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Abstract In this paper, a three-neuron artificial neural network model with distributed delays
is considered. Its dynamics is investigated in term of the linear stability analysis and Hopf
bifurcation analysis. By regarding the sum of two delays as a bifurcation parameter and
analyzing the associated characteristic equation, we find that Hopf bifurcation occurs when
the bifurcation parameter passes through some certain values. Some explicit formulae for
determining the stability and the direction of the Hopf bifurcation periodic solutions are
derived by using the normal form method and center manifold theory. Finally, computer
simulations are given to support the theoretical predictions.
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1 Introduction

In the last three decades, there has been increasing interest in the dynamical properties of
neural networks due to their important applications in many fields such as pattern recogni-
tion, classification, optimization, signal and image processing, solving nonlinear algebraic
equations, associative memories, cryptography and so on [1]. Many rich mathematical inves-
tigations and interesting results on neural networks have been available in the literature (see
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[2—14]). In particular, the Hopf bifurcation behavior is of great interest. In order to obtain a
deep and clear understanding of the Hopf bifurcation nature of neural networks, many authors
have focused on the studying of simplified neural networks with two, three or four neurons.
For instance, Zou et al. [15] considered the stability and Hopf bifurcation of a three-unit
neural network with two delays, Shayer and Campbell [16] studied the stability, bifurcation,
and multistability in a system of two coupled neurons with multiple time delays, Guo and
Huang [17] focused on the linear stability and Hopf bifurcation of a two-neuron network
with three delays, Liao et al. [18] analyzed the stability and bifurcation of a tri-neuron model
with time delay, Wang and Jian [3] gave a detailed study on the stability and Hopf bifurcation
for a four-neuron BAM neural network with distributed delays, Mao and Hu [19] made a
detailed discussion on Hopf bifurcation of a four-neuron network with multiple time delays.
Majee and Roy [20] dealt with the temporal dynamics of two-neuron continuous network
model with time delay. For more work on this aspect, one can see [2,21-39]. In 2008, Gupta
et al. [40] considered the following three neurons network with distributed delay

dx;
dt

3
= —px;(t) —l—Zaij tanh |:/l k(t —s)xj(s)ds], i=1,2,3, (1.1

j=1 -

where p > 0 is the delay rate of neurons. ¢;; is the weight of synaptic connections from
neuron j to neuron i and k is the delay kernel assumed to satisfy the following conditions:

(i) k : [0, 00) — [0, 00);

(ii) k is piecewise continuous;

(iii) /ook(s)ds = 1,/00 sk(s)ds < oo.
Jo 0

The general form of delay kernel k(s) takes the form:

n,Bs
ko) =" 50,00, =012,
n.

where £ is a parameter which stands for the rate of decay of the effects of past memories and
it is a positive real number. n = O represents weak kernel, whereas n = 1 represents strong

kernel.
When n = 0, then the delay kernel k(s) reads as

k(s) = Be P, s € (0, 00).

Then system (1.1) takes the form

3

d . = t

% = —px;i(t) + E ajj tanh |:ﬂ/ eiﬂ(’f‘y)xj(s)ds] t>0, i=1,2,3. (1.2)
j=1 e

To make the calculation more tractable, Gupta et al. [40] make the following assumption:
p=lan=an=a3=0an=a3=>b,a21 =a31 =a,a3 =azx =0.
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Then system (1.2) becomes

t t

C:T’: = —x(t) + btanh [,3/ e_ﬂ(’_s)y(s)ds] + btanh [,3/ e_ﬂ(t_s)z(s)ds] ,

dy "B

== —y(t) 4+ atanh /3/ e Dx(s)ds |, (1.3)
t

% = —z(t) + a tanh |:,3/ e_ﬂ(t_s)x(s)ds] .

With the aid of some auxiliary variables, Gupta et al. [40] focused on the asymptotic stability,
orbits stability of Hopf bifurcation periodic solution of system (1.3).

We must point out that in real life, there is transmission delay of the signal along the axon
of the neuron. Motivated by the viewpoint, we can modify system (1.3) as follows:

dx ! —B(t—s)
o= —x(t) + btanh | B e Yy(s —m)ds
—00

+ b tanh [/3 fioo e P9 z7(s — ‘Cz)ds] ,

dy Y a9 4
E:—y(t)—katanh 5/ e Yx(s —Tnds |,
—00
dz " Bl—s)
== —z(t) +atanh | B e x(s —Ty)ds |-
—00

Here we wold like to point out that human brain is made up of a large number of cells
neurons and their interaction, artificial neural networks are information processing systems
which have some common characteristics with biological neural networks. System (1.4) can
play a important role in the control of regular dynamical functions such as breathing and hear
beating of human.

In this paper, we consider the model (1.4). In order to establish the main results for model
(1.4), it is necessary to make the following assumption:

HH) 114+ =r.

This paper is organized as follows. In Sect. 2, the stability of the equilibrium and the
existence of Hopf bifurcation at the equilibrium are analyzed. In Sect. 3, the direction of
Hopf bifurcation and the stability and periods of bifurcating periodic solutions on the center
manifold are determined. In Sect. 4, numerical simulations are given to illustrate the validity
of the main results. Some main conclusions are drawn in Sect. 5.

2 Stability of the Equilibrium and Local Hopf Bifurcations

Let
' '
u(t) = ,3/ e P x(s —t)ds, t>0,
—0Q

t
v(t) = 5/ e Py (s —1)ds, t>0, 2.1

t
w(t) = ﬁ/ e P x(s —1)ds, t>0.
—00
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then system (1.4) takes the following equivalent form:
dx
Tl —x(t) + btanh[v(¢)] + b tanh[w(?)],
d

0% = —y(t) + atanh[u(r)],

z
— = —z(t) + a tanh[u(s)],
dt 2.2)

du _
T Blx(t — 1) —u(®)],
dv _
- Blyt — ) —v(@®)],
dw _
o Blz(t — ) —w(D)].

For notational and computational simplicity, we can rewrite system (2.2) as follows:

d
% = —x1(1) + btanh[xs(1)] 4 b tanh[x6 ()],
dx)

T —x2(t) + a tanh[x4(2)],

dxs

—= = —z(t) + a tanh[x4(2)],
dt (2.3)

dxy _

o Blx1(t — 1) — x4(8)],
dxs _ _ B
o Blx2(t — 1) — x5(8)],
dxg _ _ _
T Blx3(t — 1) — x6(1)].

