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Abstract Kernel mapping is one of the most widespread approaches to intrinsically deriving
nonlinear classifiers. With the aim of better suiting a given dataset, different kernels have
been proposed and different bounds and methodologies have been studied to optimise them.
We focus on the optimisation of a multi-scale kernel, where a different width is chosen for
each feature. This idea has been barely studied in the literature, although it has been shown
to achieve better performance in the presence of heterogeneous attributes. The large number
of parameters in multi-scale kernels makes it computationally unaffordable to optimise them
by applying traditional cross-validation. Instead, an analytical measure known as centered
kernel-target alignment (CKTA) can be used to align the kernel to the so-called ideal kernel
matrix. This paper analyses and compares this and other alternatives, providing a review
of the literature in kernel optimisation and some insights into the usefulness of multi-scale
kernel optimisation via CKTA.When applied to the binary support vector machine paradigm
(SVM), the results using 24 datasets show that CKTA with a multi-scale kernel leads to the

This paper is a very significant extension of a preliminar conference version [31] including much additional
material: a comprehensive review of kernel model selection methods, a more detailed description of the
method considered and a wider experimental section, comparing other multi-scale algorithms, and
increasing the number of benchmark datasets. Besides, some hints about when multi-scale kernels are useful
and how to initialise them are provided.
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construction of a well-defined feature space and simpler SVM models, provides an implicit
filtering of non-informative features and achieves robust and comparable performance to
othermethods evenwhen using random initialisations. Finally,we derive some considerations
about when a multi-scale approach could be, in general, useful and propose a distance-based
initialisation technique for the gradient-ascent method, which shows promising results.

Keywords Kernel-target alignment · Kernel methods · Multi-scale kernel · Parameter
selection · Support vector machines · Cross-validation

1 Introduction

The crucial ingredient of kernelmethodologies is undoubtedly the application of the so-called
kernel trick [42], a procedure that maps the data into a higher-dimensional, or even infinite,
feature spaceH via some mapping Φ. The kernel function implicitly determines the feature
space H in such a way that a poor choice of this function can lead to significantly impaired
performance. These choices are related to the definition of a metric between input patterns
that fosters correct classification. This optimisation is often performed using a grid-search
or cross-validation procedure over a previously defined search space.

Some authors suggest the use of the multi-scale kernel [6] (also known as a multi-
parametric, anisotropic or ellipsoidal kernel), where a different kernel parameter is chosen for
each feature. The general motivation for the use of multi-scale kernels is that, in real-world
applications, the attributes can present very different nature, which hampers the performance
of spherical kernels (i.e., with the same kernel width for each attribute) [17,24]. However,
the number of parameters (as many as the number of features) makes the computational cost
prohibitive when considering a cross-validation technique.

Ideally, we would like to find the kernel that minimises the true risk of a specific classifier
for a specific dataset. Unfortunately, this quantity is not accessible; therefore, different esti-
mates or bounds have been developed based on both analytical and experimental knowledge.
In most of these cases, a large amount of computation time is needed because the bounds
or the algorithms require training the learning machine several times and might even require
solving an additional optimisation problem. Moreover, some of the bounds are not differen-
tiable, which means that they must be smoothed to use a gradient descent method [6], which
can result in a loose solution.

To overcome these handicaps, a differentiable and simpler approach has been proposed,
which is known as kernel-target alignment (KTA) [7,10]. KTA is independent of the learning
algorithm, and thus avoids the expensive computational training of the classifier. Essentially,
KTA aims to find a kernel function k in a restricted family of kernels such that the induced
Gram matrix presents the smallest distance to the ideal kernel matrix, which preserves per-
fectly the entire training label structure (represented in this case by similarities between
patterns). Centred KTA (CKTA) [7] is an extension of KTA that has recently been shown to
correlate better with peformance and to avoid some data distribution issues.

The first objective of this paper is to provide an analysis of the literature in kernel opti-
misation to find the most appropriate method for the multi-scale kernel. As a result of this
analysis, several advantages of CKTA have been identified over the rest of the methods: algo-
rithm independence, data distribution independence and simple optimisation. Therefore, this
paper considers CKTA to select the multiple parameters of multi-scale kernels (multi-scale
CKTA, MSCKTA). The measure is optimised by a gradient ascent procedure in which the
free parameters are the different kernel widths of each feature, which, as we will show, leads
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inherently to the filtering of non-informative features. To the best of the authors’ knowledge,
this idea has been considered only in [21,24]. In the former one, non-centered KTA is used
to optimise a multi-scale version of a special type of kernel for the analysis of biological
sequence data, i.e., oligo kernels. In the latter, non-centered KTA is also tested to compare
spherical and multi-scale kernels with different optimisation techniques. In the case of [21],
although it is not clear that a multi-scale kernel may be in general useful, the author argues
that KTA is clearly the best suited method for model selection in high-dimensional search
spaces. The experiments performed in this paper include a more general experimental setup
with 24 benchmark datasets and statistical comparisons to other uni and multi-scale method-
ologies, comprising an extensive experimental analysis that has not been performed until
now in the context of multi-scale kernels. Moreover, we also propose a novel deterministic
distance-based strategy for initialising the coefficient vector for the gradient-ascent algorithm,
which is compared to random and fixed initialisations. The results suggest that MSCKTA is
a competitive technique that provides binary SVM with a higher flexibility to address het-
erogeneous real datasets and a better determined feature space that results in simpler SVM
models (in terms of the number of support vectors) at a reasonable computational complex-
ity. This additional computational complexity when compared to uni-scale methods is the
price to pay to obtain more accurate and simpler models. These conclusions are reinforced
by graphically analysing those datasets in which the performance is significantly improved
by MSCKTA, thus providing some hints about when the method should be applied. Further-
more, as said, the methodology naturally spans a feature filter which could be beneficial for
model interpretation purposes.

The rest of the paper is organized as follows: Sect. 2 shows the literature in kernel optimiza-
tion for completeness and analyses what methods are better suited for multi-scale kernels;
Sect. 3 presents theMSCKTA optimization method; Sect. 4 describes the experimental study
and analyses the results obtained; and Sect. 5 outlines some conclusions and future work.

2 Related Research

This section establishes the terminology and notation that will be used throughout this study
and briefly reviews the methodologies in the state-of-the-art. The goal in binary classification
is to assign an input vector x to one of {C+1, C−1} classes (this label will be designated
as y, where y ∈ Y = {C+1, C−1}), when considering an input space X ∈ R

d , where d
is the data dimensionality. The training data are assumed to be generated from an i.i.d.
D = {xi , yi }Ni=1 ∈ X × Y from an unknown distribution P(x, y). Therefore, the objective
in this type of problem is to find a prediction function f : X → Y, f ∈ F that minimises
the expected loss or risk [42].

