xi (t) + Fi (t, ϕ) + Ii (t), (3.1)
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where

Fi (t, ϕ) = ci (t)
∫ t

t−τi (t)
ϕ�
i (s)�s +

n∑

j=1

ai j (t) f j (ϕ
�
j (t − δi j (t)))

+
n∑

j=1

n∑

l=1

bi jl(t)g j (ϕ j (t − σi jl(t)))gl(ϕl(t − ζi jl(t))), i = 1, 2, . . . , n.

Since min
1≤i≤n

{
inf ci (t)

}
> 0, t ∈ T, it follows from Lemma 2.8 that the linear system

x�
i (t) = −ci (t)xi (t), i = 1, 2, . . . , n

admits an exponential dichotomy on T. Thus, by Lemma 2.7, we obtain that system (3.1) has
exactly one pseudo almost periodic solution as follows

xϕ
i (t) =

∫ t

−∞
e−ci (t, σ (s))

(
Fi (s, ϕ) + Ii (s)

)
�s, i = 1, 2, . . . , n.

For ϕ ∈ X
∗, then ||ϕ||X∗ ≤ ||ϕ − ϕ0||X∗ + ||ϕ0||X∗ ≤ 2L . Define the following operator

� : X∗ → X
∗, (ϕ1, ϕ2, . . . , ϕn)

T → (xϕ
1 , xϕ

2 , . . . , xϕ
n )T .

First we show that for any ϕ ∈ X
∗, we have �ϕ ∈ X

∗. Note that

|Fi (s, ϕ)| =
∣∣∣∣ci (s)

∫ s

s−τi (s)
ϕ�
i (ϑ)�ϑ +

n∑

j=1

ai j (s) f j (ϕ
�
j (s − δi j (s)))

+
n∑

j=1

n∑

l=1

bi jl(s)g j (ϕ j (s − σi jl(s)))gl(ϕl(s − ζi jl(s)))

∣∣∣∣

≤ c+
i τ+

i ||ϕ||X∗ +
n∑

j=1

a+
i j

(∣∣ f j (ϕ�
j (s − δi j (s))) − f j (0)

∣∣+ ∣∣ f j (0)
∣∣
)

+
n∑

j=1

n∑

l=1

b+
i jl Nl

(∣∣g j (ϕ j (s − σi jl(s))) − g j (0)
∣∣+ ∣∣g j (0)

∣∣
)

≤
(
c+
i τ+

i +
n∑

j=1

a+
i j L j

)
||ϕ||X∗ +

n∑

j=1

a+
i j

∣∣ f j (0)
∣∣

+
n∑

j=1

n∑

l=1

b+
i jl Nl Hj ||ϕ||X∗ +

n∑

j=1

n∑

l=1

b+
i jl Nl |g j (0)|

≤ 2L

[
c+
i τ+

i +
n∑

j=1

(
a+
i j

(
L j + 1

2

)
+

n∑

l=1

b+
i jl Nl

(
Hj + 1

2

))]
.
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Therefore, we have

∣∣(�(ϕ − ϕ0)
)
i (t)
∣∣ =

∣∣∣
∫ t

−∞
e−ci (t, σ (s))Fi (s, ϕ)�s

∣∣∣

≤
∫ t

−∞
e−ci (t, σ (s))|Fi (s, ϕ)|�s

≤ 2L
∫ t

−∞
e−c−

i
(t, σ (s))

n∑

j=1

[
c+
i τ+

i +
n∑

j=1

(
a+
i j

(
L j + 1

2

)

+
n∑

l=1

b+
i jl Nl

(
Hj + 1

2

))]
�s

≤ 2Lθi

c−
i

, i = 1, 2, . . . , n.

On the other hand, for i = 1, 2, . . . , n, we have

∣∣∣∣

(
�

(
ϕ − ϕ0

))�

i
(t)

∣∣∣∣ =
∣∣∣∣

( ∫ t

−∞
e−ci (t, σ (s))Fi (s, ϕ)�s

)�

t

∣∣∣

=
∣∣∣∣Fi (t, ϕ) − ci (t)

∫ t

−∞
e−ci (t, σ (s))Fi (s, ϕ)�s

∣∣∣∣

≤ |Fi (t, ϕ)| + |ci (t)|
∫ t

−∞
e−ci (t, σ (s))|Fi (s, ϕ)|�s

≤ 2Lθi

(
1 + c+

i

c−
i

)
.