From the paper [40], if the following condition
(H2) ab :
< =
=3

holds, then (2.3) has a unique equilibrium E (x}, x5, x5, xJ, xgk , X¢). The linear equation of
(2.3) at E(x{, x5, x5, x}, xZ, x;) takes the form:
= —x1 (1) + bsech? (x¥)x5() + bsech® (x{) x4 (1),
= —x(1) + asech® (x})x4(1),
= —x3(r) + asech? (x})x4(1),
2.4)
= Blxi1(t — 1) — x4 ()],
= Blx2(t — 2) — x5(0)],

= Blx3(t — 12) — x6(1)].

dxy
dt
dx;
dt
dxs
dt
dxy
dt
dxs
dt
dxg
dt
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Then the associated characteristic equation of (2.4) is given by

A+1 0 0 0 —bsech?(x¥) —bsech?(x})
0 A1 0 —bsech?(x}) 0 0
0 0 A4+1  —bsech®(x¥) 0 0
det | _ go—im 0 0 A+ B * 0 0 =0,
0 —Be*n2 0 0 L+ B 0
0 0 —Be 2 0 0 A+ B
(2.5)

which leads to the following form:
A+ s+ radt + A + Al A+ o+ A2+ siA+s0)eFT =0, (2.6)
where

ro=p>.r =38 +3p%r, =38 +98° + 38,
r3=B + 9B+ 98+ 1,1y =367 +9B+3,r5 =38 +3,

5o = —abB3sech? (xg)(sechz(xj{) + sech? (x3)),
s1 = —ab(B + 1)B*sech? (x})(sech? (x}) + sech?(x¥)),
52 = —abf?sech® (x}) (sech® (x}) + sech®(x)).

Let & = iwp, T = 10, and substituting this into (2.6), for the sake of simplicity, denote wq
and 7o by w and 7, respectively, then (2.6) becomes

—o® + r5w5i + ryot — r3a)3i — o’ + roi + 70
+(—520% + s10i + sp)(cos wT + i sinwt) = 0. Q2.7)
Separating the real and imaginary parts leads to

(so — szwz) COSWT + S|wsinwt = »® — r4w4 + rza)2 — 10, (2.8)
S1wcoswt — (sg — szwz) COSwT = r3w3 — r5a)5 —riw. 2.9)
Squaring both sides of (2.8) and (2.9), and adding them up gives

2
S_rlw) )

(50 — 200 + (510)* = (0° — r40* + rw* —1)* + (w® — rso
which is equivalent to
02 + 050" + 040° + 030° + 6200 + 0107 + 6y = 0, (2.10)

where
90 = rg — S(%, 0 = ’,12 — 2}’01‘2 =+ 25052 — 512’
0 = rz2 — 2rory — 2r1r3 — s%, 03 = r32 + 28175 — 210 — 274,
04 = ry +2ry — 2r3rs, 05 =13 — 2r4.
Let z = 62, Then (2.10) becomes
0 +052° + 04z +632° + 6227 + 012+ 69 = 0, 211

If 6p < 0, then (2.11) has at least one positive root. Suppose that Eq. (2.11) has positive
roots. Without loss of generality, we assume that (2.11) has six positive roots, denoted by
21, 22, 23, 24, 25, 26, Then (2.10) has six positive roots as follows
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w1 = 21, 02 = 22, 03 = /23, w4 = /24, w5 = /75, w6 = /7.
By (2.8) and (2.9), we have

(w,? - ma)ﬁ + rzw,% —r9)(so — szw,%) + (r_gw,? - rswz — I wg)S1 Wk

2.12
(50 — 5207)2 + (s10)? @12

COSWT =

Thus, if we denote

0 2 U s [ @0 = a0k + 120 — ro)s0 = 200) + (30} — 50 —newsie | 2jm
k (s0 — $209)2 + (s10)? ’
(2.13)

wherek =1,2,3,...,6and j =0, 1,2, .... Then +iwy are a pair of purely imaginary roots
of Eq. (2.6) witht = r,fj). Obviously, in view of (2.13), the sequence {rk(j)};rog is increasing,

and

lim /) =400, k=1,2,3,...,6.

Jj—=+o0

Then we can define

0) _

- i (7 ©
T =T = min {7},

W) = WiO- (2.14)

Note that when T = 0, (2.6) becomes
A8 4152 4 rant 33 4 (5227 + (11 + sDA A+ (ro + 50) = 0. (2.15)

All roots of (2.15) have a negative real part if the following well-known Routh-Hurwitz
criteria hold.

Dy =rs >0, (2.16)
D> = det (r5 : ) >0, 2.17)
r3 14
rs 1 0
D3 = det r3 r4 rs | >0, (2.18)
rr+s1 rp+s2 13
s 1 0 0
r3 r4 rs 1
Dy = 2.19
4 rn+sy rn+s r3 r4 ( )
0 ro+so ri+s1 r+s
s 1 0 0 0
r3 r4 s 1 0
Ds=det| ri+s1 rn+s r3 r4 rs > 0, (2.20)
0 ro+so ri+s1 r+s r3
0 0 0 ro+so ri+si
De¢ = ro +s9 > 0. (2.21)

In order to obtain the main results in this paper, it is necessary to make the following assump-

tions:
(H3) If (2.16)—(2.21) hold, (2.15) have six roots with negative real parts when 7 = 0,
(2.1) is stable near the equilibrium.
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(H4) Re (42) } £0.
=10
Taking the derivative of A with respect to t in (2.6), it is easy to obtain:

daT1 (06X 4 55t + 4ra3 + 37302 4 2r0h + r)ePt
dt a A(s222 + s1A + s0)
2s9A + 51 T

- (2.22)
A$2AZ + 510 +50) A

Then

R [dx]—l R { (67 + 5r5A% + 4rgd3 4 31302 + 2rmA + r1)e” }
e| — = K€
r=10 A(s2A2 + 51 + s0) =19
{ 2500 + 51 }

7:=1:0.