The methods presented in this paper will be applied to the binary SVM paradigm [3,8].
This algorithm depends on several parameters: the cost parameter C , that controls the trade-
off between margin maximisation and error minimisation, and kernel parameters, that appear
in the non-linear mapping into the feature space.

The methods that we will present consider a specific kernel function (the Gaussian kernel)
and its optimisation. This selection of hyperparameters is crucial because it can drastically
degrade or improve the performance. For the case of multi-scale or ellipsoidal Gaussian
kernels, the optimisation involves adjusting a vector of parameters. This paper will address
precisely this type of problem. In this sense, these parameters can be adjusted following
two strategies: algorithm-dependent methods (which require explicit training of the kernel
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machine) and algorithm-independent (which do not consider any concrete learning algo-
rithm).

2.1 Algorithm-Dependent Estimators for Model Selection

The results obtained by the methods in this subsection are all dependent on the kernel
machines considered, therefore the solution for a kernelmethodwould not be equally valid for
a different kernel machine. The most widely used approach is the cross-validation method
(CV). Although CV is a reliable estimator, it presents an important computational load
because it implies the execution of the algorithm on every possible value of the parameter
vector. As a step forward, previous research [27] has presented a gradient-basedmethodology
that uses a smooth estimation of the validation function with respect to the SVM parameters.

Leave-one out (LOO) validation is also widespread in the literature because it provides
an almost unbiased estimate of the error on the test data. The computational cost in this case
is even higher than for the CV. Because of this, different strategies have been considered to
provide a bound for the error. These strategies are focused on the specific case of SVMs and
allow the optimisation of the kernel parameters. Some of them include the span of support
vectors [41] or the Jaakkola–Haussler bound [26] or the Opper–Winther bound [30]. We will
focus our study in the radius margin bound and the span of support vectors.

These bounds are related to the concept of Empirical RiskMinimisation (ERM). Related to
this concept, a bound on the risk R of any function f ∈ F of VC dimension h and especially
the one minimising the empirical risk Remp was derived (the radius margin bound). Radius
margin bound (RMB) was conceived to obtain an upper bound on the number of errors of the
LOO procedure. The number of scientific contributions that use this bound is very significant
[6,9,13,14,18]. Nonetheless, ERM is considered to be an ill-posed problem (i.e., a slight
change in the training set can entail a large change in the function); thus, several studies have
focused on restricting the class of functions by imposing a regularisation constraint [15,20].

Based on the concept of RMB, Vapnik and Chapelle [41] also developed the span-rule to
approximate the LOO error, which not only provides a good functional for SVM hyperpa-
rameter selection but also reflects the error better. However, this bound is very expensive to
compute.

Another branch of the parameter estimation techniques (which will later be used in com-
parisons named to as Evidencemaximisation, EVID) is based on the use of Bayesianmethods
[38,39] to tune the hyperparameters by maximising the so-called evidence and obtaining pre-
dictive class probabilities.

2.2 Algorithm-Independent Estimators for Model Selection

This subsection explores kernel optimisation techniques that do not depend on the learning
machine itself. This concept avoids the computational cost of training the algorithm and
results in a solution that could be plugged into different learning machines. To accomplish
these goals, different analytic concepts are considered, such as the ideal kernel or the inter-
cluster separability in the feature space induced by the kernel function.

The notion of ideal kernel has been extensively described and studied [10], whereKTAwas
first proposed. This study was followed by a large amount of scientific contributions related
to this estimator [7,11,23,24,33]. KTA arises from the definition of an ideal kernel matrix
that perfectly maintains the labelling structure [10]. KTA focuses supporting the information
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that is inherent to the data to perform the optimal mapping to the feature space (regardless
of the algorithm to be employed).1

In [16], the notionof ideal kernelwas studiedbyusing three differentmeasures of similarity
among the matrices (KTA, the Frobenius distance and the correlation). These measures are
applied to the optimisation of a spherical kernel on two different datasets. The results of
comparing the traditional CV and these three methods show that the performance is similar,
but KTA requires lower computational cost than the others.

The concept of distance metric learning has also been used for this purpose [28], by
searching for a suitable linear map in the feature space, which computationally leads to a
local-optima-free quadratic programming problem for the SVMcase. In [43], the inter-cluster
distances in the feature space are used to choose the kernel parameters, which involves much
less computation time than training the corresponding SVM classifiers.

2.3 Multi-scale Case

Multi-scale kernels have been mainly used with evolutionary algorithms [17,19,32] or
gradient-based methods for specific applications [6,24,36]. The main problem with evolu-
tionary approaches is the high computational cost and the necessity of tuning a large number
of parameters associated to the algorithm.

With concern for the applications, in [6], an experiment of the multi-scale case with the
radius margin bound is performed for handwritten digit recognition. The authors consider
this experiment to be as a sanity check experiment which demonstrates the feasibility of
choosing multiple kernel parameters for a SVMwithout leading to overfitting. This approach
has been considered in the experimental part of the paper (RMB and MSRMB methods). In
[24], the concept of KTA (non-centered) is used to derive a method for optimising multiple
hyperparameters of oligo kernels to analyse biological sequence data. Our method extends
this idea by consideringmore robust centeredKTAand general purposeGaussian kernels, and
providing extensive experiments and analysis of the potential advantages of this procedure. In
[36], a gradient-based optimisation of the radius margin bound was used for the diagnosis of
diffuse lung diseases. Although the performances of the SVM classifiers with spherical and
multi-scale kernel in the paper do not differ significantly, the authors argue that in the absence
of prior knowledge, multi-scale kernels should be preferred. A multi-scale experiment is also
performed in [16]; however it achieved worse results than the spherical version at a much
higher computational cost. The authors argue that this time increase could be due to the
formulation of the optimisation problem, which requires the inversion of a matrix for each
update of one of the hyperparameters. In our approach, the optimisation methodology is free
of this computational requirement.

The case of multi-scale kernels is also studied in [21] where an evolutionary technique
using the validation error is considered [22]. The author argues that this method does not
achieve satisfactory performance and leads to over-fitting in contrast to the KTA measure.

3 Multi-scale Centered Kernel-Target Alignment (MSCKTA)

This section introduces themethod used in this paper to optimise the parameters ofmulti-scale
kernels. The method combines the concept of centered KTA (CKTA) with respect to the ideal

1 The KTA measure will be formally defined in Sect. 3.1.
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kernel and a gradient ascent methodology. We also include a discussion of the advantages of
the method and present a distance-based technique to initialise the gradient-ascent technique.