In view of (H3), we have

||�ϕ − ϕ0||X∗ ≤ 2L max
1≤i≤n

{
θi

c−
i

,

(
1 + c+

i

c−
i

)
θi

}
≤ L ,

that is, �φ ∈ X0. Next, we show that � is a contraction. For ϕ = (ϕ1, ϕ2, . . . , ϕn)
T ,

ψ = (ψ1, ψ2, . . . , ψn)
T ∈ X0, for i = 1, 2, . . . , n, denote by

Gi (s, ϕ, ψ) = ci (s)
∫ s

s−τi (s)

(
ϕ�(θ) − ψ�(θ)

)
�θ

+
n∑

j=1

ai j (s)
(
f j (ϕ

�
j (s − δi j (s))) − f j (ψ

�
j (s − δi j (s)))

)

and

Ki (s, ϕ, ψ) =
n∑

j=1

n∑

l=1

bi jl(s)
(
g j (ϕ j (s − σi jl(s)))gl(ϕl(s − ζi jl(s)))

− g j (ψ j (s − σi jl(s)))gl(ψl(s − ζi jl(s)))
)
.

Note that, for i = 1, 2, . . . , n,
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|Gi (s, ϕ, ψ)| =
∣∣∣∣ci (s)

∫ s

s−τi (s)

(
ϕ�(θ) − ψ�(θ)

)
�θ

+
n∑

j=1

ai j (s)
(
f j (ϕ

�
j (s − δi j (s))) − f j (ψ

�
j (s − δi j (s)))

)∣∣∣∣

≤
⎛

⎝c+
i τ+

i +
n∑

j=1

a+
i j L j

⎞

⎠ ||ϕ − ψ ||X∗

and

|Ki (s, ϕ, ψ)| =
∣∣∣∣∣∣

n∑

j=1

n∑

l=1

bi jl(s)
(
g j (ϕ j (s − σi jl(s)))gl(ϕl(s − ζi jl(s)))

− g j (ψ j (s − σi jl(s)))gl(ψl(s − ζi jl(s)))
)
∣∣∣∣∣∣

≤
n∑

j=1

n∑

l=1

b+
i jl

[∣∣g j (ϕ j (s−σi jl(s)))
∣∣∣∣gl(ϕl(s−ζi jl(s))) − gl(ψl(s − ζi jl(s)))

∣∣

+ ∣∣g j (ϕ j (s − σi jl(s))) − g j (ψ j (s − σi jl(s)))
∣∣∣∣gl(ψl(s − ζi jl(s)))

∣∣
]

≤
n∑

j=1

n∑

l=1

b+
i jl

(
N j Hl + Hj Nl

)||ϕ − ψ ||X∗ .

Then, we have
∣∣(�ϕ − �ψ)i (t)

∣∣ =
∣∣∣∣
∫ t

−∞
e−ci (t, σ (s))

(
Gi (s, ϕ, ψ) + Ki (s, ϕ, ψ)

)
�s

∣∣∣∣

≤
∫ t

−∞
e−ci (t, σ (s))

(
c+
i τ+

i +
n∑

j=1

(
a+
i j L j

+
n∑

l=1

b+
i jl(N j Hl + Hj Nl)

))
�s||ϕ − ψ ||X∗

≤ γi

c−
i

||ϕ − ψ ||X∗ , i = 1, 2, . . . , n

and
∣∣(�φ − �ζ)�i (t)

∣∣ =
∣∣∣∣

( ∫ t

−∞
e−ci (t, σ (s))

(
Gi (s, ϕ, ψ) + Ki (s, ϕ, ψ)

)�
t

)∣∣∣∣

=
∣∣∣∣Gi (t, ϕ, ψ) + Ki (t, ϕ, ψ)

− ci (t)
∫ t

−∞
e−ci (t, σ (s))

(
Gi (s, ϕ, ψ) + Ki (s, ϕ, ψ)

)
�s

∣∣∣∣

≤ |Gi (t, ϕ, ψ)| + |Ki (t, ϕ, ψ)|
+ |ci (t)|

∫ t

−∞
e−ci (t, σ (s))

