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Abstract In this work, we develop a statistical framework for data clustering which uses
hierarchical Dirichlet processes and Beta-Liouville distributions. The parameters of this
framework are leaned using two variational Bayes approaches. The first one considers batch
settings and the second one takes into account the dynamic nature of real data. Experimental
results based on a challenging problem namely visual scenes categorization demonstrate the
merits of the proposed framework.

Keywords Mixture models · Beta-Liouville · Variational Bayes · Nonparametric Bayesian ·
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1 Introduction

Model-based clustering has been the topic of extensive research in the past [3]. It is very
essential and critical to many computer vision, image processing, data mining and pattern
recognition applications [12,15,36,45]. In these applications finite Gaussian mixture models
have been widely used as a formal approach to clustering [23,30,38,47]. Unfortunately, the
inadequacy of theGaussianmodel has been apparent in various applications.Recently, several
contributions have occurred to propose other finite mixture models, in order to overcome the
limitations related to theGaussian assumption, and a number of authors began to pay attention
to indications of non-Gaussian behaviour in real data [1,6,31,58]. For instance, the authors
in [9,10,20] have proposed the consideration of the finite Dirichlet mixture which offers high
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flexibility and ease of use. This mixture has been successfully applied recently to a variety
of challenging problems (see, for instance, [19,52,53]). However, it has some drawbacks,
such as its restrictive negative covariance structure, as discussed in [6,7] where the author
has proposed the finite Beta-Liouville mixture as an efficient alternative and has discussed
central issues related to the adoption of this mixture namely parameters estimation andmodel
selection. The finite Beta-Liouvillemixture has been shown to be an efficient alternative to the
Gaussian and the Dirichlet especially when dealing with proportional data (e.g. normalized
histograms). It has met with significant success in numerous real-world applications such
as dynamic textures categorization, human activities modeling and recognition, and facial
expressions recognition [17,18].

One of the most challenging problems regarding finite mixture modeling is to determine
the appropriate number of mixture components. This difficulty can be tackled by assuming
that there is an infinite number of components through Dirichlet process [21,26] as done
in [8]. One useful extension of the conventional Dirichlet process framework is to place a
Bayesian hierarchy on it, resulting in the so-called hierarchical Dirichlet process, where the
base distribution of the Dirichlet process is itself distributed according to another Dirich-
let process. Recently, the hierarchical Dirichlet process framework has shown promising
results dealing with problems of modeling grouped data where observations are organized
into groups and these groups are statistically linked by sharing mixture components [54,55].
Thus, the first contribution of this paper is to go a step further by extending our previous
works about the Beta-Liouville mixture via the consideration of a nonparametric Bayesian
approach based on hierarchical Dirichlet process [54,55]. The resulting model is learned
via a variational Bayes framework that we have developed by considering batch settings. A
major goal of machine learning techniques is to provide systems that can improve their per-
formance as they observe new data or information [13,22]. In practice, since data often
arrive sequentially in time, one is interested in performing learning on-line. Therefore,
our second contribution is to extend the proposed batch algorithm to online settings. We
validate both algorithms using a challenging application namely visual scenes categoriza-
tion.

The rest of this paper is organized as follows. Section 2 describes the hierarchical Dirichlet
process mixture model of Beta-Liouville distributions. Both the batch and online variational
approaches to learn the proposed model are developed in Section 3. Section 4 is devoted to
the experimental results. Finally, concluding remarks are given in Section 5.

2 Model Specification

In this section, first, we present an overview of the finite Beta-Liouville distribution; then, we
introduce the framework of hierarchical Dirichlet process mixture model; finally, we propose
the hierarchical infinite Beta-Liouville mixture model.

2.1 Finite Beta-Liouville Mixture Model

If a D-dimensional random vector X = (X1, . . . , XD) is distributed according to a Beta-
Liouville distribution, then its probability density function (pdf) is defined by [7]:

BL(X|θ) =
Γ

(∑D
l=1 αl

)
Γ (α + β)

Γ (α)Γ (β)

D∏
l=1

X
αl−1
l

Γ (αl )

( D∑
l=1

Xl

)α−∑D
l=1 αl

(
1 −

D∑
l=1

Xl

)β−1
(1)
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where θ = (α1, . . . , αD, α, β) is the vector of parameters of the Beta-Liouville distribution.
For a random vector X which is generated from a finite Beta-Liouville mixture model with
M components, we have

p(X|π , θ) =
K∑

k=1

πkBL(X|θk) (2)

where θk = (αk1, . . . , αkD, αk, βk) is the vector of parameters of the Beta-Liouville dis-
tribution BL(·) corresponding to component k. The vector of mixing coefficients π =
(π1, . . . , πK ) is subject to the constraints: 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.

2.2 Hierarchical Dirichlet Process Mixture Model

Atwo-level hierarchicalDirichlet process is defined as the following:Given a grouped data set
withM groupswhere each group is associatedwith aDirichlet processG j , and the indexed set
of Dirichlet processes {G j } shares a base distributionG0 which is itself distributed according
to a Dirichlet process with the concentration parameter γ and base distribution H :

G0 ∼ DP(γ, H)

G j ∼ DP(λ,G0) for each j, j ∈ {1, . . . , M} (3)

where j is the index for each group of data. Please notice that the above hierarchy can be
readily extended to have more than two levels.