Some attempts have been made to establish learning bounds for the Gaussian kernel with
several parameters and the combination of kernels when considering large margin classifiers
[29]. These studies suggest that the interaction between the margin and the complexity mea-
sure of the kernel class is multiplicative, thus discouraging the development of techniques for
the optimisation of more complex and general kernels. However, recent developments have
shown that this interaction is additive [40], rather than multiplicative, yielding then stronger
bounds. Therefore, the number of patterns needed to obtain the same estimation error with
the same probability for a multi-scale kernel compared to a spherical one grows slowly (and
directly depends on the number of features). More specifically, the bound on the required
sample size is ˜O(dφ +||w||/2) [40], wherew is the SVMhyperplane and ˜O hides logarithmic
factors in its argument, the sample size and the allowed failure probability. Note that for the
spherical kernel the pseudodimension is dφ = 1 and for the multi-scale case dφ = d .

In this paper, the family of kernels is restricted to the well-known Gaussian family, which
is parametrised by a d-square matrix of hyperparameters Q:

k(xi , x j ) = exp

(

−1

2
(xi − x j )

�Q(xi − x j )

)

. (1)

For the conventional Gaussian kernel (known as spherical or uni-scale), a single hyperpa-
rameter α is used (i.e., Q = α−2Id , and Id is the identity matrix of size d , and α > 0),
assuming that the variables are independent. However, one hyperparameter per feature
(muti-scale or ellipsoidal Gaussian kernel) can also be used by setting Q = diag(α−2) =
diag([α−2

1 , . . . , α−2
d ]), with αp > 0 for all p in {1, . . . , d}. KTA can be used to obtain

the best values for α (the uni-scale method) or α (the multi-scale method). Hereafter, these
hyperparameters will be called kernel widths.

3.1 Ideal Kernel

Because kernel functions allowaccess to the feature space only via input samples, the pairwise
inner products between the elements of a finite input set {x1, . . . , xN } are the only information
that is available on the geometry of the feature space. This information is embedded in the
kernel matrix Ki j = k(xi , x j ), where k is the kernel function. Most often, kernel algorithms
workwith thismatrix rather than the kernel function itself.Grammatrices contain information
about the similarity among the patterns; thus, the idealised kernel matrix K∗ derived using
an ideal kernel function k∗ [10] will submit the following structure:

k∗(xi , x j ) =
{+1 if yi = y j ,

−1 otherwise,
(2)

where yi is the target of pattern xi . In other words, K∗ = yyT. K∗ will provide information
about which patterns should be considered to be similar when performing a learning task.
Note that the ideal kernel can be defined only on the training patterns in practice.

Therefore, the problem of finding an optimal set of hyperparameters α is changed to the
problem of finding a good approximation Kα (i.e., computed for hyperparameters α) for the
ideal kernel matrix K∗, given a family Q of kernels (see Fig. 1). This way of formulating
the problem allows us to separate kernel optimisation from kernel machine learning and to
reduce the increase in the computational cost of learning more complex kernels (such as
multi-scale ones), given that the kernel machine will be unaffected by this higher complexity.
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Fig. 1 The most appropriate
kernel for learning is Kα (the one
nearest the ideal one, K∗,
according to some measure of
similarity D, being K the set of
positive definite kernels)

In terms of mathematical geometry, for the ideal problem presented in Fig. 1, the kernel
matrix that is closest to K∗ can be found by maximising the angle between Kα and K∗.

3.2 Notions of Kernel-Target Alignment (KTA) and Centered KTA

Previous studies have noted several issues in KTA for different pattern distributions [10,34].
A recent study [7] presented a solution to this problem both empirically and theoretically
using centered kernel matrices, a method that is based on centering the patterns in the feature
space and that correlates better with the performance than the original definition of KTA
[10]. In fact, the study in [7] shows that non-centered alignment could be even negatively
correlated with the accuracy in some cases However, the centered notion of alignment shows
good correlation along all datasets.

Centering a positive definite kernel function k consists on centering any feature mapping
associated to k, not depending on the mapping chosen. Any kernel matrix K can be centered
by subtracting its empirical expectation:

Kc = (Z − Z1 1
N
)�(Z − Z1 1

N
) = K − K1 1

N
− 1 1

N
K + 1 1

N
K1 1

N
, (3)

whereZ = [

Φ(x1) · · · Φ(xn)
]

,Φ(·) is themapping from the input space to the feature space,
and 1 1

N
is a matrix with all elements equal to 1

N . Kc will also be a positive semi-definite

kernel matrix that satisfies k(x, x) ≥ 0,∀ x ∈ X and symmetry.
Let us suppose an ideal kernel matrix K∗ and a real kernel matrix Kα computed for

some kernel parameters α. The Frobenius inner product between them (〈Kα, K∗〉F =
∑N

i, j=1 k(xi , x j ) · k∗(xi , x j ), where N is the number of patterns) provides information about
how ‘well’ the patterns are classified in their category. Indeed, in this case, the product could
be rewritten as the following equation [see Eq. (2)]:

〈

Kα, K∗〉
F =

∑

yi=y j

k(xi , x j ) −
∑

yi 
=y j

k(xi , x j ), (4)

where
∑

yi=y j k(xi , x j ) is related to the within-class distance, and
∑

yi 
=y j k(xi , x j ) to the
between-class distance.

The notion of centered alignment between two kernel matrices Kα ∈ R
N×N and K∗ ∈

R
N×N such that ||Kαc ||F 
= 0 and ||K∗

c ||F 
= 0 [7,10] is defined as:

Â(Kα, K∗) =
〈

Kαc , K∗
c

〉

F
√

〈

Kαc , Kαc

〉

F

〈

K∗
c , K∗

c

〉

F

, (5)

and this quantity is totally maximised when a kernel can reflect the discriminant properties
of the dataset that are used to define the ideal kernel (i.e., βKα = K∗, where β is a scalar).
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Â(Kα, K∗) ≥ 0 because the Frobenius product of any two centered positive semi-definite
matrices Kαc and K∗

c is non-negative. Note that this function is convex in terms of Kα but
becomes non-convex when considering the Gaussian kernel in terms of α [7].

The concentration bound for CKTA and the proof that there exists good alignment-based
predictors both for regression and classification can be seen in [7], as well as a risk bound for
the convergence of alignment for a finite sample (Theorem 12). Specifically, the alignment
for a finite sample is bounded against the alignment expectation, and the expected risk is
bounded in terms of alignment in expectation. This risk depends on the complexity of the
kernel function and it could be derived by setting a bound on the α parameters.