∣∣Gi (s, ϕ, ψ) + Ki (s, ϕ, ψ)
∣∣�s

≤
(
1 + c+

i

c−
i

)
γi ||ϕ − ψ ||X∗ , i = 1, 2, . . . , n.
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By (H3), we have that ||�ϕ − �ψ || < ||ϕ − ψ ||. Hence, � is a contraction. Therefore, �
has a fixed point in X0, that is, (1.1) has a unique pseudo almost periodic solution in X0. This
completes the proof of Theorem 3.1. ��

Theorem 3.2 Let (H1)-(H3) hold. Then the pseudo almost periodic solution of system (1.1)
is globally exponentially stable.

Proof According to Theorem 3.1, we know that (1.1) has a pseudo almost periodic solu-
tion x(t) = (

x1(t), x2(t), . . . , xn(t)
)T with the initial condition ϕ(s) = (ϕ1(s), ϕ2(s), . . . ,

ϕn(s))T . Suppose that y(t) = (
y1(t), y2(t), . . . , yn(t)

)T is an arbitrary solution of
(1.1) with the initial condition ψ(s) = (ψ1(s), ψ2(s), . . . , ψn(s))T . Denote u(t) =
(u1(t), u2(t), . . . , un(t))T , where ui (t) = yi (t) − xi (t), i = 1, 2, . . . , n. Then it follows
from (1.1) that

u�
i (t) = −ci (t)ui (t − τi (t)) +

n∑

j=1

ai j (t)
(
f j (y

�
j (t − δi j (t))) − f j (x

�
j (t − δi j (t)))

)

+
n∑

j=1

n∑

l=1

bi jl(t)
(
g j (y j (t − σi jl(t)))gl(yl(t − ζi jl(t)))

− g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t)))
)
, i = 1, 2, . . . , n. (3.2)

The initial condition of (3.2) is

ψi (s) = ϕi (s) − ψi (s), ψ�
i (s) = ϕ�

i (s) − ψ�
i (s), s ∈ [−θ, 0]T, i = 1, 2, . . . , n.

Rewrite (3.2) in the form

u�
i (t) = −ci (t)ui (t) + ci (t)

∫ t

t−τi (t))
u�
i (s)�s

+
n∑

j=1

ai j (t)
(
f j (y

�
j (t − δi j (t))) − f j (x

�
j (t − δi j (t)))

)

+
n∑

j=1

n∑

l=1

bi jl(t)
(
g j (y j (t − σi jl(t)))gl(yl(t − ζi jl(t)))

− g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t)))
)
, i = 1, 2, . . . , n. (3.3)

Then, for i = 1, 2, . . . , n and t ≥ t0, t0 ∈ [−θ, 0]T, we have

ui (t) = ui (t0)e−ci (t, t0) +
∫ t

t0
e−ci (t, σ (s))

{
ci (s)

∫ s

s−τi (s))
u�
i (ϑ)�ϑ

+
n∑

j=1

ai j (s)
(
f j (y

�
j (s − δi j (s))) − f j (x

�
j (s − δi j (s)))

)

+
n∑

j=1

n∑

l=1

bi jl(s)
(
g j (y j (s − σi jl(s)))gl(yl(s − ζi jl(s)))

− g j (x j (s − σi jl(s)))gl(xl(s − ζi jl(s)))
)}

�s. (3.4)
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For ω ∈ R, let �i (ω) and �i (ω) be defined by

�i (ω) = c−
i − ω − exp{ω sup

s∈T
μ(s)}

(
c+
i τ+

i exp{ωτ+
i } +

n∑

j=1

a+
i j L j exp{ωδ+

i j }

+
n∑

j=1

b+
i jl Nl Hj exp{ωσ+

i jl} +
n∑

j=1

b+
i jl N j Hl exp{ωζ+

i jl}
)

and

�i (ω) = c−
i − ω −

(
c+
i exp{ω sup

s∈T
μ(s)} + c−

i − ω
)(

c+
i τ+

i exp{ωτ+
i }

+
n∑

j=1

a+
i j L j exp{ωδ+

i j } +
n∑

j=1

b+
i jl Nl Hj exp{ωσ+

i jl} +
n∑

j=1

b+
i jl N j Hl exp{ωζ+

i jl}
)