In our work, we construct the hierarchical Dirichlet process using the stick-breaking
construction [24,51]. In the global-level, the global measure G0 is distributed according to
the Dirichlet process DP(γ, H) as

G0 =
∞∑
k=1

ψkδΩk ψk = ψ ′
k

k−1∏
s=1

(1 − ψ ′
s)

ψ ′
k ∼ Beta(1, γ ) Ωk ∼ H (4)

where δΩk is an atom atΩk , and {Ωk} is a set of independent random variables drawn from H .
ψk is the stick-breaking variable and satisfies

∑∞
k=1 ψk = 1. SinceG0 is the base distribution

of the Dirichlet processes G j , then the atoms Ωk are shared among all {G j } and are only
differ in weights based on the property of Dirichlet process [55].

For each group-level Dirichlet process G j , we also apply the conventional stick-breaking
representation according to [57] as

G j =
∞∑
t=1

π j tδ� j t π j t = π ′
j t

t−1∏
s=1

(1 − π ′
js)

π ′
j t ∼ Beta(1, λ) � j t ∼ G0 (5)

where δ� j t are group-level atoms at � j t , {π j t } is a set of stick-breaking weights which
satisfies

∑∞
t=1 π j t = 1. Since � j t is distributed according to the base distribution G0, it

takes on the value Ωk with probability ψk .
Next,we introduce a binary latent variableWjtk ∈ {0, 1} as an indicator variable:Wjtk = 1

if � j t maps to the global-level atom Ωk ; otherwise,Wjtk = 0. Thus, we have � j t = Ω
Wjtk
k .

As a result, group-level atoms � j t do not need to be explicitly represented. Since ψ is a
function ofψ ′ according to the stick-breaking construction of the Dirichlet process as shown
in Eq. (4), the indicator variableW = (Wjt1,Wjt2, . . .) is distributed as
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p(W|ψ ′) =
M∏
j=1

∞∏
t=1

∞∏
k=1

[
ψ ′
k

k−1∏
s=1

(1 − ψ ′
s)

]Wjtk (6)

According to Eq. (4), the prior distribution of ψ ′ is a specific Beta distribution as

p(ψ ′) =
∞∏
k=1

Beta(1, γk) =
∞∏
k=1

γk(1 − ψ ′
k)

γk−1 (7)

For the grouped data set X = (X j1, . . . X jN ), let i index the observations within each
group j . We assume that each variable ζ j i is a factor corresponding to an observation X ji ,
and the factors θ j = (ζ j1, ζ j2, . . .) are distributed according to the Dirichlet process G j , one
for each j . Thus, we can write the likelihood function in the form

ζ j i |G j ∼ G j

X ji | ζ j i ∼ F(ζ j i ) (8)

where F(ζ j i ) denotes the distribution of the observation X ji given ζ j i , and the base distrib-
ution H of G0 provides the prior distribution for the factors ζ j i . This framework is known as
the hierarchical Dirichlet process mixture model, in which each group is associated with an
infinite mixture model, and the mixture components are shared among these mixture models
due to the sharing of atoms Ωk among all {G j }.

Since each factor ζ j i is distributed according toG j based on Eq. (8), it takes the value� j t

with probability π j t . It is convenient to place a binary indicator variable Z jit ∈ {0, 1} for
ζ j i . That is, Z jit = 1 if ζ j i is associated with component t and maps to the group-level atom

� j t ; otherwise, Z jit = 0. Therefore, we have ζ j i = �
Z jit
j t . Because � j t also maps to the

global-level atom Ωk as we mentioned previously, we then have ζ j i = �
Z jit
j t = Ω

Wjtk Z jit
k .

Since π is a function of π ′ according to the stick-breaking construction as shown in Eq. (5),
the indicator variable Z = (Z ji1, Z ji2, . . .) is distributed as

p(Z|π ′) =
M∏
j=1

N∏
i=1

∞∏
t=1

[π ′
j t

t−1∏
s=1

(1 − π ′
js)]Z jit (9)

The prior distribution of π ′ is a specific Beta distribution in the form

p(π ′) =
M∏
j=1

∞∏
t=1

Beta(1, λ j t ) =
M∏
j=1

∞∏
t=1

λ j t (1 − π ′
j t )

λ j t−1 (10)

2.3 Hierarchical Infinite Beta-Lioouville Mixture Model

In this subsection, we propose the hierarchical Dirichlet process mixture model of
Beta-Liouville distributions, which may also be referred to as the hierarchical infinite Beta-
Liouville mixture model. Given a grouped data set X with M groups, it is assumed that each
D-dimensional data vector X j i = (X ji1, . . . , X ji D) is drawn from a hierarchical infinite
Beta-Liouville mixture model where j is the index for each group of the data. Then the
likelihood function of the proposed hierarchical infinite Beta-Liouville mixture model with
latent variables can be written as

p(X ) =
M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

[
BL(X j i |θk)

]Z jit W jtk (11)
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where θk = (αk1, . . . , αkD, αk, βk) is the vector of parameters of the Beta-Liouville distrib-
ution.
Next, we need to place conjugate priors over parameters αl , α and β. Since αl , α and β are
positive, Gamma distributions G(·) are adopted to approximate conjugate priors for these
parameters. Then, we have the following prior distributions for αl , α and β, respectively:

p(αl |ul , vl) = G(αl |ul , vl) = v
ul
l

Γ (ul)
α
ul−1
l e−vlαl (12)

p(α|g, h) = G(α|g, h) = hg

Γ (g)
αg−1e−hα (13)

p(β|g′, h′) = G(β|g′, h′) = h′g′

Γ (g′)
βg′−1e−h′β (14)

where G(·) is the Gamma distribution with positive parameters.