3.3 Optimisation of MSCKTA

Because of the differentiability of Â with respect to the kernel width vector α, a gradient
ascent algorithm can be used tomaximise the alignment between the kernel that is constructed
using α and the ideal kernel, as follows:

α∗ = argmax
α

Â(Kα, K∗). (6)

The corresponding gradient vector is composed of partial derivatives �Â =
[

∂Â
∂α1

, . . . , ∂Â
∂αd

]

,

where d is the data dimensionality. In this work, the iRprop+ algorithm is used to optimise
the aforementioned centered KTA, because of its proven robustness, advantages over other
related methods [25] and previous use in conjunction with KTA [24]. Each parameter αi will

be updated considering the sign of ∂Â
∂αi

but not the magnitude. Although the second partial
derivatives can also be computed and used for optimisation, they could actually make the
process more computationally costly due to the complexity of this second derivative formula.
The alignment derivative with respect to the kernel widths α (see Eq. (5)) is:

∂Â(Kα, K∗)
∂α

= 1

||K∗
c ||F

⎡

⎢

⎣

〈

∂Kα

∂α , K∗
c

〉

F

||Kαc ||F
−

〈

Kα, K∗
c

〉

F ·
〈

Kαc ,
∂Kα

∂α

〉

F

||Kαc ||3F

⎤

⎥

⎦
, (7)

where ||A||F = √〈A, A〉F, 〈A, B〉F = Tr
[

A�B
]

, and, for arbitrary matrices K1 and K2, it is
satisfied that

〈

K1c , K2c

〉

F = 〈

K1, K2c

〉

F = 〈

K1c , K2
〉

F [7], which simplifies the computation.
Note that the derivative for αi is computed taking into account the other kernel parameters
α j | j 
=i because Kα is included in the formulation. The computation of the KTA takesO(N 2)

operations per parameter α to optimise [21]. Because this optimisation does not involve
any additional optimisation problem, it is very fast in practice. Therefore, the computational
complexity of MSCKTA is moderated.

For the spherical Gaussian kernel, α = α · 1 and the derivative with respect to α can be
computed as:

(

∂k(xi , x j )

∂α

)

= ||xi − x j ||2
α3 · exp

(

−||xi − x j ||2
2α2

)

. (8)

However, for the case of the multi-scale Gaussian kernel,

k(xi , x j ) = exp

(

−
d

∑

z=1

(xiz − x jz)2

2α2
z

)

=
d

∏

z=1

exp

(

− (xiz − x jz)2

2α2
z

)

, (9)
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Fig. 2 Two-dimensional imbalanced toy dataset and alignment values obtained for different α values. These
values of α have been optimised via CKTA (left-bottom plot) and KTA (right-bottom plot)

the derivative is the following:

(

∂k(xi , x j )

∂αh

)

= (xih − x jh)2

α3
h

·
d

∏

z=1

exp

(

− (xiz − x jz)2

2α2
z

)

. (10)

The specific details and pseudo-code of the iRProp+ algorithm can be checked in [25]. To
avoid including positivity constraints in the optimisation problem of α (note that α should
vary from 0 to+∞), a logarithmic scale (base 10) is used for the parametrization, which does
indeed result in amore stable optimisation. In otherwords, we considerα = {10α′

1 , . . . , 10α′
d }

and optimise the functional with respect to α′ = {α′
1, . . . , α

′
d}, avoiding the inclusion of any

constraint for α′.
The results obtained for KTA and CKTA in an imbalanced toy dataset are shown in Fig.

2. In this case, it can be seen that the optimal kernel parameter (α value with maximum
alignment) for KTA and CKTA are different: approximately 102 for KTA and 10−2 for
CKTA. Furthermore, in the bottom part of the figure, where the two solutions are plotted, it
can be seen that the kernel value obtained for CKTA ismore appropriate for the discrimination
of the classes (KTA tends to choose solutions that consider that all the patterns are similar to
the rest by setting α → ∞).

Finally, Fig. 3 shows two toy datasets and the corresponding alignment optimisation
surface, where it can be appreciated the necessity of the use of a multi-scale kernel. As can
be seen, the optimum values are located in regions where α1 
= α2.
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Fig. 3 Two-dimensional toy datasets presenting different class variances per feature and their alignment
values when using a grid of values for α1 and α2

3.4 Initialisation Scheme of the Gaussian Kernel Parameters

From the KTA definition, it follows that patterns belonging to the same class should present a
high similarity, as opposed to patterns belonging to different classes [43]. This idea could be
exploited to obtain an initial value of the parameters α of the Gaussian kernel. For example,
by fitting a probability distribution to the set of within-class distances dw.

We assume the exponential distribution f (dw, λ) = λexp(−λdw), where a close relation
can be found between the λ parameter of this exponential distribution and the α parameter
in the Gaussian kernel (considering now one single parameter for the kernel). The con-
nection can be seen analysing the following equation and comparing it to the exponential
distribution:

k(xi , x j ) = exp
(−λ · ||xi − x j ||2

)

, λ = 1

2α2 , ||xi − x j ||2 ∈ dw if yi = y j . (11)

Note that the first multiplier in the exponential distribution (i.e. λ) is not required. However,
it is more realistic for real-world problems to assume a local neighbourhood-based similarity
notion (e.g. for nonlinearly separable problems or multimodal ones), considering that each
pattern should be similar to their k-nearest neighbours of the same class. Then, denote dw =
{dw+, dw−}, where:
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Fig. 4 Representation of the sum of multi-scale Gaussians centered in each point for the ellipsoidal ring toy
dataset. The optimal parameter values obtained by the proposed initialisation scheme are α1 = 10−0.53 and
α2 = 10−0.87 (note that the data has been standardised beforehand)

di jw+ = ||xi − x j ||2, yi , y j = +1, (12)

x j being one of the k-nearest neighbours of xi (k = 5 is selected for simplicity). The
analogous equation is used for the negative class. Note that, for the exponential distribution,
λ is estimated as themean of dw . Then, the kernel parameter can be determined asα = √

λ/2.
For the multi-scale case, the input features are assumed to be independent, in such a way
that λi is computed only considering the distance of the patterns for that feature. The result
obtained by means of this procedure for the ellipsoidal ring dataset in Fig. 3 can be seen in
Fig. 4 where the result is α1 = 10−0.53 and α2 = 10−0.87 (different values per feature). The
intuition behind this technique is that kernel parameters are selected depending on the data
itself to construct local neighbourhoods of similar patterns.