,

where i = 1, 2, . . . , n. In view of (H3), for i = 1, 2, . . . , n, we have

�i (0) = c−
i −

(
c+
i τ+

i +
n∑

j=1

a+
i j L j +

n∑

j=1

b+
i jl(Nl Hj + N j Hl)

)
> 0,

and

�i (0) = c−
i − (c+

i + c−
i )

(
c+
i τ+

i +
n∑

j=1

a+
i j L j +

n∑

j=1

b+
i jl(Nl Hj + N j Hl)

)
> 0.

Since �i (ω),�i (ω) are continuous on [0,+∞) and �i (ω),�i (ω) → −∞, as ω → +∞,
so there exist ωi , ω

∗
i > 0 such that �i (ωi ) = �i (ω

∗
i ) = 0 and �i (ω) > 0 for ω ∈ (0, ωi ),

�i (ω) > 0 for ω ∈ (0, ω∗
i ), i = 1, 2, . . . , n. By choosing a positive constant a =

min
{
ω1, ω2, . . . , ωn, ω

∗
1, ω

∗
2, . . . , ω

∗
n

}
, we have �i (a) ≥ 0,�i (a) ≥ 0, i = 1, 2, . . . , n.

Hence, we can choose a positive constant 0 < α < min
{
a, min

1≤i≤n
{c−

i }} such that

�i (α) > 0, �i (α) > 0, i = 1, 2, . . . , n,

which implies that

exp{α sup
s∈T

μ(s)}
c−
i − α

(
c+
i τ+

i exp{ατ+
i } +

n∑

j=1

a+
i j L j exp{αδ+

i j }

+
n∑

j=1

b+
i jl

(
Nl Hj exp{ασ+

i jl} + N j Hl exp{αζ+
i jl}
))

< 1

and
⎛

⎜⎝1 +
c+
i exp{α sup

s∈T
μ(s)}

c−
i − α

⎞

⎟⎠
(
c+
i τ+

i exp{ατ+
i } +

n∑

j=1

a+
i j L j exp{αδ+

i j }

+
n∑

j=1

b+
i jl Nl Hj exp{ασ+

i jl} +
n∑

j=1

b+
i jl N j Hl exp{αζ+

i jl}
)

< 1,
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where i = 1, 2, . . . , n. Let

M = max
1≤i≤n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c−
i

c+
i τ+

i +
n∑
j=1

(
a+
i j L j +

n∑
l=1

b+
i jl(N j Hl + Hj Nl)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

It follows from (H3) that M > 1. Thus, we can obtain that

1

M
<

exp{α sup
s∈T

μ(s)}
c−
i − α

(
c+
i τ+

i exp{ατ+
i } +

n∑

j=1

a+
i j L j exp{αδ+

i j }

+
n∑

j=1

b+
i jl

(
Nl Hj exp{ασ+

i jl} + N j Hl exp{αζ+
i jl}
))

.

Moreover, we have that e	α(t, t0) > 1, where t ∈ [−θ, t0]T. Hence, it is obvious that

||u||X∗ ≤ Me	α(t, t0)‖ϕ − ψ‖X∗ , ∀t ∈ [−θ, t0]T.

We claim that
||u||X∗ ≤ Me	α(t, t0)‖ϕ − ψ‖X∗ , ∀t ∈ (t0,+∞)T. (3.5)

To prove this claim, we show that for any p > 1, the following inequality holds

||u||X∗ < pMe	α(t, t0)‖ϕ − ψ‖X∗ , ∀t ∈ (t0,+∞)T, (3.6)

which implies that, for i = 1, 2, . . . , n, we have

|ui (t)| < pMe	α(t, t0)‖ϕ − ψ‖X∗ , ∀t ∈ (t0,+∞)T (3.7)

and
|u�

i (t)| < pMe	α(t, t0)‖ϕ − ψ‖X∗ , ∀t ∈ (t0,+∞)T. (3.8)

Byway of contradiction, assume that (3.6) does not hold. Firstly,we consider the following
two cases.