3 Model Learning Via Variational Bayes

3.1 Batch Variational Inference for Hierarchical Infinite Beta-Liouville Mixture
Model

In this subsection, we develop a batch variational Bayes framework [2,4] for learning the
hierarchical infinite Beta-Liouville mixture model. To simplify notations, we define Θ =
{Z,W,ψ ′,π ′, θ} as the set of latent variables and unknown random variables. The main idea
of variational learning is to calculate an approximation q(Θ) for the true posterior distribution
p(Θ|X ) by maximizing the lower bound of the logarithm of the marginal likelihood p(X ),
which is given by

L(q) =
∫

q(Θ) ln[p(X ,Θ)/q(Θ)]dΘ (15)

In this work, we adopt the factorial approximation [4] (or mean fields approximation), which
has been successfully applied in the past to complex models involving incomplete data,
to factorize q(Θ) into disjoint tractable factors. We also apply the truncation technique as
described in [5] to truncate the variational approximations of global- and group-levelDirichlet
processes at levels K and T as

ψ ′
K = 1,

K∑
k=1

ψk = 1, ψk = 0 when k > K (16)

π ′
jT = 1,

T∑
t=1

π j t = 1, π j t = 0 when t > T (17)

where the truncation levels K and T are variational parameters which can be freely initialized
and will be optimized automatically during the learning process.

In variational Bayes learning, the general expression for the optimal solution to a specific
variational factor qs(Θs) is given by [4]:

qs(Θs) =
exp

〈
ln p(X ,Θ)

〉
i �=s∫

exp
〈
ln p(X ,Θ)

〉
i �=sdΘ

(18)
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where 〈·〉i �=s is the expectation with respect to all the distributions of qi (Θi ) except for i = s.
Therefore, we can obtain the variational solution for each factor as

q(Z) =
M∏
j=1

N∏
i=1

T∏
t=1

ρ
Z jit
j i t (19)

q(W) =
M∏
j=1

T∏
t=1

K∏
k=1

ϑ
Wjtk
j tk (20)

q(αl) =
K∏

k=1

D∏
l=1

G(αkl |ũkl , ṽkl) (21)

q(α) =
K∏

k=1

G(αk |g̃k, h̃k) (22)

q(β) =
K∏

k=1

G(βk |g̃′
k, h̃

′
k) (23)

q(π ′) =
M∏
j=1

T∏
t=1

Beta(π ′
j t |a jt , b jt ) (24)

q(ψ ′) =
K∏

k=1

Beta(ψ ′
k |ck, dk) (25)

where the corresponding hyperparameters in the above equations can be calculated by

ρ j i t = exp(ρ̃ j i t )∑T
s=1 exp(ρ̃ j is)

(26)

ρ̃ j i t =
K∑

k=1

〈Wjtk〉
[
Ĩk + H̃k +

(
ᾱk −

D∑
l=1

ᾱkl

)
ln

(
D∑
l=1

X jil

)
+

D∑
l=1

(ᾱkl − 1) ln X jil

+ (β̄k − 1) ln

(
1 −

D∑
l=1

X jil

)]
+ 〈ln π ′

j t 〉 +
t−1∑
s=1

〈ln(1 − π ′
js)〉 (27)

ϑ j tk = exp(ϑ̃ j tk)∑K
s=1 exp(ϑ̃ j ts)

(28)

ϑ̃ j tk =
N∑
i=1

〈Z jit 〉
[
Ĩk + H̃k +

(
ᾱk −

D∑
l=1

ᾱkl

)
ln

(
D∑
l=1

X jil

)
+

D∑
l=1

(ᾱkl − 1) ln X jil

+ (β̄k − 1) ln

(
1 −

D∑
l=1

X jil

)]
+ 〈lnψ ′

k〉 +
k−1∑
s=1

〈ln(1 − ψ ′
s)〉 (29)

a jt = 1 +
N∑
i=1

〈Z jit 〉, b jt = λ j t +
N∑
i=1

T∑
s=t+1

〈Z jis〉 (30)

ck = 1 +
M∑
j=1

T∑
t=1

〈Wjtk〉, dk = γk +
M∑
j=1

T∑
t=1

K∑
s=k+1

〈Wjts〉 (31)
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ũkl = ukl +
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉ᾱkl

[
Ψ

(
D∑
l=1

ᾱkl

)
− Ψ (ᾱkl)

+Ψ ′
(

D∑
l=1

ᾱkl

)
D∑
s �=l

(〈ln αks〉 − ln ᾱks)ᾱks

]
(32)