3.5 Filtering Non-informative Features for the Construction of the Kernel Matrix

An important characteristic of multi-scale kernels is that they provide the opportunity to
perform feature selection by filtering attributes with large αz values. When the Gaussian
kernel width αz → ∞, the kernel matrix computed for that unique feature remains invariant
and tends to amatrix of ones,which can be interpreted as feature z not being used for the kernel
computation [see Eq. (9)], an omission that could be beneficial for model interpretability. In
this subsection, we show that if feature z is non-informative, αz → ∞ will be considered as
an optimum value for the gradient ascent algorithm.

Consider the case of a variable of index z that, for all values of αz :

(

Nyi

N
|{(xiz − x jz)

2 ≤ 2α2
z }|yi=y j

)

=
(

Nyj

N
|{(xiz − x jz)

2 ≤ 2α2
z }|yi 
=y j

)

, (13)

where |{·}| denotes the cardinality of the set, and Nyi is the number of patternswith label equal
to yi . This wouldmean that the number of patterns in the neigbourhood of xiz (neighbourhood
defined by 2α2

z ) will belong similarly to both yi and y j . Therefore, this variable can be said
to be noisy for all values chosen for the width of the Gaussian (i.e., the similarity does not
report information for the classification problem). If this holds for variable z, then:
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⎛

⎝

∑

yi=y j

(1 − mri − mcj + m) · k(xiz, x jz)
⎞

⎠ �
⎛

⎝

∑

yi 
=y j

(1 + mri + mcj − m) · k(xiz, x jz)
⎞

⎠ , (14)

where mri = 1
N

∑N
z=1 yi · yz , mcj = 1

N

∑N
z=1 y j · yz and m = 1

N2

∑N
z,h=1 yz · yh . Note that

both (1−mr −mc +m) and (1+mr +mc −m) are dependent on the label distribution and
are used as weights. Under this assumption, it holds:

〈

Kαz , K∗
c

〉

F � 0, Â(Kαz , K∗) � 0, (15)

where Kαz is the kernel matrix obtained by using only the variable z.
Recall that, for themulti-scale case,Kα = Kα1 ◦. . .◦Kαd and that alignment is maximised

when βKα = K∗, where β is a scalar.

β(Kα1 ◦ . . . ◦ Kαz−1 ◦ Kαz+1 ◦ . . . ◦ Kαd ) = K∗, (16)

where ◦ represents the hadamard or entrywise product betweenmatrices, i.e., for twomatrices
A and B of the same dimension, the hadamard product (A◦B) is anothermatrixwith elements
given by: (A ◦ B)i, j = (A)i, j · (B)i, j .

In this way, the complete kernel matrix can be decomposed as Kα = K∗ ◦ Kαz with
the informative features in K∗ and the non-informative one in Kαz . To analyse how the
non-informative variable of index z interferes in the kernel matrix, note that:

〈

Kαz , K∗
c

〉

F <
〈

Kα, K∗
c

〉

F ≤ 〈

K∗, K∗
c

〉

F , (17)

because
〈

Kαz , K∗
c

〉

F � 0 and the addition of a non-informative feature will never decrease
the angle of the matrix with respect to the ideal one. Given that the maximum alignment is
Â(K∗, K∗) = 1 and we know that Â(Kα, K∗) ≤ Â(K∗, K∗), the gradient of the alignment
will converge to the best solution Â(Kα, K∗) = Â(K∗, K∗) = 1, which is true for (see Eq.
(5)):

〈

(K∗ ◦ Kαz )c, K∗
c

〉

F =
√

〈

(K∗ ◦ Kαz )c, (K∗ ◦ Kαz )c
〉

F

〈

K∗
c , K∗

c

〉

F (18)

Tr((K∗ ◦ Kαz )c · K∗
c )

2 = Tr((K∗ ◦ Kαz )
2
c) · Tr((K∗

c )
2), (19)

where Tr(A) corresponds to the trace of A. The only case that fulfils this is Kαz = 1, and this
is the casewhen αz → ∞ (see Sect. 3.3), because all the patterns are considered to be equally

similar. Therefore, from Eq. (10), ∂Kα
∂αz

→ 0 and ∂Â
∂αz

→ 0. Consequently, as the derivative is
equal to zero, the case of αz → ∞ will be an optimum for the gradient-based optimisation
algorithm. Note that this filtering is done implicitly without including any sparsity coefficient
in the optimisation. Therefore, only non-informative features are removed. However, as it is
well-known, whether the gradient ascent algorithm reaches the optimum point depends on
the initialisation itself.

The remaining methods studied in this paper do not naturally perform any type of feature
selection (i.e., a sparsity coefficient could be added to the optimisation but this step is not
performed explicitly) because adding non-informative dimensions to the problem should
not damage the SVM solution. This is due to the fact that the capacity control performed
by the SVM method is equivalent to some form of regularisation, so that “denoising” is
not necessary [37]. In the case of KTA, the optimisation performed recognises directly the
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variables that do not report information about the labelling or that are very noisy. KTA applied
for the purpose of deciding most informative variables (i.e., to perform feature selection) has
been only investigated in [34] where KTA is used to optimise a weighting variable for each
feature.

4 Experimental Results

This section aims to provide an extensive empirical analysis of the use of multi-scale ker-
nels. Firstly, the goodness of this type of kernel is analysed by plotting an approximation
of the feature space that is induced by the kernel. Secondly, several approaches to uni and
multi-scale kernels are tested for comparison purposes for a set of 24 binary benchmark
datasets, and statistical tests are conducted to analyse whether the method previously pre-
sented improves their performance significantly. Thirdly, the feature selection performed by
the methodology is analysed, and a deeper analysis of the situations in which a multi-scale
approach is useful is presented. Finally, an analysis of the results for different initialisations is
included.

Regarding the experimental setup, a stratified 10-fold cross-validation was applied to
divide the data, using the same partitions for the methods compared. For each train split, one
model is fitted with the train data and evaluated with the test data. The results are taken as
the mean and standard deviation over each of the 10 test sets.

As stated before, the optimisation of the gradient-based methods is guaranteed only to
find a local minimum; therefore, the quality of the solution can be sensitive to initialisation.
Two different approaches are considered in this case. For the comparison with other methods,
the initial point for all of the methods tested was fixed at 100 (as suggested by other studies
[6]). As a different part of the experimental study, we also compare this fixed choice (100)
with random initialisations and with the deterministic initialisation technique proposed in
Sect. 3.4. The gradient norm stopping criterion was set at 10−5 and the maximum number
of conjugate gradient steps at 102 [25].