Case 1 (3.7) is not true and (3.8) is true. Then there exists t1 ∈ (t0,+∞)T and i0 ∈
{1, 2, . . . , n} such that

|ui0(t1)| ≥ pMe	α(t1, t0)‖ϕ − ψ‖X∗ , |ui0(t)| < pMe	α(t, t0)‖ϕ − ψ‖X∗ , t ∈ (t0, t1)T,

|uk(t)| < pMe	α(t, t0)‖ϕ − ψ‖X∗ , for k 
= i0, t ∈ (t0, t1]T, k = 1, 2, . . . , n.

Therefore, there must be a constant α1 ≥ 1 such that

|ui0(t1)| = α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗ , |ui0(t)| < α1 pMe	α(t, t0)‖ϕ − ψ‖X∗ ,

t ∈ (t0, t1)T,

|uk(t)| < α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗ , for k 
= i0, t ∈ (t0, t1]T, k = 1, 2, . . . , n.
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Note that, in view of (3.4), we have

|ui0(t1)| =
∣∣∣∣ui0(t0)e−ci0

(t1, t0) +
∫ t1

t0
e−ci0

(t1, σ (s))

{
c+
i0

∫ s

s−τi0 (s))
u�
i0 (ϑ)�ϑ

+
n∑

j=1

ai0 j (s)
(
f j (y

�
j (s − δi0 j (s))) − f j (x

�
j (s − δi0 j (s)))

)

+
n∑

j=1

n∑

l=1

bi0 jl(s)
(
g j (y j (s − σi0 jl(s)))gl(yl(s − ζi0 jl(s)))

− g j (x j (s − σi0 jl(s)))gl(xl(s − ζi0 jl(s)))
)}

�s

∣∣∣∣

≤ e−ci0
(t1, t0)‖ϕ − ψ‖X∗ + α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗

×
∣∣∣∣
∫ t1

t0
e−ci0

(t1, σ (s))eα(t1, σ (s))

{
c+
i0

∫ s

s−τi0 (s))
eα(σ (s), ϑ)�ϑ

+
n∑

j=1

a+
i0 j

L j eα(σ (s), s − δi0 j (s)) +
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hleα(σ (s), s − ζi0 j (s))

+ Nl Hj eα(σ (s), s − σi0 j (s))|
)}

�s

∣∣∣∣

≤ e−ci0
(t1, t0)‖ϕ − ψ‖X∗ + α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗

×
∣∣∣∣
∫ t1

t0
e−ci0⊕α(t1, σ (s))

{
c+
i0

τ+
i0
eα(σ (s), s − τi0(s))

+
n∑

j=1

a+
i0 j

L j eα(σ (s), s − δi0 j (s)) +
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hleα(σ (s), s − ζi0 j (s))

+ Nl Hj eα(σ (s), s − σi0 j (s))|
)}

�s

∣∣∣∣
≤ e−ci0

(t1, t0)‖ϕ − ψ‖X∗ + α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗
∣∣∣∣
∫ t1

t0
e−ci0⊕α(t1, σ (s))

×
{
c+
i0

τ+
i0
exp

{
α(τ+

i0
+ sup

s∈T
μ(s))

}+
n∑

j=1

a+
i0 j

L j exp
{
α(δ+

i0 j
+ sup

s∈T
μ(s))

}

+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
α(ζ+

i0 j
+ sup

s∈T
μ(s))

}

+ Nl Hj exp
{
α(σ+

i0 j
+ sup

s∈T
μ(s))

})}
�s

∣∣∣∣

= α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗
{

1

α1 pM
e−ci0⊕α(t1, t0)+exp

{
α sup

s∈T
μ(s)

}

×
[
c+
i0

τ+
i0
exp

{
ατ+

i0

}+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}

+Nl Hj exp
{
ασ+

i0 j

}) ∫ t1

t0
e−ci0⊕α(t1, σ (s))�s

]}
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< α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗
{
1

M
e−(ci0−α)(t1, t0)

+ exp
{
α sup

s∈T
μ(s)

}[
c+
i0

τ+
i0
exp

{
ατ+

i0

}+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}

+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}

+Nl Hj exp
{
ασ+

i0 j

}) 1

−(ci0 − α)