ṽkl = vkl −
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉
[
ln X jil − ln

(
D∑
l=1

X jil

)]
(33)

g̃k = gk +
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉ᾱk
[
Ψ (ᾱk + β̄k)

−Ψ (ᾱk) + β̄kΨ
′(ᾱk + β̄k)(〈ln βk〉 − ln β̄k)

]
(34)

h̃k = hk −
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉 ln
(

D∑
l=1

X jil

)
(35)

g̃′
k = g′

k +
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉β̄k
[
Ψ (ᾱk + β̄k)

−Ψ (β̄k) + ᾱkΨ
′(ᾱk + β̄k)(〈ln αk〉 − ln ᾱk)

]
(36)

h̃′
k = h′

k −
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Z jit 〉 ln
(
1 −

D∑
l=1

X jil

)
(37)

whereΨ (·) is the digamma function. Ĩk and H̃k in Eqs. (27) and (29) are the lower bounds of

Ik =
〈
ln Γ (

∑D
l=1 αkl )∏D

l=1 Γ (αkl )

〉
and Hk =

〈
ln Γ (αk+βk )

Γ (αk )Γ (βk )

〉
, respectively. Since these expectations are

computationally intractable, we apply the second-order Taylor series expansion to calculate
their lower bounds. The expected values in the above formulas are defined as

ᾱkl = ũkl
ṽkl

, ᾱk = g̃k

h̃k
, β̄k = g̃′

k

h̃′
k

(38)

〈Z jit 〉 = ρ j i t , 〈Wjtk〉 = ϑ j tk,
〈
ln αkl

〉 = Ψ (ũkl) − ln ṽkl (39)
〈
ln αk

〉 = Ψ (g̃k) − ln h̃k
〈
ln βk

〉 = Ψ (g̃′
k) − ln h̃′

k (40)〈
ln π ′

j t

〉 = Ψ (a jt ) − Ψ (a jt + b jt ) (41)
〈
ln(1 − π ′

j t )
〉 = Ψ (b jt ) − Ψ (a jt + b jt ) (42)

〈
lnψ ′

k

〉 = Ψ (ck) − Ψ (ck + dk) (43)〈
ln(1 − ψ ′

k)
〉 = Ψ (dk) − Ψ (ck + dk) (44)

Since the update equations for the variational factors are coupled together through the
expected values of other factors, the optimization process can be solved in a way analo-
gous to the EM algorithm and the complete algorithm is summarized in Algorithm 1. The
convergence of the variational learning algorithm is guaranteed and can be inspected through
evaluation of the variational lower bound [4].
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Algorithm 1Batch variational learning of hierarchical infinite Beta-Liouville mixture model
1: Choose the initial truncation levels K and T .
2: Initialize the values for hyperparameters λ j t , γk , ukl , vkl , gk , hk , g

′
k , h

′
k .

3: Initialize the value of ρ j i t by K -Means algorithm.
4: repeat
5: The variational E-step:
6: Estimate the expected values in Eqs. (38)–(44), use the current distributions over the model parameters.
7: The variational M-step:
8: Update thevariational solutions for each factor usingEqs. (19)–(25) and the current values of themoments.
9: until Convergence criterion is reached.

3.2 Online Variational Inference for Hierarchical Infinite Beta-Liouville Mixture
Model

Comparedwith batch learning algorithms, online algorithms aremore efficientwhen handling
large-scale or sequentially arriving data. In this section, we extend the batch variational
framework for learning hierarchical infiniteBeta-Liouvillemixturemodel to an online version
by adopting the algorithm proposed in [48]. Assume that we have already obtained a data set
X with N data points. In addition, data points are continuously observed in an online manner.
Therefore, we have to estimate the variational lower bound corresponding to a fixed amount
of data. The expected value of the logarithm of the model evidence p(X ) for this finite size
of data can be calculated as

〈ln p(X )〉φ =
∫

φ(X ) ln

(∫
p(X |Θ)p(Θ)dΘ

)
dX (45)

where Θ = {Z,W,ψ ′,π ′, θ}. φ(X ) represents an unknown probability distribution for
observed data. Then, the corresponding expected variational lower bound can be calculated
as

〈L(q)〉φ = 〈∑
Z

∫
q(Λ)q(Z) ln

[
p(X ,Z|Λ)p(Λ)

q(Λ)q(Z)

]
dΛ

〉
φ

= N
∫

q(Λ)dΛ
〈∑
Z

q(Z) ln

[
p(X,Z|Λ)

q(Z)

]〉
φ

+
∫

q(Λ) ln

[
p(Λ)

q(Λ)

]
dΛ

(46)

Now consider r as the actual amount of data that we have observed. The corresponding
current lower bound for the observed data can be calculated by

L(r)(q) = N

r

r∑
i=1

∫
q(Λ)dΛ

∑
Zi

Q(Zi ) ln

[
p(Xi ,Zi |Λ)

q(Zi )

]
+

∫
q(Λ) ln

[
p(Λ)

q(Λ)

]
dΛ (47)

where Λ = {W,ψ ′,π ′,αl ,α,β}. Please notice that in our case r increases over time while
N is fixed. According to [48], the objective function of our online algorithm is the expected
log evidence for a fixed amount of data as shown in Eq. (45). Thus, our online learning
algorithm calculates the same quantity even if the amount of the observed data increases. As
a matter of fact, we use the observed data to improve the estimation quality of the expected
variational lower bound Eq. (46) which approximates the expected log evidence Eq. (45).