Table 1 Characteristics for the 24 datasets tested, ordered by the number of attributes d

Dataset N d Dataset N d

haberman (HA) 306 3 hepatitis (HE) 155 19

listeria (LI) 539 4 bands (BA) 365 19

mammographic (MA) 830 5 heart-c (HC) 302 22

monk-2 (MO) 432 6 labor (LA) 57 29

appendicitis (AP) 106 7 sick (SI) 3772 33

pima (PI) 768 8 krvskp (KR) 3196 38

glassG2 (GL) 163 9 credit-a (CR) 690 43

saheart (SA) 462 9 specftheart (SP) 267 44

breast-w (BW) 699 9 card (CA) 690 51

heartY (HY) 270 13 sonar (SO) 156 60

breast (BR) 286 15 colic (CO) 368 60

housevotes (HO) 232 16 credit-g (CG) 1000 61

All nominal variables are transformed into binary ones
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Several benchmark binary datasets that have different characteristics were tested. Table 1
shows the characteristics of these datasets, where the number of patterns (N ) and attributes
(d) can be observed. These publicly available real classification datasets were extracted from
the UCI repository [2].

4.1 Analysis of the Empirical Feature Space

This subsection explores the notion of empirical feature space to analyse the behaviour of
multi-scale kernels by performing a graphical experiment. The empirical feature space is
defined as an Euclidean space that preserves the dot product information of H contained
in K. It is possible to verify that the kernel matrix of the training images obtained by this
transformation corresponds to K, when considering the standard dot product [35,44]. An
approximation of H can be obtained by limiting the dimensionality of the space. To do so,
we have to compute the eigendecomposition of K and choose the r dominant eigenvalues
(and their associated eigenvectors) to project the data while approximating the structure of
H. We use this method to represent the embedding space induced by CKTA and MSCKTA
for several datasets (see Fig. 5). It can be appreciated from Fig. 5 that, for a multi-scale
kernel (right plot of each dataset), the class separation appears to be easier (thus leading
to simpler decision functions). Figure 5 also includes information of the eigenvalues of
both matrices (i.e., the matrix induced by CKTA and the matrix induced by MSCKTA).
This information is represented by a γ value, that corresponds to λ1+λ2

∑N
i=1 λi

, where λi is the

i-th eigenvalue for a given matrix ordered in descending order. From these values, it can
be observed that the normalised sum of the first two eigenvalues is higher for the kernel
matrix computed by MSCKTA, indicating this that these two dimensions incorporate more
information about the kernel matrix we are diagonalising. In this sense, previous studies in
the literature [4] have demonstrated that, if a kernel present a higher normalised sum of the
first eigenvalues than other kernel (applying kernel principal component analysis), it means
that the first kernel suited the underlying problem better. In our case, because we are not
applying kernel principal components analysis, but a reduction of the empirical kernel map
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(left plot for each dataset) and by MSCKTA (right plot for each dataset)
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instead, this γ value does not represent the total of data variance covered, but rather the total
information represented of the original kernel matrix.

4.2 Experimental Setup

The followingmethodswere compared in the experimentation because they can be considered
to be very representative methods in kernel optimisation:

– Cross-validation (CV) using a stratified nested 5-fold cross-validation on the training sets
with a single kernel parameter and the C parameter of SVM selected within the values
{10−3, 10−2, . . . , 103}.

– CKTA for optimisating a convex combination of kernels throughmultiple kernel learning
(AMKL) [7]. The kernels used for the optimisation are the ones associated to the kernel
width values {10−3, 10−2, . . . , 103}. Once the kernel width is adjusted, the regularisation
parameter C of SVM is tuned by minimising the classification error estimated by a
stratified nested 5-fold cross-validation on the training sets (with the parameter C within
the values {10−3, 10−2, . . . , 103}). This two stage optimisation method is also referred
in the literature as second-order method [5].

– Smoothed span of support vectors (SSV) optimised using a gradient-based methodology
[6]. A spherical kernel is used.

– Evidence maximisation (EVID) and its multi-scale version (MSEVID), optimised
through a gradient-based methodology [39].

– Smoothed radius margin bound (RMB) and its multi-scale version (MSRMB), optimised
using a gradient-based methodology [6].

– CKTA and MSCKTA, optimised using a gradient ascent methodology. Once the kernel
width is adjusted, the regularisation parameter C of SVM is tuned by minimising the
classification error estimated by a stratified nested 5-fold cross-validation on the training
sets (with the parameter C within the values {10−3, 10−2, . . . , 103}), as in other studies
[24].

For SSV, EVID and RMB, the optimisation of C is made together with the kernel parameter.
Each benchmark dataset was appropriately standardised (note that this is a very important
previous step for our method, specially if one of the objectives is to analyse the final kernel
parameters). As suggested in [6], for SSV, EVID, MSEVID, RMB and MSRMB, a modi-
fied version of the Polack–Ribiere flavour of conjugate gradients was used to compute the
search directions; a line search using quadratic and cubic polynomial approximations and
the Wolfe-Powell stopping criteria were used together with the slope ratio method to deter-
mine the initial step sizes. The first and second derivatives were used for the optimisation.
For CKTA and MSCKTA, the iRprop+ method [25] has been selected because of its good
behaviour in alignment optimisation [24]. All algorithms were tested with the L2 Support
Vector Classification (SVC) paradigm (in order to fairly compare with [6]). All datasets,
partitions and results are available (in terms of mean and standard deviation) on the website
associated with this paper.2 SSV, EVID, MSEVID, RMB and MSRMB have been tested
using the publicy available Matlab code.3

2 http://www.uco.es/grupos/ayrna/gbmskta.
3 http://olivier.chapelle.cc/ams/.
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4.3 Comparisons to Other Methodologies

Table 2 shows the test mean result of each method for each dataset in terms of Acc. Table
3 shows the test mean rankings (1 for the best method and 9 for the worst) and the mean
test performance along all of the 24 datasets in terms of the accuracy (Acc), the number of
support vectors (SVs), and the centered alignment for training (Atr ) and testing sets (Ats).
The number of support vectors has been reported because it was noticed that the value chosen
for the cost parameter C decreases when KTA was used. This cost parameter controls the
trade-off between allowing training errors and forcing rigid margins, in such a way that when
C → ∞ the SVM leads to the hard-margin approach. Therefore, if C is too large, we would
have a high penalty for non-separable points and could store too many support vectors, which
could lead to overfitting [1].

From these results, several conclusions can be drawn. First, the good performance of the
MSCKTA method can be observed by analysing the mean Acc ranking, since it outperforms
the other methods, especially the other multi-scale approaches (i.e., MSEVID andMSRMB).
Indeed, all of the methods based on KTA (i.e., AMKL, CKTA and MSCKTA) appear to
achieve acceptable results when compared to the rest of estimators. Specifically, the goodness
of the gradient ascent methodology can be observed when using the multi-scale version. The
poor performance of the other multi-scale approaches (compared to the uni-scale versions)
could be due to two different reasons: first, the difficulty of optimising the parameters in
such a high-dimensional search space (because there could be more directions to move to
undesired local optima [21]), and second, the nature of the estimator because, for example,
SSV and RMB are considered to be loose bounds on the generalisation errors (this problem
has been previously noted in the literature [14]).