∫ t1

t0

(− (ci0 − α)
)
e−(ci0−α)(t1, σ (s))�s

]}

= α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗
{[

1

M
−

exp
{
α sup

s∈T
μ(s)

}

c−
i0

− α

(
c+
i0

τ+
i0
exp

{
ατ+

i0

}

+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}

+ Nl Hj exp
{
ασ+

i0 j

}))]
e−(ci0−α)(t1, t0)

+
exp

{
α sup

s∈T
μ(s)

}

ci0 − α

(
c+
i0

τ+
i0
exp

{
ατ+

i0

}+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}

+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}+ Nl Hj exp
{
ασ+

i0 j

}))}

< α1 pMe	α(t1, t0)‖ϕ − ψ‖X∗ ,

which is a contradiction.

Case 2 (3.8) is not true and (3.7) is true. Then there exists t2 ∈ (t0,+∞)T and i1 ∈
{1, 2, . . . , n} such that

|u�
i1 (t2)|≥ pMe	α(t2, t0)||ϕ − ψ ||X∗ , |u�

i1 (t)|< pMe	α(t, t0)||ϕ − ψ ||X∗ , t ∈ (t0, t2)T,

|u�
k (t)| < pMe	α(t, t0)||ϕ − ψ ||X∗ , for k 
= i1, t ∈ (t0, t2]T, k = 1, 2, . . . , n.

Hence, there must be a constant α2 ≥ 1 such that

|u�
i1 (t2)| = α2 pMe	α(t2, t0)||ϕ − ψ ||X∗ , |u�

i1 (t)| < α2 pMe	α(t, t0)||ϕ − ψ ||X∗ ,

t ∈ (t0, t2)T,

|u�
k (t)| < α2 pMe	α(t, t0)||ϕ − ψ ||X∗ , for k 
= i1, t ∈ (t0, t2]T, k = 1, 2, . . . , n.

Note that, in view of (3.4), we have

|u�
i1 (t2)| =

∣∣∣∣− ci1(t2)ui1(t0)e−ci1
(t2, t0) + ci1(t2)

∫ t2

t2−τi1 (t2)
u�
i1 (s)�s

+
n∑

j=1

ai1 j (t2)
(
f j (y

�
j (t2 − δi1 j (t2))) − f j (x

�
j (t2 − δi1 j (t2)))

)
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+
n∑

j=1

n∑

l=1

bi1 jl(t2)
(
g j (y j (t2 − σi1 jl(t2)))gl(yl(t2 − ζi1 jl(t2)))

− g j (x j (t2 − σi1 jl(t2)))gl(xl(t2 − ζi1 jl(t2)))
)

− ci1(t2)
∫ t2

t0
e−ci1

(t2, σ (s))

{
ci1(s)

∫ s

s−τi1 (s))
u�
i1 (ϑ)�ϑ

+
n∑

j=1

ai1 j (s)
(
f j (y

�
j (s − δi1 j (s))) − f j (x

�
j (s − δi1 j (s)))

)

+
n∑

j=1

n∑

l=1

bi1 jl(s)
(
g j (y j (s − σi1 jl(s)))gl(yl(s − ζi1 jl(s)))

− g j (x j (s − σi1 jl(s)))gl(xl(s − ζi1 jl(s)))
)}

�s

∣∣∣∣

≤ c+
i1
e−ci1

(t2, t0)‖ϕ − ψ‖X∗

+α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
(
c+
i1

∫ s

s−τi1 (s))
eα(σ (s), ϑ)�ϑ

+
n∑

j=1

a+
i1 j

L j eα(σ (t2), t2 − δi1 j (t2))

+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hleα(σ (t2), t2 − ζi1 j (t2))+Nl Hj eα(σ (t2), t2 − σi1 j (t2))

))

+c+
i1

α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
{∫ t2

t0
e−ci1

(t2, σ (s))eα(t2, σ (s))

×
[
c+
i1

∫ s

s−τi1 (s)
eα(σ (s), θ)�θ +

n∑

j=1

a+
i1 j

L j eα(σ (s), s − δi1 j (s))

+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hleα(σ (s), s−ζi1 j (s))+Nl Hj eα(σ (s), s − σi1 j (s))|