2.23
A(52A2 + 514 + 50) ( )

Thus

dx17! 0,
Re| = =1 (2.24)
drt (O))

=T

where

0 = sla)%[(6w(5) — 4r4w(3) + 2rpwq) Sin woty — (5r4a)g — 3r3a)(2) + r1) coswoty — 1
+(so — s2a)(2))[(5r4wé — 3r3w(2) + rq1) sinwyty + (6w(2) — 4r4a)(3) + 2rywq) coS woTo ],
02 = (s1w0) + [(s0 — Szw%)wo]z-

In order to investigate the distribution of roots of the transcendental equation (2.6), the
following Lemma that is stated in [41] is useful.

Lemma 2.1 [41] For the transcendental equation

PO, e, ety = g p Ol p@ g p©

n

+[p A DA D] e
+ [pi’")xn‘l +o e pA A+ p,(,’")] et =0,

as (11, 12, 13, - . ., Ty) vary, the sum of orders of the zeros of P (A, e M e ) in the
open right half plane can change and only if a zero appears on or crosses the imaginary axis.

Remark 2.1 Lemma 2.1 is a generalization of the Lemma in Cooke and Grossman [42] in
which a second order degree exponential polynomial was investigated.
In view of Lemma 2.1, it is easy to obtain the following results:

Theorem 2.2 [f (HI)-(H4) hold, then

(i) for system (2.3), its equilibrium E(x}, x5, x3, xj, x%, x{) is asymptotically stable for
7 € [0, 70)

(ii) system (2.3) undergoes a Hopf bifurcation at the equilibrium E (x}, x5, X3, X}, x5, x¢)
when T = 1, i.e., system (2.3) has a branch of periodic solutions bifurcating from the
equilibrium E (x{, x5, x5, xj, x¥, x§) solution near T = 1.
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350 C. Xuetal.

3 Direction and Stability of the Hopf Bifurcation

In the previous section, we have obtained some conditions to ensure that system (2.3) under-
goes a single Hopf bifurcation at the equilibrium E (x{, x5, x5, x3, x¥, x{) whent = 71+ 12
passes through certain critical values. In this section, we shall study the direction, stability,
and the period of bifurcating periodic solutions. The method we used is based on normal
form method and the center manifold theory introduced by Hassard et al. [43].

Without loss of generality, we denote the critical value 7;(i = 0,1,2,...)byT =171+ 1
at which system (2.3) undergoes a Hopf bifurcation, where 7| < Tpand t = 7 + pu =
(T1 + 1) + T2, then p = 0 is Hopf bifurcation value of system (2.3). We choose the phase
space as C = C([—12,0], C 6), where for convenience in computation we use C % instead of
RS,

Its linear part is given by

d
% = —x1 (1) + bsech?(x})x5(1) + bsech? (x})x4 (1),
d
% =—x(t) + asechz(xj)x4(t),
d
ax3 _ —x3(t) + asechz(xff)m(t),
d{f 3.1)
— = Bl =) —xl,
d
=2 = Bl — ) —x5(0))
d
T8 = Bt — ) = (1)
Its non-linear part is given by
c11x2(0) + c12x3 (0) + ¢13x2(0) + c14x2 (0) + h.o.t.
c21x£ 0) + szxg (0) + h.o.t.
C21x‘% ) + ngxz (0) 4+ h.o.t.
flu,x) = 0 , (3.2)
0
0
where
c11 = —2bsech?(v*)th(v*),
c12 = —b(4sech’ (v*)th?(v*) — 2sech* (v*¥)),
c13 = —2bsech®(w*)th(w™),
c1a = —b(4sech? (w*)th? (w*) — 2sech*(w™)),
¢21 = —2bsech®(w*)th(u®),
2 = —b(4sech? (u*)th? (u*) — 2sech* (u™))
and

x1(0) = (x11(0), x2(0), X3, (6), x4 (6), x5:(6), x61 ()"
= (X1t +0), x2(t + ), x3(1 + 0), x4t +60), x5(t +0), x6(t +6))" .
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Denote
C[=1.01 = {glg : [~72.0] - R,
each component of ¢ has k order continuous derivative}.

For convenience, denote C[—172, 0] by C 0[—%,, 0].

Forg(0) = (¢1(), 92(0), ¢3(0), 94(0), 95(0), 0s(0))T € C([—72, 0], R®), define afam-
ily of operators

¢1(0) o1 (=71 + ) P1(—T2)

©2(0) (=71 + ) ©2(—12)

_ ©3(0) ©3(—=71 + ) ©3(—T2)
Lior=B1 oo [ T8 g-tivw | T | iy |© G

@5(0) os(=T1 + 1) @s5(—12)

¥6(0) @6 (—T1 + 1) @6(—12)

where L, is a one-parameter family of bounded linear operators in C([—12, 0], R®) — RO
and

-1 0 0 0 bsech?(v*)  bsech?(w*)
0 —1 0 bsech®(u®) 0 0
g_| 0 0 -1 bsech?(u*) 0 0
0 0 0 -B 0 0 ’
0 0 0 0 -B 0
0 0 0 0 0 -B
000000 000000
000000 000000
g _|000000f ,  f000000
'=1poooool"™~]ooo0o000
000000 080000
000000 008000

By the Riesz representation theorem, there exists a matrix whose components are bounded
.. . . ~ 2
variation functions (6, u) in [—17, 0] — R, such that

0
L, (¢) =/~ dn(9, we©). 349
%
In fact, choosing
B, 6=0,
n@,pn) =14 By, 0€[-11,0), (3.5)

By, 0 c[-1,—11),

where §(0) is Dirac function, then (3.4) is satisfied. For (g1, 92, @3, ¢4, @5, 906) €
(C'[—1, 0], RY), define

&®, —5 <6 <0,
AWe =1 4 (3.6)
S5 dn(s, (),  6=0
and
_ o, —%H <0 <0,
R = ( flw. @), 6=0. 3-7)
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352 C. Xuetal.

Then (2.3) is equivalent to the abstract differential equation
up = A(u)xr + R(p)x;, (3.8)

where u = (u1, uz, u3, us, us, ue)’, u;(0) = u(t +0),0 € [, 0].
For ¢ € C([0, %21, (R®)*), define

ay(s)

* _ —ds NS (0, fz],
hres [fffz " Oy (1), s =0. G2
For ¢ € C([—%, 0], R and ¥ € C([0, 21, (R®)*), define the bilinear form
0 0
.0 = 7080 - | /g T OO0 Eds, (3.10)
5 e

where n(6) = n(6, 0). We have the following result on the relation between the operators
A = A(0) and A*.