In order to apply the online variational learning algorithm, we need to successively max-
imize the current variational lower bound L(r)(q) with respect to each variational factor.
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Assume that we have already observed a data set {X1, . . . X(r−1)}. After obtaining a new
observation Xr , we can maximize the current lower bound L(r)(q) with respect to q(Zr )

while other variational factors remain fixed to their (r − 1)th values: q(r−1)(W), q(r−1)(αl),
q(r−1)(α), q(r−1)(β), q(r−1)(π ′) and q(r−1)(ψ ′). Thus, the variational solution to q(Zr ) can
be updated as

q(Zr ) =
M∏
j=1

T∏
t=1

ρ
Z jtr
j tr (48)

where

ρ j tr = exp(ρ̃ j tr )∑T
f =1 exp(ρ̃ j tr )

(49)

and

ρ̃ j tr =
K∑

k=1

〈W (r−1)
j tk 〉

[
Ĩ(r−1)
k +

(
ᾱ

(r−1)
k −

D∑
l=1

ᾱ
(r−1)
kl

)
ln

(
D∑
l=1

X jrl

)

+
D∑
l=1

(
ᾱ

(r−1)
kl − 1

)
ln X jrl +

(
β̄

(r−1)
k − 1

)
ln

(
1 −

D∑
l=1

X jrl

)

+ H̃(r−1)
k

]
+ 〈ln π

′(r−1)
j t 〉 +

t−1∑
s=1

〈ln(1 − π
′(r−1)
js )〉 (50)

Next, the current lower bound L(r)(q) is maximized with respect to to q(r)(W), while
q(Zr ) is fixed and other variational factors remain at their (r − 1)th values. Thus, the varia-
tional factor to q(r)(W) can be updated as

q(r)(W) =
M∏
j=1

T∏
t=1

K∏
k=1

(
ϑ

(r)
j tk

)W (r)
j tk

(51)

where the hyperparameter ϑ
(r)
j tk is given by

ϑ
(r)
j tk = ϑ

(r−1)
j tk + ξr�ϑ

(r)
j tk (52)

where ξr is the learning rate which is used to reduce the earlier inaccurate estimation effects
that contributed to the lower bound and accelerate the convergence of the learning process.
In this work, we adopt a learning rate function introduced in [57], such that ξr = (η0 + r)−ς ,
subject to the constraints ς ∈ (0.5, 1] and η0 ≥ 0. In Eq. (52),�ϑ

(r)
j tk is the natural gradient of

the hyperparameter ϑ(r)
j tk . The natural gradient of a hyperparameter is obtained bymultiplying

the gradient by the inverse of Riemannian metric, which cancels the coefficient matrix for
the posterior parameter distribution. Thus, these natural gradients can be calculated as

�ϑ
(r)
j tk = ϑ

(r)
j tk − ϑ

(r−1)
j tk =

exp
(
ϑ̃

(r)
j tk

)

∑K
f =1 exp

(
ϑ̃

(r)
j t f

) − ϑ
(r−1)
j tk (53)

where
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ϑ̃
(r)
j tk = Nρ j tr

[
Ĩ(r−1)
k +

(
ᾱ

(r−1)
k −

D∑
l=1

ᾱ
(r−1)
kl

)
ln

(
D∑
l=1

X jrl

)

+
D∑
l=1

(
ᾱ

(r−1)
kl − 1

)
ln X jrl +

(
β̄

(r−1)
k − 1

)
ln

(
1 −

D∑
l=1

X jrl

)

+ H̃(r−1)
k

]
+ 〈lnψ

′(r−1)
k 〉 +

k−1∑
s=1

〈ln(1 − ψ ′(r−1)
s )〉 (54)

In the following step, the current lower bound L(r)(q) is maximized with respect to
q(r)(π ′), q(r)(ψ ′), q(r)(αl), q(r)(α) and q(r)(β) as

q(r)(π ′) =
M∏
j=1

T∏
t=1

Beta
(
π

′(r)
j t |a(r)

j t , b(r)
j t

)
(55)

q(r)(ψ ′) =
K∏

k=1

Beta
(
ψ

′(r)
k |c(r)

k , d(r)
k

)
(56)

q(r)(αl) =
K∏

k=1

D∏
l=1

G
(
α

(r)
kl |ũ(r)

kl , ṽ
(r)
kl

)
(57)

q(r)(α) =
K∏

k=1

G
(
α

(r)
k |g̃(r)

k , h̃(r)
k

)
(58)

q(r)(β) =
K∏

k=1

G
(
β

(r)
k |g̃′(r)

k , h̃′(r
k

)
(59)

where the hyperparameters are given by

a(r)
j t = a(r−1)

j t + ξr�a(r)
j t , b(r)

j t = b(r−1)
j t + ξr�b(r)

j t (60)

c(r)
k = c(r−1)

k + ξr�c(r)
k , d(r)

k = d(r−1)
k + ξr�d(r)

k (61)

