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Abstract High dimensional data visualization is one of the main tasks in the field of data
mining and pattern recognition. The self organizing maps (SOM) is one of the topology
visualizing tool that contains a set of neurons that gradually adapt to input data space by
competitive learning and form clusters. The topology preservation of the SOM strongly
depends on the learning process. Due to this limitation one cannot guarantee the convergence
of theSOMindata setswith clusters of arbitrary shape. In this paper,we introduceConstrained
SOM (CSOM), the new version of the SOM bymodifying the learning algorithm. The idea is
to introduce an adaptive constraint parameter to the learning process to improve the topology
preservation and mapping quality of the basic SOM. The computational complexity of the
CSOM is less than those with the SOM. The proposed algorithm is compared with similar
topology preservation algorithms and the numerical results on eight small to large real-world
data sets demonstrate the efficiency of the proposed algorithm.

Keywords Self organizing maps · Vector quantization · Clustering ·
SOM learning algorithm · CSOM

1 Introduction

High dimensional data visualization is used to analyze the hidden patterns and data rela-
tionships, which are hard to illustrate. One of the most popular and classical methods for
dimension reduction and data visualization is principal component analysis, PCA [14]. Linear
PCA is susceptible to lose useful information in highly nonlinear data sets. Several nonlinear
PCA methods have been proposed such as the work presented in [24]. Linear and nonlinear
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PCA are computationally inexpensive in large data sets however, the memory required by
these algorithms is not affordable in very large data sets. The Sammon’s mapping [23] is
a nonlinear mapping algorithm for visualization of multivariate data, which is shown to be
superior to PCA. Neural networks specially the self organizing maps [15] are able to learn
complex nonlinear relationships of variables in a sample of data points.

The self organizing map is one of the well known data mining tools where the aim is to
visualize a high dimensional data space into usually a 2-Dim grid [4,10,12,20,25]. The SOM
contains a set of neurons that gradually adapts to input data space by competitive learning
and creates ordered prototypes. The ordered prototypes preserve the topology of the mapped
data and make the SOM to be very suitable for cluster analysis [31]. This adaption is based
on a similarity measure, which is usually Euclidean distance, and repositioning of neurons
in a 2-Dim space using a learning algorithm. The performance of the SOM strongly depends
on a learning algorithm [6,7,9,11].

Different versions of the SOM for visualization of high dimensional data have been intro-
duced in [5,13,17,29,30,32,33]. An alternative to the SOM algorithm, ViSOM, is introduced
by [33] to improve the topological and quantization errors by restricting contractions of
neurons. The authors proposed different updating rules for the winner neurons and their
neighborhood neurons, which is computationally expensive in very large data sets. The analy-
sis and experimental results show that the ViSOM may offer attractive advantages over the
commonly used SOM, PCA, and Sammon’s mapping. The PRSOM [30] is an extension to
ViSOM, where the sequential updating rules are extended to optimize a cost function. Unlike
the hard assignment in SOM and ViSOM, the assignment of PRSOM is soft such that an
input data point belongs to a neuron with certain probability. However, the computational
complexity of both ViSOM and PRSOM is shown to be more than the classical SOM and
depends quadratically on the number of neurons [30].

In [3], a new self organizing model, the so called growing grid (GG), is proposed to
the problem of data visualization. The network automatically chooses a height/width ratio
suitable for the data distribution. Moreover, locally accumulated statistical values are used to
determine where to insert new units (neurons). The growing neural gas (GNG), introduced
in [8], is an improvement to the neural gas (NG) algorithm [18]. More specifically, it is
an incremental version of the NG algorithm which does not require the pre-setting of the
network size. The GNG algorithm is able to make explicit topological relations of input data.

The growing hierarchical SOM (GHSOM) generates multiple independent layers of the
maps on the top of the first layer to cluster input data points in a hierarchicalmanner and allows
for adaptation of the network architecture simultaneously [21]. The GHSOM is presented to
be suitable for visualization of high dimensional document data sets rather than the SOM,
although manipulating multiple layers of the GHSOM is liable to high computational effort
in very large data sets. Following the training phase of the GHSOM, a novel visualization
method, namely, the ranked centroid projection (RCP), is introduced in [32] for projecting
the document vectors to a hierarchy of output maps. The results of the DB index show
that RCP produces a better result, which denotes that for the purpose of classification and
categorization, the RCP is to be preferred over the SOM, PCA and Sammon’s mapping [32].

The expanding SOM,ESOM, for data visualization is proposed in [13]. TheESOMutilizes
the SOM by employing an additional factor, the expanding coefficient, which is used to push
neurons away from the center of all data points during the learning process. The authors show
that the ESOM has advantages over the SOM and the growing models of the SOM, where the
growth criteria in the latter increases the computational time in the learning process. To cope
with the problems of selecting learning rate in conventional SOM, [5] proposed RPSOM
in which, for each input data point, the RPSOM adaptively chooses several rivals of the
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BMU and penalizes their associated models a little far away from the input data point [5].
The RPSOM converges much faster than the SOM and the two-phase SOM [27] moreover,
outperforms them in the term of quantization error.