Lemma 3.1 A = A(0) and A* are adjoint operators.

Proof Let ¢ € C1([—%, 0], R%) and ¢ € C'([0, %], (R®)*). It follows from (3.10) and the
definitions of A = A(0) and A* that

0

(¥(5), A(0)¢(9)) = ¥ (0)A(0)¢(0) —/

-1

6
/5—0 V(& —0)dn©)A0)¢(5)dE

0 0 0
70 [ dn@¢o) - / /E_Olﬁ(s—e)dmmfx(om(@ds

-1 -1
0 0

=GO [ dn@¢®) — | [FE @)@,
-0 -0

0 0 g7k
+ / / WE =0 4 60)p(&)dz
5 Je=0  d§

(U 0 0 d_ -0
= [_icomoso- [ [ [—Lj )]dn(9)¢>(§)d%‘
) —7 JE=0 E

0 0

= A*P(0)p(0) — / ) /E ATYE = 0)dn©)9 €)d
.

= (A" (). $ (6)).

This shows that A = A(0) and A* are adjoint operators and the proof is complete. O

By the discussions in Sect. 2, we know that £iw are eigenvalues of A(0), and they are
also eigenvalues of A* corresponding to iwg and —iwy, respectively. We have the following
result.

Lemma 3.2 The vector
q(0) = (1,a1, a2, a3, as, as)T % 6 € [~%, 0],
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where
aBsech®u*)e =100 aBsech*(u*)e= 10t
ay = , A2 = —; N s
' Gwo+ DB +iwo)’ T (wo+ DB + i)
B Be~iwoT B aBsech* u*)e =10t

asz = N , a4 = — . 2
B +iwg (iwo + 1)(B + iwo)

e (iwo + DB + iw)? — aBsech® u*)e it
T (iwo + 1)(B + iwp)2bsech? (w*)

is the eigenvector of A(0) corresponding to the eigenvalue iwg, and
q*(s) = D(1,a},d}, a}, af, aH)e'™*, s €0, B,
where

_ bBsech(u¥)e™ ™0 DbBsech’(w*)e 0%

* *
a) = — : ydy = — ; s
(iwg + 1)(B + iwp) (iwg + 1)(B + iwg)
N iwp+1 bsech*(u*)
a3 = o=y = ——————,
:36 LwoT] iwo + ﬂ
2
gt — bsech”(w™*)
iwg+ B ’

is the eigenvector of A* corresponding to the eigenvalue —iwq, moreover, (q*(s), q(0)) = 1,
where

D 1
L+ X0 @il + aiBei™t + ajajfel™ + ayat feiont

Proof Let ¢(0) be the eigenvector of A(0) corresponding to the eigenvalue i wg and g*(s) be
the eigenvector of A* corresponding to the eigenvalue —iwg, namely, A(0)g(0) = iwoq (6)
and A*q(s) = —iwpq™(s). From the definitions of A(0) and A*, we have A(0)q(®) =

dq(6)/d9 and A*q(s) = —4L. Thus, g(0) = g(0)¢'®” and g*(s) = q(0)e'™*. In
addition,
-1 0 O 0 bsech?(v*) bsech?(w*)
0 —1 0 bsech®(u*) 0 0
/0 @@ =| & ° ! bsech? (u*) 0 0 o
I R B 0 0 1
0 0 0 0 -B 0
0 0 0 0 0 -8
000000 000000
000000 000000
LJooo0o0oof oo foooo0o00f
g0oo0oo0o0ol|?d™ 000000]|7™
000000 080000
000000 008000
= A(0)q(0) = iwoq(0). 3.11)
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That is

—1 + agsech?(v*) + assech?(w*)

—ay + azsech? (u*®)
—ay + azsech? (u*)

BelT — a3p
Baie ™ — asp

Baze' ™™ — asp

Therefore, we can easily obtain

On the other hand,

7

Namely,

@ Springer

a3 =

afsec

hZ(u*)e—i(uof[

T (iwo+ D(B+iwp)’

B+i

'Be*iwofl

1w
iajwo
iarwy
iazwy
iagw
iaswo

apsech? (u*)e—i@0h

= oo+ DB+ iwo)’
aBsech? (u*)e i@t

a)()’

(iwp + 1)(B +iwy)?’

_ (iwg + D*(B + iwp)* — aPsech? (u*)e 07

0

0 0
/q(nmm— 0
0

0

(iwo + 1) (B + iwg)2bsech? (w*)

[eNeBoNoNehe)

-1 0 O 0 bsech?(v*) bsech?(w*)
—1 0 bsech®(u*) 0 0
0 —1 bsech?(u*) 0 0
0 0 —B 0 0
0 0 0 -8 0
0 0 0 0 —B
000O0O0OO 00 00O
000O0O0OO 00 00O
000O0O0OO *(—F)) + 00 00O
pooooo| 2VH 0000
000O0O0OO 08 00
000O0O0O 00 8O0
A*q*(0) = —iwoq™(0).
-1+ ,Bag"e”"ofl 1
—a} + ajel™® iajwo
—at + ﬁa;eiwofz B iaywo
a’fasechz(u*) + aé‘asechz(u*) — Baj | a5
bsech?(u*) — Baj iaywo
bsech?(w*) — Baz iagwo

T

[e=NeloNeNoNe)

(3.12)

q*(0)

q(—12)

(3.13)

(3.14)
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Therefore, we can easily obtain

bBsech? (u*)e ™% pPsech?(w*)eI“0%2

aj = a5 = — —,
(iwo+ D(B+iw) > (iwo+ (B +iwn)
N iwp+1 bsech? (u*)
a3 = =y = —————
ﬂe 1woT] iwo + 5
gt = bsechz(w*).
3 iwg+ B

In the sequel, we shall verify that (¢*(s),¢(f#)) = 1. In fact, from (3.10), we have
(q*(s),q(©))

= D(1,a},a},a},da, a®)(1, a1, a2, as, as, as)”