ũ(r)
kl = ũ(r−1)

kl + ξr�ũ(r)
kl , ṽ

(r)
kl = ṽ

(r−1)
kl + ξr�ṽ

(r)
kl (62)

g̃(r)
k = g̃(r−1)

k + ξr�g̃(r)
k , h̃(r)

k = h̃(r−1)
k + ξr�h̃(r)

k (63)

g̃′(r)
k = g̃′(r−1)

k + ξr�g̃′(r)
k , h̃′(r)

k = h̃′(r−1)
k + ξr�h̃′(r)

k (64)

The corresponding natural gradients in the above equations can be calculated as

�a(r)
j t = 1 + Nρ jr t − a(r−1)

j t (65)

�b(r)
j t = λ j t + N

T∑
s=t+1

ρ jsr − b(r−1)
j t (66)

�c(r)
k = 1 +

M∑
j=1

T∑
t=1

ϑ
(r)
j tk − c(r−1)

k (67)

�d(r)
k = γk +

M∑
j=1

T∑
t=1

K∑
s=k+1

ϑ
(r)
j ts − d(r−1)

k (68)
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�ũ(r)
kl = ukl + N

M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t

[
Ψ

(
D∑
l=1

ᾱ
(r−1)
kl

)
− Ψ

(
ᾱ

(r−1)
kl

)

+Ψ ′
(

D∑
l=1

ᾱ
(r−1)
kl

)
D∑
s �=l

(
〈ln α

(r−1)
ks 〉 − ln ᾱ

(r−1)
ks

)
ᾱ

(r−1)
ks

]
ᾱ

(r−1)
kl − ũ(r−1)

kl

(69)

�ṽ
(r)
kl = vkl − N

M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t

[
ln X jrl − ln

(
D∑
l=1

X jrl

)]
− ṽ

(r−1)
kl (70)

�g̃(r)
k = gk + N

M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t ᾱ

(r−1)
k

[
Ψ

(
ᾱ

(r−1)
k + β̄

(r−1)
k

)
− Ψ (ᾱ

(r−1)
k )

+ β̄
(r−1)
k Ψ ′ (ᾱ

(r−1)
k + β̄

(r−1)
k

) (
〈ln β

(r−1)
k 〉 − ln β̄

(r−1)
k

) ]
− g̃(r−1)

k (71)

�h̃(r)
k = hk − N

M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t ln(X jrl) − h̃(r−1)

k (72)

�g̃′(r)
k = g′

k + N
M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t β̄

(r−1)
k

[
Ψ

(
ᾱ

(r−1)
k + β̄

(r−1)
k

)
− Ψ

(
β̄

(r−1)
k

)

+ ᾱ
(r−1)
k Ψ ′ (ᾱ

(r−1)
k + β̄

(r−1)
k

) (
〈ln α

(r−1)
k 〉 − ln ᾱ

(r−1)
k

) ]
− g̃′(r−1)

k (73)

�h̃′(r)
k = h′

k − N
M∑
j=1

T∑
t=1

ϑ
(r)
j tkρ jr t ln(1 − X jrl) − h̃′(r−1)

k (74)

Since the hyperparameters of q(r)(π ′), q(r)(ψ ′), q(r)(α) q(r)(β) and q(r)(αl) are independent
from each other, they can be updated in parallel. We repeat this online variational inference
procedure until all the variational factors are updated with respect to the current arrived
observation. It is worth mentioning that the online variational algorithm can be defined as
a stochastic approximation method [27] for estimating the expected lower bound and the
convergence is guaranteed if the learning rate satisfies the following conditions [48]:

∞∑
r=1

ξr = ∞ ,

∞∑
r=1

ξ2r < ∞ (75)

The online variational inference for hierarchical infinite Beta-Liouville mixture model is
summarized in Algorithm 2. The computational complexity for the proposed online varia-
tional hierarchical infinite Beta-Liouville mixture model is O(MT K D) in each iteration. In
contrast, its batch learning counterpart requires O(NMT K D) in each iteration, where N in
this case represents the size of the data set that is observed. This is due to the fact that the
batch algorithm updates the variational factors using the whole data set in each iteration, and
thus its estimation quality is improved much more slowly than in the case of the online one.
Please also notice that the total computational time depends on the number of iterations that
is required to converge.
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Algorithm2Online variational learning of hierarchical infiniteBeta-Liouvillemixturemodel
1: Choose the initial truncation levels K and T ;
2: Initialize the values for hyperparameters λ j t , γk , ukl , vkl , gk , hk , g

′
k , h

′
k ;

3: while There is more data to observe do
4: The variational E-step:
5: Update the variational solution to q(Zr ) using Eq. (48);
6: The variational M-step:
7: Compute learning rate ξr = (η0 + r)−ς .