)]
�s

}

≤ c+
i1
e−ci1

(t2, t0)‖ϕ − ψ‖X∗

+α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
(
c+
i1

τ+
i1
eα(t2, t2 − τi1(t2))

+
n∑

j=1

a+
i1 j

L j eα(σ (t2), t2 − δi1 j (t2))

+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hleα(σ (t2), t2 − ζi1 j (t2)) + Nl Hj eα(σ (t2), t2 − σi1 j (t2))

))

+ c+
i1

α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
{∫ t2

t0
e−ci1⊕α(t2, σ (s))

×
[
c+
i1

τ+
i1
eα(σ (s), s − τi1(s)) +

n∑

j=1

a+
i1 j

L j eα(σ (s), s − δi1 j (s))
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+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hleα(σ (s), s − ζi1 j (s))+Nl Hj eα(σ (s), s− σi1 j (s))|

)]
�s

}

≤ c+
i1
e−ci1

(t2, t0)‖ϕ − ψ‖X∗ + α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
(
c+
i1

τ+
i1
exp{ατ+

i1
}

+
n∑

j=1

a+
i1 j

L j exp{αδ+
i1 j

}+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hl exp{αζ+

i1 j
} + Nl Hj exp{ασ+

i1 j
}
))

×
(
1 + c+

i1
exp{α sup

s∈T
μ(s))}

∫ t2

t0
e−ci1⊕α(t2, σ (s))�s

)

< α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗
{
c+
i1

M
e−ci1⊕α(t2, t0) +

(
c+
i1

τ+
i1
exp{ατ+

i1
}

+
n∑

j=1

a+
i1 j

L j exp{αδ+
i1 j

}+
n∑

j=1

n∑

l=1

b+
i1 jl

(
N j Hl exp{αζ+

i1 j
}+Nl Hj exp{ασ+

i1 j
}
))

×
(
1 + c+

i1
exp{α sup

s∈T
μ(s))}

∫ t2

t0
e−ci1⊕α(t2, σ (s))�s

)}

≤ α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
1

M
−

exp
{
α sup

s∈T
μ(s)

}

c−
i0

− α

(
c+
i0

τ+
i0
exp

{
ατ+

i0

}

+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}

+ Nl Hj exp
{
ασ+

i0 j

}))
⎤

⎥⎦ ci+1
e−(ci0−α)(t2, t0)

+
(
1 +

ci+1
exp

{
α sup

s∈T
μ(s)

}

ci0 − α

)(
c+
i0

τ+
i0
exp

{
ατ+

i0

}+
n∑

j=1

a+
i0 j

L j exp
{
αδ+

i0 j

}

+
n∑

j=1

n∑

l=1

b+
i0 jl

(
N j Hl exp

{
αζ+

i0 j

}+ Nl Hj exp
{
ασ+

i0 j

}))
⎫
⎪⎬

⎪⎭

< α2 pMe	α(t2, t0)‖ϕ − ψ‖X∗ ,

which is also a contradiction. By above two cases, for other cases of negative proposition of
(3.6), we can obtain a contradiction. Therefore, (3.6) holds. Let p → 1, then (3.5) holds. We
can take 	λ = 	α, then λ > 0 and 	λ ∈ R+. Hence, we have

||u||X∗ ≤ M‖ϕ − ψ‖X∗e	λ(t, t0), t ∈ [−θ,∞)T, t ≥ t0,

which means that, the pseudo almost periodic solution x(t) of (1.1) is globally exponentially
stable. This completes the proof of Theorem 3.2. ��
Remark 3.1 According to (H3), we see that the existence and exponential stability of almost
periodic solutions for system (1.1) not only depends on the delays in the leakage term, but
also depends on the neutral terms in the network.
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Remark 3.2 Since conditions (H1)–(H4) do not impose any further restrictions on time scale
T except that T is an almost periodic time scale, our results show that under conditions (H1)–
(H4) the continuous time network (1.2) and its corresponding discrete time network (1.3)
have the same dynamical behaviors.

4 Numerical Example

In this section, we present an example to illustrate the feasibility of our results obtained in
Sect. 3.