0 - _ ) .
- / / DL, a3 &% dy. a2)e 0 dn@)(1, ar. az. a3, as. as)” ¢ d
—7 JE=0

5
=D |:1 +Za,~a_i* -

0 —_ —_ -
(1,4}, a3, a3, dy, a0 dn(0)(1, a1, a2, a3, ay, as) ]

)

[I+Za,a +, al,az,a3,a4,a5)A(l ai, az, as, ag, as) ]

|:1 Za,a +a e~ ieot —i—a1a_5{/367"“’0r2 +a2a_§‘ﬂe’i“’012:| =1.

where
0 0 0 000
0 0 0 000
0 0 0 000
A= ge-ivtn ¢ 0O 000 G.15)
0 Be~iwoTi 0 000
0 0 Be~iwoT 0 0 0

Next, we use the same notations as those in Hassard, Kazarinoff and Wan [43], and we
first compute the coordinates to describe the center manifold Cp at u = 0. Let u; be the
solution of Eq.(2.3) when u = 0.

Define

2(t) = (q*, x;), W(t,0) = x;(0) — 2Re{z(1)q(0)} (3.16)
on the center manifold Cy, and we have
W(t, 0) =W(z),z(2),0), (3.17)

where
2 =2

_ _ z i} z
Wi(z(),z(1),0) = W(z,2) = Wzoj + Wiizz + Wozz +-- (3.18)

and z and 7 are local coordinates for center manifold Cy in the direction of ¢* and ¢*. Noting
that W is also real if x; is real, we consider only real solutions. For solutions x; € Cyp of (2.3),
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(1) = {q"(s), %) = (g™ (s), A(0)x; + R(0)x/)
= (g™ (s), A(0)x;) + (g (s), R(0)x/)
= (A*q*($), x:) + ¢* (O R(0)x;

0 6
—/~ /S Oq_*(E —0)dn(©@)A0)R(0)x; (§)d§
5 Jem

= (iwog™(s), x1) + ¢*(0) £ (0, x,(6)

w0z (t) + ¢*(0) foz(1), 2(0)). (3.19)

That is
z(t) = iwptoz + £(2, 2), (3.20)

where
g(Z,Z)=g20§+g1112+g02§+g21Z272+---. (3.21)

Hence, we have

8(z.2) = g (0) fo(z,2) = £(0, u,)
= wD(1,a}, a3, a5, a;, al)

X (f100, 1), 20, x0), f3(0, x0), fa(0, %), f5(0, x0), f6(0,x:)", (3.22)

where

f1(0, x;) = c“xszt ) + Clzx;, ) + c13xgt ) + c14x§,(0) + h.o.t.,
£00, x) = c21x3,(0) + c20x3,(0) 4+ hoot,,

30, x) = c21x3,(0) + c2x3,(0) + hoot,,

f40, x;) = f5(0, x,) = f6(0, x;) = 0.

Noticing that

x1(0) = (x1:(0), x2(6), x3,(0), x4 (6), x5,(0), x6: ()" = W (t,0) + 29 (0) + Zq

and
q0) = (1,a1, az, a3, ay, as)T &' ™Y,
we have
_ WD E 1w @ e @
x4¢(0) = a3z + asz + Wy, (0)3 + W, (0)zZ 4+ Wy, (0)? 4,
& mZ L w6 5, 22
x5:(0) = agz + asz + Wy, (O)E + Wll)(O)ZZ + Wéz (0)3 +.n
_ - = © 12 ©) = ©) 22
x6:(0) = asz + asz + Wy (0)3 + W7 (0)zZ + W, (0)5 4.
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From (3.21) and (3.22), we can obtain the expression of g(z, z) as follows
g8(z,2) = (c“af + 01311% + a_’l"czm% + a_z‘czm%)zz
+ Qerilaal? + 2c13las)? + 2atealas|* + 2a5calaz*)zz
+ (Cllc_l‘% + Cl3t_l§ + a_i“czliz% + a_ikczw_l%)zz
+ {611 (2a4W1(f)(0) + Wz((s)) (0)6_&4) + 3cipaias
+ 2 (6) ©) (5 2= * *
c13 | 2asWy, ' (0) + Wy (0)as ) + 3cigasas + (aj + a3)
x [ (203 WP ©) + WS 00@3) + 3enadas | |22 + how.
It is easy to obtain
820 = 2D(cn1aj + c13a3 + ajcaias + ajena3)
g1 = 2D(crtlasl* + cizlas|* + afearlaz* + ajearlasl?).
g2 = 2D{err (204w} ©) + WL 0)as) + 3e10a3ay
(6) ©) /= 2= * %
+c13 (2615 Wi (0) + Wy (0)615) + 3c4asas + (aj +a3)
x [m (2asW? O + WP as) + 3C22a§a3] ]
Since
4 5 6
wiP ). Wiy 0), W (0). W33 (0). Wi (0), Wyg (0)

in g21, we still need to compute them. In view of (3.8) and (3.9), we have

W= [AW — 2Re{g*(0) foq (0)}, - <0 <0,
[ AW = 2Re{g"(0) fog(®)} + fo, 6 =0.
def

= AW+ H(z,z,9),

where
2 72
H(z,7z,0) = Hzo(Q)E + Hy1(9)zz + Hoz(9)? +--

Comparing the coefficients, we obtain

(A —2iwo)Wry = —Hz (),
AW1(0) = —H11(0),

For6 € [—12,0),

H(z,Z,0) = =3"(0) fog () — 4" (0) og (0) = —g(z, 2)q(0) — &(z, )G (O).

Comparing the coefficients of (3.24) with (3.27) gives that

H(0) = —820q9(0) — 802q(0),
Hy1(0) = —g119(0) — g119(9).
From (3.25), (3.28) and the definition of A, we get

Wa0(0) = 2iwoWao(0) + g209(0) + §02G(6).