8: Calculate the natural gradient �ϑ
(r)
j tk using Eq. (53);

9: Update the variational factor q(r)(W) as shown in Eq. (51);
10: Calculate the natural gradients of the remaining hyperparameters using Eqs. (65)–(74);
11: Update variational factors q(r)(π ′), q(r)(ψ ′), q(r)(αl ), q

(r)(α) and q(r)(β) through Eqs. (55)–(59);
12: Repeat the variational E-step andM-step until new data is observed;
13: r = r + 1;
14: end while

3.3 Discussion

Regarding the learning of mixture models, other popular approximation schemesmay also be
applied. Indeed, two classes of approximation techniques can be broadly defined, depend on
whether they rely on stochastic or deterministic approximations. Stochastic techniques, such
as Markov chain Monte Carlo (MCMC) [46], are based on numerical sampling and can pro-
vide exact results in theory if given infinite computational resource. Nevertheless, in practice,
the use of sampling method is limited to small-scale problems due to the high computational
cost. Moreover, it is often difficult to analysis the convergence. By contrast, the deterministic
approximation schemes such as expectation prorogation [39,40] and variational Bayes are
based on analytical approximations to the posterior distribution. Expectation prorogation,
which is based on the assumed-density filtering [37], is a recursive approximation scheme
based on the minimization of a Kullback-Leibler divergence between the true model’s pos-
terior and an approximation. Compared with variational Bayes, expectation prorogation can
provide comparable learning results if the data set is relatively small, whereas its perfor-
mance would be degraded for large-scale data set [35]. In our work, we adopt variational
Bayes as the approximation method for model learning. The variational approach is based on
analytical approximations to the posterior distribution, which has received a lot of attention
and has provided good generalization performance as well as computational tractability in
various applications. Additionally, variational Bayes has also increased the power and flex-
ibility of mixture models by allowing full inference about all the involved parameters and
then simultaneous model selection and parameters estimation.

4 Experimental Results

We validate the proposed online hierarchical infinite Beta-Liouville mixture model (referred
to asOnHInBL) through a real-world application namely scene recognition. Indeed, the avail-
ability of relatively cheap digital communication and the popularity of the WWW has made
image databases largely available. A lot of research works have been devoted to the develop-
ment of efficient image representation and classification approaches [11,29,34,43,44,49,50].
This task is challenging and has a lot of potential applications. Examples of applications
include multimedia retrieval, annotation, summarizing and browsing [14,16,33,41,42]. An
important step is the extraction of the images content descriptors [28,56]. According to [59],
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“scene” represents a place where a human can act within or navigate. The goal of scene
recognition is to classify a set of natural images into a number of semantic categories. In
our work, we perform the scene recognition using our OnHInBL model with a bag-of-visual
words representation. In this experiment, our specific choice for initializing the hyperpara-
meters is the following: (λ j t , γk, ukl , vkl , gk, hk, g′

k, h
′
k) = (0.1, 0.1, 1, 0.1, 1, 0.1, 1, 0.1).

Parameters ς and η0 of the learning rate are set to 0.65 and 64, respectively. Furthermore,
the global truncation level K is set to 750 and the group truncation level T is set to 80. It is
worth mentioning that these specific choices were found convenient in our experiment.

4.1 Experimental Design

Theprocedure for performing scene recognition using the proposedOnHInBLmodel and bag-
of-visual words representation is described as the following: First, we extract and normalize
PCA-SIFT descriptors1 (36-dimensional) [25] from original images using the Difference-of-
Gaussian (DoG) detector [32].Next, ourOnHInBL is used tomodel these obtained PCA-SIFT
feature vectors. More specifically, each image I j is treated as a “group” in our hierarchical
model and is associated with an infinite mixture model G j . Thus, each PCA-SIFT feature
vector X ji of the image I j is considered to be drawn from G j and the mixture components
of G j are treated as “visual words”. Then, a global vocabulary is constructed and is shared
among all groups (images) through the common global infinite mixture model G0 within our
hierarchical model. It is noteworthy that this settingmatches the desired design of a hierarchi-
cal Dirichlet process mixture model where observations are organized into groups and these
groups are statistically linked by sharing mixture components. Indeed, an important step
in bag-of-visual words representation is the construction of visual vocabulary. As we may
notice, most of previously proposed approaches have to apply a separate vector quantization
method (such as K -means) to build the visual vocabulary, where the size of the vocabulary
is normally chosen manually. This problem can be tackled elegantly in our approach since
the construction of the visual vocabulary is part of our hierarchical Dirichlet process mixture
framework. As a result, the size of the vocabulary (i.e. the number of mixture components
in the global-level mixture model) can be inferred automatically from the data thanks to the
property of nonparametric Bayesian model. Then, the “bag-of-words” paradigm is employed
and a histogram of “visual words” for each image is computed. Since the goal of our exper-
iment is to determine which scene category that a testing image I j belongs to, we need to
introduce an indicator variable Bjm associated with each image (or group) in our hierarchical
Dirichlet process mixture framework. Bjm denotes image I j comes from category m and is
drawn from another infinite mixture model which is truncated at level J . This means that
we need to add a new level of hierarchy to our hierarchical infinite mixture model with a
sharing vocabulary among all scene categories. In our experiment, we truncate J to 50 and
initialize the hyperparameter of the mixing probability of Bjm to 0.1. Finally, we assign a
testing image into the category which results the highest posterior probability according to
Bayes’ decision rule.