Furthermore, despite the use of a more complex kernel, it can be noted that the models
obtained using MSCKTA are simpler (i.e., sparser models in terms of the number of support
vectors) than the models obtained using the other kernel optimisation methods. This sim-
plicity could result from using a more complex map, which therefore leads to a more ‘ideal’
transformation of the input space, using the term ‘ideal’ in the sense of the kernel mapping
leading to a perfectly linearly separable set in the feature space.

Finally, when analysing the alignment results (Atr and Ats), several statements in the
literature can be validated. First, the use of the multi-scale approach leads to a far better
alignment. Indeed, using this type of kernel achieves even better alignment values than a
combination of kernels (AMKL). Moreover, similar alignment values were reported for CV
(0.221 and 0.211) and CKTA (0.227 and 0.212), which shows the relationship between
alignment optimisation (CKTA) and accuracy optimisation (CV).

Although the necessity of using an ellipsoidal or multi-scale kernel is inherent to the
nature of the features of the problem, the probability that the dataset presents attributes that
have very different scales is higher as the number of features grows. This hypothesis can be
observed in Fig. 6, where the mean accuracies for each dataset are represented for CKTA
and MSCKTA, and the datasets have been ordered according to the number of features. As
observed, when the number of features is high, the differences between the methodologies
grow and the importance of using multiple hyperparameters is thus demonstrated.

To analyse the value of the results, the non-parametric Friedman’s test [12] (withα = 0.05)
has been applied to the mean Acc rankings, rejecting the null-hypothesis that all of the
algorithms perform similarly in mean. The confidence interval was C0 = (0, F(α=0.05) =
1.99), and the corresponding F-valuewas 7.28 /∈ C0. TheHolm test formultiple comparisons
was also applied (see Table 4), and the test concluded that there were statistically significant
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Fig. 6 Accuracy values for CKTA and MSCKTA

Table 4 Comparison in mean
Acc ranking of the different
algorithms using the Holm
procedure with MSCKTA as the
control algorithm

∗ Statistically significant
differences for α = 0.05

i Algorithm z p value Adjusted alpha

1 MSEVID 5.42857 0.00000∗ 0.00625

2 MSRMB 5.08599 0.00000∗ 0.00714

3 EVID 4.29542 0.00002∗ 0.00833

4 SSV 4.21637 0.00002∗ 0.01000

5 RMB 3.97920 0.00007∗ 0.01250

6 AMKL 2.79334 0.00522∗ 0.01667

7 CV 2.31900 0.02040∗ 0.02500

8 CKTA 2.00277 0.04520∗ 0.05000

differences inmean Acc ranking for α = 0.05when theMSCKTAwas selected as the control
method for all of the methods considered.

Table 5 includes the mean runtime values used to optimise all of the parameters for the
SVMmethod for all of the optimisation methods considered. This time includes the seconds
needed to adjust all the hyperparameters (by cross-validation or by gradient-descent depend-
ing on the parameter and the method), but not the time needed for training and testing the
model afterwards. It can be seen that the methods based on CKTA optimising a spherical
kernel are computationally efficient (AMKL and CKTA) and present a computational com-
plexity similar to CV, resulting then in a suitable optimisation technique for kernel learning
purposes. Furthermore, MSCKTA also obtains reasonable time results (note for example
the case of the sonar dataset where there were 60 parameters to optimise but only took 142
secs because of the low number of patterns). Observe that, from all the multi-scale methods,
MSCKTA reports an average computational time. The computational time for MSRMB is
lower but at the cost of serious performance degradation (see Table 3).

4.4 Feature Selection

Not only can MSCKTA be useful in many real-world applications that present very different
attributes, but it also appears to outperform uni-scale approaches (in accuracy) and obtain
sparser models than other methods in the literature. Moreover, as stated above, another
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Table 6 Percentage of features used for each dataset with MSCKTA and number of attributes for each dataset
(a)

Dataset d Perc. of features Dataset d Perc. of features

haberman 3 100.00 ± 0.00 hepatitis 19 68.42 ± 47.76

listeria 4 100.00 ± 0.00 bands 19 52.63 ± 51.30

mammographic 5 100.00 ± 0.00 heart-c 22 59.09 ± 50.32

monk-2 6 100.00 ± 0.00 labor 29 27.59 ± 45.49

appendicitis 7 85.71 ± 37.80 sick 33 80.65 ± 40.16

pima 8 62.50 ± 51.75 krvskp 38 44.74 ± 50.39

glassG2 9 88.89 ± 33.33 credit-a 43 57.14 ± 50.09

saheart 9 77.78 ± 44.10 specftheart 44 47.73 ± 50.53

breast-w 9 100.00 ± 0.00 card 51 55.10 ± 50.25

heartY 13 84.62 ± 37.55 sonar 60 36.67 ± 48.60

breast 15 80.00 ± 41.40 colic 60 38.33 ± 49.03

housevotes 16 50.00 ± 51.64 credit-g 61 47.46 ± 50.36

advantage is that it provides us with the opportunity to perform feature selection by filtering
attributes with large αi values. Table 6 shows the percentage of selected features (in terms
of the mean and standard deviation) for all of the selected datasets. From this Table, it can
be appreciated that the whole set of variables is used in most cases for datasets that have
few variables, which indicates that there are no trivial variables for the classification and
that MSCKTA is not performing an arbitrary selection. However, as the number of attributes
grows, the proportion of attributes selected tends to decrease (note that in 6 of the datasets,
the number of selected features is lower than a 50 %).

Note that the rest of algorithm-dependent estimators do not naturally perform feature
selection due to the capacity control of SVMmethods. However, for unregularised methods,
this could be an important characteristic to consider.

4.5 Analysis of Different Initialisation Methods

As said, several random or even fixed initial points for α can be considered. For simplicity,
the same initial point has been used for this optimisation in some previous works [6] (the
initial point considered for all members of α is 100, because it corresponds to the standard
deviation of all of the variables in the dataset4). For the experiments previously presented in
this paper, we thus considered αi = 100 in order to fairly compare to other methodologies.
However, the suitable choice of these initial points is crucial for the algorithm. In order to
analyse the stability of the algorithm with respect to this choice, we compare the results
obtained from different initialisations (one initialisation per training/test set was used):

– Fixed initialisation with αi = 100, i = 1, . . . , d .
– Random initialisation with αi = 10ri , i = 1, . . . , d, ri ∈ [−1, 1].
– Random initialisation with αi = 10ri , i = 1, . . . , d, ri ∈ [−3, 3].
– Deterministic distance-based initialisation proposed in Sect. 3.4.