(3.23)

(3.24)

(3.25)
(3.26)

(3.27)

(3.28)
(3.29)

(3.30)
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Noting that ¢(0) = ¢(0)e!®?, we have

Wao(0) = @ q(0)e'? + 3C§§q<0>e—"w°9+E1e2"w09, (3.31)

where E| is a constant vector. Similarly, from (3.26), (3.29) and the definition of A, we have

Wi1(0) = g119(0) + 113 (0), (3.32)
Wi©) = S g + B G0y 4 k. (3.33)
[O))

where Ej is a constant vector.
In what follows, we shall seek appropriate Ey, E>in(3.31),(3.33), respectively. It follows
from the definition of A and (3.28), (3.29) that

0
/_ dn(0)W20(0) = 2iwoW20(0) — Ha0(0) (3.34)

)

and
0
/ dn(@)W11(0) = —H11(0), (3.35)

where n(0) = n(0, 8). It follows from (3.25) that

Hy(0) = —£204(0) — g024(0) + 2(H1, Hy, Hs, Hy, Hs, He)", (3.36)
where

H = c“ai + cl3a§, H, = cma%, H; = czla_%, Hy = Hy = Hg = 0.

From (3.26), we have

Hy1(0) = —g119(0) — g11(0)§(0) + T0(P1. Pa, P3, Py, Ps, Ps)", (3.37)
where

P = ciilasl* + cislas|®, Py = catlas|®, P3 = carlas|?, Py = Ps = P = 0.

Noting that

0
(ia)ol - / ei“’oedn(O)) q(0) =0, (3.38)

)

0
(—iwol —/~ e_’w"ed??@))é(o) = (H\, Hy, H3, Ha, Hs, He)"  (3.39)

2

and substituting (3.31) and (3.36) into (3.34), we have

)

0
(2iw01— / ez’woedn(e)) E\ = (Hy, H, H3, Hy, Hs, He)" . (3.40)
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That is
Qiwg + 1 0 0 0 —bsech?(v*) —bsech?(w*)
0 2iwy + 1 0 —bsech? (u*) 0 0
0 0 2iwg+ 1 —bsech?(u*) 0 0
—Bel®ot 0 0 2iwy + B 0 0
0 —Bel®oti 0 0 2iwg + B 0
0 0 —Beient 0 0 2iwy + B
<(E\" EY EP. EY EY E") =2(H,. Hy. H3.0,0.0)". (3.41)
Hence,
A A A A A A
1) 11 2) 12 .03 13 .(4) 14 5) 15 (©) 16
E‘1 = —, E1 = —, E‘1 = —, E1 = —, El = —, E‘1 = —,
A1 Ay A Ay Ay Ay
(3.42)
where
2iwg + 1 0 0 0 —bsech?(v*) —bsech?(w*)
0 2iwy + 1 0 —bsech? (u*) 0 0
0 0 Qiwg+ 1 —bsech?(u*) 0 0
Al = det w0t .
—Bet@oT 0 0 2iwg + B 0 0
0 —Bei@oTi 0 0 2iwy + B 0
0 0 —Bel®oT 0 0 2iwg + B
H; 0 0 0 —bsech?(v*) —bsech?(w*)
Hy 2iwg+ 1 0 —bsech® (u*) 0 0
B H3 0 2iwg+ 1 —bsech? (u*) 0 0
Arp = 2det] 0 0 2iwy + B 0 0 ’
0 —Bel@oti 0 0 2iwg + B 0
0 0 —Betenti 0 0 2iwo + B
2iwg+1 H 0 0 —bsech?(v*) —bsech?(w*)
0 H, 0 —bsech? (u*) 0 0
: _ 2%
App = 2det 0 Hy 2iwg+1 b.sech (u*) 0 0 ’
—Bet@0T 0 2iwg + B 0 0
0 0 0 0 2iwg + B 0
0 0 —Bel®oti 0 0 2iwo + B
2iwg + 1 0 H, 0 —bsech?(v*) —bsech?(w*)
0 2iwg+1 Hy —bsech?(u*) 0 0
_ 20, %
Aps = 2det ?w i 0 H3 b.sech (u*) 0 0 ’
—BetoT 0 0 2iwg+p 0 0
0 —Bel™Tt 0 2iwo + B 0
0 0 0 0 0 2iwg + B
2iwy + 1 0 0 Hy —bsech?(v*) —bsech?(w*)
0 2iwg + 1 0 Hp 0 0
0 0 2iwp +1 Hj 0 0
Alg=2det) glioi 0 0 0 0 ’
0 —Bel®oTi 0 0 2iwg+p 0
0 0 —Bel@ott 0 2iwg + B
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2iwg + 1 0 0 0 H, —bsech?(w*)
0 2iwy + 1 0 —bsech?(u*) Ha 0
0 0 2i 1 —bsech?(u®) 0 0
A]S = 2det w0t 100 + .SCC (M ) s
—Bet¥otl 0 0 2img+p  Hz 0
0 —Bel®oTi 0 0 0 0
0 0 —BelwoT 0 0 2iwp+p
Qiwy + 1 0 0 0 —bsech?(v*) H|
0 2iwg + 1 0 —bsech?(u*) 0 H,
0 0 Qiwg+ 1 —bsech?(u*) 0 Hj
Ao =2det] _giioti g 0 2iwy + B 0 0
0 —BetenTi 0 0 iwp+pB 0
0 0 —Bet@0n 0 0 0

Similarly, substituting (3.32) and (3.37) into (3.35), we have

0
(/ dﬂ(g)) Er =2(—P;,—P5,—P3,0,0,0)". (3.43)
_fz
That is
20k 2 * E(l)
-1 0 0 0 bsech”(v*) bsech”(w™) %2) —P;
0 —1 0 asech®(u®) 0 0 E, -p,
0 0 —1 asech®(u*) 0 0 | _, | -ps
B 0 0 0 0 0 E§4> - 0
0 B 0 0 0 0 EY 0
o 0 g 0 0 0 E© 0
2
(3.44)
Hence,
A A A A A A
B = SN gD SR g 0B g L2 pe 035 g 256
Ay Ao Ao Ay Ar A
(3.45)
where
-1 0 0 0 bsech?(v*) bsech?(w*)
0 —1 0 asech®(u*) 0 0
Ao |00 - asech? (u*) 0 0
2T 0 0 0 0 0 :
0 B 0 0 0 0
0 0 g8 0 0 0
P 0 0 0 bsech?(v*) bsech?(w*)
—P, —1 0 asech’(u*) 0 0
_ —Py 0 —1 asech?(u®) 0 0 _
Aar=2det] o7 0 0 0 =0
0 B 0 0 0 0
0 0 B 0 0 0
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0.15

o 50 100 150 200 250 300 0 50 100 150 200 250 300
t

0 50 100 150 200 250 300

o 50 100 150 200 250 300 “o 50 100 150 200 250 300
t t

Fig. 1 Dynamic behavior of system (4.1): times series of x; (i = 1,2, 3,4, 5, 6). A Matlab simulation of the
asymptotically stable origin to system (4.1) with T & 0.6002. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