Example 4.1 Let n = 3. Consider the following neural networks system on almost periodic
time scale T:

x�
i (t) = −ci (t)xi (t − τi (t)) +

3∑

j=1

ai j (t) f j (x
�
j (t − δi j (t)))

+
3∑

j=1

3∑

l=1

bi jl(t)g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t))) + Ii (t), t ∈ T, i = 1, 2, 3

(4.1)

where

f1(u1)=g1(u1)=0.25 sin u1, f2(u2)=g2(u2)=0.2 sin u2, f3(u3)=g3(u3)=0.15 sin u3,

a11(t) = 0.1 + 0.05 cos t, a12(t) = 0.25 + 0.01 cos
√
2t, a13(t) = 0.15 + 0.01 cos

√
3t,

a21(t) = 0.03 + 0.02 cos
4

3
t, a22(t) = 0.05 + 0.02 cos

1

4
t, a23(t) = 0.06 + 0.01 cos

1

4
t,

a31(t) = 0.04 + 0.02 cos
4

3
t, a32(t) = 0.05 + 0.01 cos

1

4
t, a33(t) = 0.05 − 0.02 cos

1

4
t,

c1(t) = 0.04 + 0.01 sin
1

5
t, c2(t) = 0.23 + 0.02 sin

1

3
t, c3(t) = 0.25 + 0.03 sin

1

3
t,

I1(t) = 0.03 + 0.02 sin
√
3t, I2(t) = 0.04 + 0.01 cos

3

4
t, I3(t) = 0.03 + 0.01 cos

3

4
t,

b111(t) = b222(t) = b333(t) = b123(t) = 0.12 + 0.01 sin
√
2t,

b112(t) = b212(t) = b312(t) = b313(t) = 0.25 + 0.05 cos
4

3
t,

b113(t) = b213(t) = b323(t) = b331(t) = 0.15 + 0.02 sin
√
2t,

b121(t) = b122(t) = b131(t) = b132(t) = 0.14 + 0.02 sin
√
2t,

b133(t) = b211(t) = b311(t) = b221(t) = 0.35 + 0.05 sin
3

4
t,

b231(t) = b232(t) = b322(t) = b332(t) = 0.14 + 0.02 sin
√
2t,

b223(t) = b233(t) = b321(t) = 0.35 + 0.05 sin
3

4
t,

τ1(t) = 0.04 sin π t, τ2(t) = 0.05 cos

(
π t + π

2

)
, τ3(t) = 0.06 sin 2π t.

By calculating, we have

L1 = H1 = N1 = 0.25, L2 = H2 = N2 = 0.1, L3 = H3 = N3 = 0.15,
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Fig. 1 Responds of continuous situation

0 20 40 60 80 100
−5

0

5

10

15

20

25

30

35

40

45

time t

st
at

es

Fig. 2 Responds of discrete situation

a+
11 = 0.15, a+

12 = 0.26, a+
13 = 0.16, a+

21 = 0.05, a+
22 = 0.07, a+

23 = 0.07,

a+
31 = 0.06, a+

32 = 0.06, a+
33 = 0.07, I+

1 = 0.05, I+
2 = 0.05, I+

3 = 0.04,

c+
1 = 0.05, c−

1 = 0.03, c+
2 = 0.25, c−

2 = 0.21, c+
3 = 0.28, c−

3 = 0.22,

b+
111 = b+

222 = b+
333 = b+

123 = 0.13, b+
112 = b+

212 = b+
312 = b+

313 = 0.3,

b+
113 = b+

213 = b+
323 = b+

331 = 0.17, b+
121 = b+

122 = b+
131 = b+

132 = 0.16,

b+
133 = b+

211 = b+
311 = b+

221 = 0.4, b+
231 = b+

232 = b+
322 = b+

332 = 0.16,

b+
223 = b+

233 = b+
321 = 0.4, τ+

1 = 0.04, τ+
2 = 0.05, τ+

3 = 0.06.

We can verify that all assumptions in Theorem 1 and Theorem 2 are satisfied. Therefore, we
have that (4.1) has a pseudo almost periodic solution, which is globally exponentially stable.

Remark 4.1 Our results about system (4.1) can not be obtained frompreviously known results
in literatures. Especially, for both the cases of T = R and T = Z, (4.1) always has a pseudo
almost periodic solution, which is globally exponentially stable (see Figures 1,2).
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