Table 7 shows the results of these initialisation procedures for 10 datasets (using the same
experimental procedure than before), where it can be seen that the proposed distance-based

4 Note that a data standardisation procedure is applied before optimisation.
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Table 7 Results obtained from the different initialisations considered

Dataset αi = 100 ri ∈ [−1, 1] ri ∈ [−3, 3] Distance-based

mammographic 84.70 ± 2.90 84.70 ± 2.90 83.25 ± 3.70 84.82 ± 2.73

pima 77.73 ± 3.05 77.86 ± 3.30 64.85 ± 0.73 77.87 ± 3.29

glassG2 80.33 ± 10.68 80.96 ± 12.41 53.38 ± 2.74 82.72 ± 11.02

saheart 74.69 ± 7.19 70.34 ± 8.09 65.37 ± 0.31 72.07 ± 7.55

breast-w 96.71 ± 2.34 96.42 ± 2.15 94.71 ± 2.94 96.42 ± 2.15

heartY 84.44 ± 7.15 80.74 ± 11.01 55.55 ± 0.00 84.44 ± 7.45

breast 71.34 ± 3.50 70.28 ± 2.35 68.53 ± 3.65 72.39 ± 3.69

sick 97.99 ± 1.20 97.75 ± 1.01 97.69 ± 0.74 98.06 ± 1.22

credit-a 85.51 ± 4.21 85.80 ± 3.79 67.83 ± 9.03 86.09 ± 4.28

colic 85.03 ± 5.82 83.99 ± 7.11 63.87 ± 2.06 84.48 ± 6.35

The best method is in bold and the second one is in italics

−5 0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Fig. 7 Two-dimensional plot of the mammographic dataset (the first and second dimensions). In this case,
the chosen kernel parameters for each data dimension vary significantly, which clarifies when a multi-scale
kernel could be useful. Indeed, MSCKTA achieved better performance for this dataset (84.70 %) than CKTA
(82.41 %)

strategy presents the most competitive performance (although close to the one obtained for
αi = 100). From these results, it can be stated that both a random initialisation between
[−1, 1] or just initialising all αi = 100 result in a stable and robust optimisation performance
(as opposed to initialise the random numbers between [−3, 3], i.e. the cross-validation grid
used). These results also show the possibility of initialising the problem in a more intelligent
way, to further improve the results in those cases where the best possible performance is
required. Note that the remaining methods shown in previous subsections could also benefit
from this initialisation.

4.6 Graphical Analysis of the Usefulness of MSCKTA

Several advantages of MSCKTA can be identified: algorithm independence, data distribution
independence, simple optimisation, inherent feature selection, sparser SVM models, easy

123



A Study on Multi-Scale Kernel Optimisation via Centered... 513

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 8 Two-dimensional plot of the breast-w dataset (the first and second dimensions). Specifically, for this
dataset almost the same kernel widths have been chosen for all of the dimensions. In this case, the performances
of the CKTA andMSCKTAwere similar (96.57 vs 96.71%, respectively). The graphical representation shows
that the patterns can be differentiated by the use of a spherical kernel
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Fig. 9 Two-dimensional plot of the card dataset (8th and 20th dimensions). This figure represents the case
of two dimensions used for the kernel computation, i.e., that contain useful information about the labelling
structure of the data. Although these dimensions do not allow us to perfectly classify the data (note that the
actual dimensionality of the dataset is 51), they give some useful discrimination knowledge about the patterns

extension to other paradigms, to different kernel functions and when only pattern similarities
are available.

This last subsection is intended to provide a deeper analysis of the situations in which a
multi-scale approach is useful. To provide this analysis, some scenarios in the benchmark
datasets that were used are shown in Figs. 7, 8, 9, 10 and 11. For each figure, two of
the original input dimensions have been selected and are represented together with the class
labelling. Furthermore, the kernel width that is associated with each dimension is included
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Fig. 10 Two-dimensional plot of the card dataset (4th and 41th dimensions). In this case, the plot represents
one significant dimension and one that does not report useful information for classification
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Fig. 11 Two-dimensional plot of the card dataset (first and 40th dimensions). This plot represents the case of
two non-significant dimensions for the card dataset, where neither of the variables contains useful information
about the labelling structure

in the corresponding axis. These figures have been altered through the use of a random jitter
methodology to better visualise the number of patterns per point. It is important to note how
MSCKTA assigns equal α values to features with similar class geometry and α → ∞ values
to non-relevant features.

Figure 7 represents the case of a dataset that has two dimensions significant for classifi-
cation (i.e., that have not been excluded by setting the associated kernel width to infinity);
however these two dimensions present different kernel widths. Figures 8 and 9 represent
the case of a dataset with two significant dimensions for classification, which also presents
similar widths. Figure 10 shows the case in which one of the variables includes significant
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information and the other does not (i.e., the associated kernel value tends to infinity). Finally,
Fig. 11 represents the case in which none of the variables contains useful information about
the labelling structure. A discussion of each case is included in the different figure captions.

Although it is difficult to acquire a clear understanding about when to use multi-scale
kernels, a general idea can be inferred from the previous results and figures. It is clear that
multi-scale kernels should be preferred to spherical ones in cases where the computational
time is not a requirement, since multi-scale kernels are more general and can lead to the
same solution. Moreover, they can be helpful in the presence of heterogeneous attributes,
e.g. when the class-variance of the data varies differently per attribute (see Fig. 7). Finally,
multi-scale kernels can also be useful for analysing the most relevant features for the data
discrimination, as seen in Figs. 10 and 11.

5 Conclusions

This paper uses the CKTA concept to optimise a multi-scale kernel using a gradient ascent
algorithm. The optimisation of the kernel width is usually done by cross-validation, which
is computationally unaffordable for multiple kernel widths. The results obtained show that
CKTA is highly correlated with performance, and that the optimisation of a multi-scale
kernel with this technique leads inherently to a better determined feature space, to feature
selection, to significantly better results and to simpler models at a reasonable computational
complexity. Moreover, a distance-based initilisation technique is presented which is able to
further improve the results for the majority of the datasets considered. Our results encourage
the development of a hybrid metaheuristic approach with the gradient ascent method to
explore the whole search space and obtain better results. Another direction of future work
is a study of the multi-class and regression cases to analyse whether the statements made in
this paper are also valid for these learning paradigms.
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