-1 =P, 0 0 bsech?(v*) bsech?(w*)
0 —P, 0 asech®(u*) 0 0
_ 0 —P; —1 asech®(u*) 0 0 _
Aoy = 2det B 0 0 0 0 0 =0,
0 0 0 0 0 0
0 0 B 0 0 0
-1 0 —-P 0 bsech?(v*) bsech?(w*)
0 —1 —P, asech®(u*) 0 0
_ 0 0 —P; asech’(u*) 0 0
Aoz = 2det g0 0 0 0 0 ,
0 B 0 0 0 0
0 0 0 0 0 0

@ Springer



362 C. Xuet al.

0.25 0.25

0.2 0.2 4

0.15 0.15 1
0.1

0.05

)
-
)

L L .

N O o 9 o o ©

o N O s g O O @ =

-0.05
-0.1
-0.15
-0.2
-0.25
-02 -045 -04 -005 0 005 01 015 -02 -015 -01 -005 0 005 01 015
x,(t) x,(t)
0.1 0.15
0.08
0.1 <
0.06
0.04 005 p
oo _ R |
= =
< 0 0
x x
-0.02 005 1
-0.04 “04 )
-0.06
-0.15 <
-0.08
-0.1 -02
02 -045 -04 -005 0 005 01 015 %2 -045 -01 -005 0 005 01 015
X, (t) X4(t)
015 015
01 0.1 <
005 005 p
— 0 — 0 1
= )
o o
x x
-0.05 -0.05 p
-0.1 -0.1 p
-0.15 -0.15 p
-02 -02
“02 -045 -01 -005 0 005 01 015 £0.25 -02 -0.15 0.1 -005 0 005 0.1 0.15 02
X, (t) X,(t)
0.15 0.1
008
0.1 p
0.06
005 p 0.04
_ 0 |
© = 0
-0.05 p 002
04 ) -0.04
-0.06
-0.15 <
-0.08
-02 0.1
£0.25 02 —0.15 -01 -0.06 0 005 0.1 0.15 02 20.25 0.2 —0.15 0.1 -0.05 0 0.05 0.1 015 0.2
%,() X5(t)

Fig. 2 Dynamic behavior of system (4.1): projection on x| — x2, x| — X3, X| — X4, X] — X5, X] — Xg, X2 —
X5,Xp — Xg, X3 — X4, X3 — X5,X3 — X¢, X4 — X5, X4 — X¢ plane, respectively. A Matlab simulation of the
asymptotically stable origin to system (4.1) with 1y = 0.3, 7p = 0.2 and 11 + 70 = 7 = 0.5 < 79 = 0.6002.
The initial value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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0.15 015
0.1 0.1
0.05 0.05
= 0 — 0
o o
x
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
-02 -02
<025 -0.2 -0.15 -0.1 -005 0 005 01 0.5 0.2 <025 -0.2 -0.15 -0.1 -0.05 0 0.05 01 0.15 0.2
xs(t) Xa(t)
0.15 0.15
0.1 0.1
0.05 0.05
s ° @ = 0 @
0 ©
x
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
-02 -02
-0.1 -0.05 0 0.05 0.1 ~0.1 -0.05 0 0.05 0.1
x,(t) X,(t)

Fig. 2 continued

—1 0 0 —P; bsech’(v*) bsech?(w*)

0 -1 0 —P, 0 0
0 0 -1 —P 0 0
Apgq = 2det s
B 0 0 0 0 0
0 B 0 0 0 0
0 0 B 0 0 0
-1 0 0 0 — P, bsech?(w*)
0 —1 0 asech’(u*) —P; 0
0 0 —1 asech’(u*) —P; 0
Aps = 2det s
B 0 0 0 0 0
0 B 0 0 0 0
0 0 g 0 0 0
-1 0 0 0 bsech?(v¥) —P
0 —1 0 asech?(u*) 0 -p,
0 0 —1 asech?®u®) 0 —P3
Ao = 2det
B 0 0 0 0 0
0 B 0 0 0 0
0 0 g 0 0 0
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0
0

X,(t) Yy x,(t) X,(t) IRy x,(t)

X0
xg(t)

X,(t) 04 -02 x,(t) X5(t) 04 -02 %,

xg(0)

x,() 04 02 X, (0 X,(0 01 202

-0.05 0

-0.05
X0 0Tz X0 e

Fig. 3 Dynamic behavior of system (4.1): projection on x| — xp — X3, X] — X2 — X5, X] —X3 —Xg, X] — X3 —
X5, X] —X3—Xg, X] —X4 —X5, X] —X4—X6, X2 — X4 —X5, X2 —X4 —Xg, X2 —X5—Xg, X3 —X5—Xg, X4 —X5—X¢
space, respectively. A Matlab simulation of the asymptotically stable origin to system (4.1) witht; = 0.3, 7o =
0.2and 71 + » = 7 = 0.5 < 79 =~ 0.6002. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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)

%0

0
-0.05 ! 01
x4(t) 01 -04 X2(t) xs(t) 02 -04

xg(t)

0

x(t) 02 -04

xs(t) -02 -01
Fig. 3 continued

From (3.31), (3.33), (3.42), (3.45), we can calculate g5 and derive the following values:

i g0z 821
c1(0) = a0 (gzogn —2lgnl* - ) + >

3
= Reler@)
Re(x' (o))
B> = 2Re(c1(0)),

_Imfci (0)} + palm {2 (x0))

wQ

These formulaes give a description of the Hopf bifurcation periodic solutions of (2.3) at
T = 719 on the center manifold. From the discussion above, we have the following result: O
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0.6 1
0.8
0.4
0.6
02 0.4
0 o2
> =
— ~ 0
x 5 x
0. 02
-0.4 -0.4
-0.6
-0.6
-0.8
-0.8 -1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
t t
1 04
0.8 03
0.6
0.2
0.4
02 0.1
= =
™ 0 < 0
x x
02 -0.1
-0.4
-0.2
-0.6
-08 03
-1 -0.4
0 50 100 150 200 250 300 50 100 150 200 250 300
t t
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
= =
v 0 © 0
x X
-0.2 -0.2
-04 -04
-0.6 -0.6
-0.8 -0.8
50 100 150 200 250 300 0 50 100 150 200 250 300
t t