4.2 Data set and Results

We conducted our test on a challenging scene data set namely Scene UNderstanding (SUN)
database which contains 899 scene categories and 130,519 images.2 Images within each cat-

1 Source code of PCA-SIFT: http://www.cs.cmu.edu/~yke/pcasift.
2 Database is available at: http://vision.princeton.edu/projects/2010/SUN/.
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abbey aqueduct bamboo barn

bathroom beach boardwalk bridge

butte hayfield highway lighthouse

ocean oilrig railroad sky

Fig. 1 Sample scene images from the SUN database

egory were obtained usingWordNet terminology from various search engines on the internet
[59]. In our case, we randomly chose 16 of the 899 categories (e.g. “abbey”, “aqueduct”,
“lighthouse”, and “beach”) in the SUN database to evaluate the performance of our approach.
Furthermore, we have to ensure that each selected category must have at least 100 images.
Thus, each of these categories contains 100 scene images and therefore we have 1600 images
in total. We randomly divided this data set into two halves: one for training (to learn the
model and build the visual vocabulary), the other one for testing. Sample images from each
scene tested category can be viewed in Fig. 1.

The proposed approach was evaluated by running it 30 times. We compared ourOnHInBL
approach with several other mixture-modeling approaches for scene recognition, in order to
demonstrate its advantages. Our goal for the comparison can be summarized in three-fold:
to compare the online learning algorithm with the batch one; to compare the hierarchical

123



Model-Based Clustering Based on Variational Learning... 445

Table 1 The average scene recognition rate (%) and the corresponding the runtime (s) using different methods
for the SUN database. The numbers in parenthesis are the standard deviation of the corresponding quantities

Method Recognition rate (%) Runtime (s)

OnHInBL 70.81 (1.58) 87.65

BaHInBL 71.27 (1.39) 319.46

OnInBL 66.34 (1.64) 80.52

OnHInGau 63.15 (1.23) 83.13

a b c d e f g h i j k l m n o p
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Fig. 2 Confusion matrix obtained by OnHInBL for the SUN database

Dirichlet process framework with the conventional Dirichlet process one; to compare Beta-
Liouville mixture models with Gaussian ones on modeling proportional data. Thus, the
proposedOnHInBL model was compared with: the batch hierarchical infinite Beta-Liouville
mixture model (BaHInBL), the online infinite Beta-Liouville mixture (OnInBL) model and
the online hierarchical infinite Gaussian mixture model (OnHInGau). All of these models
were learnedusingvariational inference. For the experiment of usingOnInBLmodel, its visual
vocabulary was built using the K -means algorithm and the size of its visual vocabulary was
manually set to 600. The testing data in our experiments is supposed to arrive sequentially in
an online manner except for the approach using BaHInBL model. Table 1 shows the average
results of our OnHInBL model and the three other tested model for scene recognition on the
SUN database. As illustrated in this table, both the proposed online approach (OnHInGDFs)
and its batch counterpart (BaHInBL) can obtain the highest recognition rates among all
tested approaches. Figures 2 and 3 present the confusion matrices obtained by OnHInBL
and BaHInBL, respectively for the tested database. Each entry (i , j) of the confusion matrix
denotes the number of images in category i that are assigned into category j . As shown in
these two figures, we observed that the overall average recognition accuracy was 70.81 %
(error rate of 29.19 %) usingOnHInBL, and 71.27 % (error rate of 28.73 %) using BaHInBL.
AlthoughBaHInBL provided slightly higher recognition rate (71.27%) than the one obtained
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Fig. 3 Confusion matrix obtained by BaHInBL for the SUN database

byOnHInBL (70.81 %), their difference is not statistically significant according to Student’s
t-test (i.e., we have calculated p-values between 0.1351 and 0.2512 for different runs).
Therefore, OnHInBL is more favorable since it was significantly faster than BaHInBL as
shown in Table 1, because of its online learning property. This can be explained by the
fact that the batch algorithm updates the variational factors by using the whole data set in
each iteration, and thus its estimation quality is improved more slowly than in the case of the
online one.Moreover,OnHInBL outperformedOnInBL (70.81 vs. 66.34%) as shownTable 1,
which demonstrates the merits of using hierarchical Dirichlet process framework over the
conventional Dirichlet process one. According to Table 1, better performance obtained by
OnHInBL than the one acquired byOnHInGau verifies that the Beta-Liouville mixturemodel
has a better modeling capability for proportional data than Gaussian mixture model.

5 Conclusion

In this paper, we have proposed a statistical clustering framework based on Beta-Liouville
distribution. This statistical framework is developed from a nonparametric Bayesian per-
spective via a hierarchical Dirichlet process. For the learning of the model’s parameters both
variational approaches are proposed. The first one works on batch settings and the second one
is incremental. The experimental results that have concerned image databases categorization
have shown that our method is promising and has interesting advantages. It is noteworthy that
in the proposed model, all data features are used for model learning. However, in practice,
not all the features are important and some may be irrelevant. These irrelevant features may
not contribute to the learning process or even degrade clustering results. Thus, one possi-
ble future work can be devoted to the inclusion of a feature selection scheme within the
proposed framework in order to chooses the “best” feature subset for improving clustering
performance.
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