Fig. 4 Dynamic behavior of system (4.1): times series of x; i = 1,2, 3,4, 5, 6). A Matlab simulation of the
Hopf bifurcation of system (4.1) with 7y = 0.8, o =03 and 711 + 1p = 7 = 1.1 > 79 & 0.6002. The initial
value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

Theorem 3.3 Forsystem (2.3), if (HIl)—(H4) hold, the periodic solution is supercritical (sub-
critical) if uo > 0 (2 < 0); The bifurcating periodic solutions are orbitally asymptotically
stable with asymptotical phase (unstable) if B2 < 0 (B2 > 0); The periods of the bifurcating
periodic solutions increase (decrease) if To > 0 (T> < 0).

Remark 3.1 In [44], authors considered the stability switches and bifurcation for a neural
networks with continuous delay and strong kernel by regarding the mean time delay as bifur-
cation parameter. In [45], authors discussed the delay-dependent asymptotic stability for
neural networks with distributed delays by employing suitable Lyapunov functionals and
delay-dependent criteria. In [46], authors analyzed bifurcation behavior for a two-neuron

@ Springer



Bifurcation Analysis in a Three-Neuron... 367

-08 -06 -04 -0.2 0 0.2 0.4 0.6 -08 -06 -04 -0.2 0 0.2 0.4 0.6
X, x, (0

0.8 0.8

X300

Fig. 5 Dynamic behavior of system (4.1): projection on x| — xp — X3, X] — X2 — X5, X] —X3 —Xg, X] — X3 —
X5, X] —X3—Xg, X] —X4 —X5, X] —X4—X6, X2 — X4 —X5, X2 —X4 —Xg, X2 —X5—Xg, X3 —X5—Xg, X4 —X5—X¢
space, respectively. A Matlab simulation of the Hopf bifurcation of system (4.1) with 1 = 0.8, 7o = 0.3 and
71 + 10 =7 = 1.1 > 79 & 0.6002. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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Fig. 5 continued

X, (1)

0

system with distributed delays by applying frequency domain method. All the analysis meth-
ods above are different from those in this paper. Thus our work complements the previous

studies.

4 Numerical Examples

To illustrate the analytical results, we consider the following special case of system (2.3).

@ Springer

dxy
dt
dx;
dt
dxs
dt
dxy
dt
dxs
dt
dxg
dt

= —x2() + 3tanh[x4(1)],
= —x3(t) + 3 tanh[x4(1)],
=0.5[x1(t — 71) — x4(2)],
= 0.5[x2(r — ) — x5(0)],

= 0.5[x3(t — 12) — x6(?)],

= —x1(t) + 0.5 tanh[x5(¢)] + 0.5 tanh[x¢(?)],

4.1)
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a0

)

x4(t) -04" -1

x, (0 X0 0T

Fig. 6 Dynamic behavior of system (4.1): projection on x| — xp — X3, X] — X2 — X5, X] —X3 — Xg, X] — X3 —

X5, X] —X3 = X6, X] —X4 — X5, X] —X4 — X6, X2 —X4 — X5, X2 —X4 — X6, X2 —X5 — X6, X3 —X5 — X6, X4 —X5 —X¢
space, respectively. A Matlab simulation of the Hopf bifurcation of system (4.1) with 1 = 0.8, 7o = 0.3 and
71 + 170 =7 = 1.1 > 79 & 0.6002. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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Fig. 6 continued

which has a unique steady state E(0, 0,0, 0,0, 0). By means of Matlab 7.0, we obtain
wo ~ 0.9059, 1p ~ 0.6002, A (0) &~ 3.4023 — 2.6576i. Thus we can compute these val-
ues as follows: ¢1(0) ~ —4.1128 — 165.5123i, up ~ 2.0213 > 0, o ~ —8.2256 <
0, 7> ~ 16.4719. Then all the conditions indicated in Theorem 2.2 hold true. From Theo-
rem 2.1, we know that the zero steady state of system (4.1) is asymptotically stable when
71 + ©» € [0,0.6) which is illustrated by the numerical simulations shown in Figs. 1, 2
and 3 in which 7y = 0.3 and ©» = 0.2. When 1| + 1> is increased to the critical value
0.6, the equilibrium E(0, 0, 0, 0, 0, 0) loses its stability and a Hopf bifurcation occurs. Since
n2 > 0and By < 0 it follows from Theorem 3.3 that the Hopf bifurcation is supercritical
and bifurcating periodic solution is asymptotically stable which is depicted in Figs. 4, 5
and 6.
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5 Conclusions

In this paper, we have investigated three-neuron artificial neural network model with distrib-
uted delays. Using Hopf bifurcation theory and numerical method of functional differential
equation, we have analyzed the local stability of the equilibrium E(x}, x5, x3, xJ, X3, x¢)
and oscillatory behavior of the system. We have showed that if some suitable conditions hold
and 7 € [0, 70), then the equilibrium E(x}, x3, x5, xJ, xg‘, x¢) of system (2.3) is asymp-
totically stable and unstable when t > 71¢. It is also showed that if some other suitable
conditions are fulfilled and when the delay t increases, the equilibrium loses its stability
and a sequence of Hopf bifurcations occur around E (x}, x5, x5, xJ, x;, xg), i.e., a family of
periodic orbits bifurcate from the equilibrium E (x{, x5, x5, xj, xZ, x£). In addition, explicit
algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcating
periodic orbits are derived by applying the normal form theory and the center manifold the-
orem. Numerical simulation results are agreeable with the theoretical findings. In addition,
we would like to point out that system (2.3) is obtained using the weak kernel. If we use
the general kernel, then it is difficult for us to simplify system (1.4) by the similar variable
changes (see (2.1)), then our results obtained in this paper would not hold true. We leave this
topic for future work.
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