In this paper, a similar approach to the RPSOM is proposed to improve the performance
of the RPSOM and the SOM in the scene of quantization error. Instead of penalizing the
rivals of the BMU, which increases the training steps, an adaptive constraint parameter is
used in the learning process. The constraint parameter is chosen as a decreasing function with
respect to iterations and we consider three such functions: linear, hyperbolic and sigmoid.
This parameter restricts the process of updating neighborhoods of the BMU to only those
neighbors which are close in the n-dimensional space. Such an approach leads to faster
convergence and better local minimum of the quantization error than that of by the RPSOM
and the SOM. Furthermore, the distortion error and topology preservation are improved. The
proposed algorithm is tested using eight real-world data sets.

The rest of the paper is organized as follows. The basic self organizing maps is presented
in Sect. 2. The modified learning algorithm of the SOM and the adaptive constraints are
introduced in Sect. 3. The CSOM algorithm and its implementation are discussed in Sect. 4.
Numerical results are presented in Sects. 5 and 6 concludes the paper.

2 Self Organizing Maps

The SOM is an unsupervised neural network [15] that usually contains a 2-Dim array of
neurons. Assume that we are given the set of m input data vectors A = {x1, . . . , xm} where
xi ∈ R

n, i = 1, . . . ,m. In the SOM, a set of q neurons, Ψ = {w1, . . . , wq}, w j ∈ R
n , is

given.
One data point xi , i ∈ {1, . . . ,m} at a time is presented to the network. The data point

xi is compared with all weight vectors. The nearest w j , j = 1, . . . , q is selected as the best
matching unit (BMU) for the i-th data point. The data point xi is mapped to the best matching
neuron.

The set of neighborhood weights Nc = {wl : p(c, l) ≤ r, l �= c} around the BMU are
updated where p(c, l) is the distance between the BMU and the neighborhood neuron l in
2-Dim coordinates of the network topology and r is the predefined radius. Here p(c, l) ∈ N

and 0 < p(c, l) ≤ r . Usually the quantization error is used to show the quality of the map,
therefore, the aim is to solve the following problem:

minimize E = 1

m

m∑

i=1

‖xi − wc‖, (1)

where wc is the weight of the BMU of xi , i = 1, . . . ,m. A general description of the SOM
algorithm is as follows.

Algorithm 1 SOM algorithm

Step 1. Initialize the dimension of the network, the maximum number of iterations (T ), a
radius (r ) of the network andweight vectorsw j , j = 1, . . . , q . Set stopping criterion
ε0 and iteration counter τ := 0.

Step 2. Select data xi , i = 1, . . . ,m and find its closest neuron c, that is

c := argmin
j=1,...,q

‖xi − w j‖. (2)
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Step 3. Update the set of neighborhood neurons w j ∈ Nc using the following equation:

w j := w j + α(τ)h(τ )(xi − w j ). (3)

(Here h is a neighborhood function and α(τ) is a learning rate at the iteration τ .)
Step 4. If all input data are presented to the network go to Step 5, otherwise go to Step 2.
Step 5. Calculate E using (1). If E < ε0 or τ > T terminate, otherwise set τ := τ + 1 and

go to Step 2.

Note that the neighborhood function in equation (3) of Algorithm 1 is as follows.

h(τ ) = exp

(
− r2

2σ(τ)2

)
, (4)

where

σ(τ) = η
T − τ

T
, η ∈ R, (5)

and usually η ≥ 1.
The neighborhood function h in Step 3 of Algorithm 1 plays an important role in the SOM.

Usually h is a decreasing exponential function of τ . The value of neighborhood functions
depends on iteration τ and the distance in the output space (r ) of each neuron in the set
Nc. The learning rate α is a decreasing linear function of τ that reduces the effect of the
neighborhood function h as τ → T .

In this paper, for given w j , j ∈ {1, . . . , q} we define the following set:

S j = {xk : d(xk, w j ) < d(xk, wl), l �= j, l = 1, . . . , q} (6)

where

d(x, y) = ‖x − y‖ =
(

n∑

t=1

(xt − yt )2
)1/2

, x, y ∈ R
n

is the Euclidean distance.
The learning procedure of SOM is explored in details in the next section.

3 CSOM Learning Algorithm

In this section the learning process of the Self Organizing Map is analyzed, furthermore, the
quantization performance of the SOM is criticized. As we mentioned in Sect. 2, the set Nc in
Step 3 of Algorithm 1 contains all neighborhood neurons which are connected to the BMU.
These neurons are selected using the parameter r which is the radius around the BMU in the
topological 2-dimensional map. The SOM updates all neighborhood neurons of the BMU in
the topological map using (3), although relative weights of these neurons may be far from
the BMU in the n-dimensional space. In this case, the value of E in (1) deviates from its
optimal value as the neighborhood neurons in the network topology, which are not in the
neighborhood of the BMU, are relocated according to (3) (see Fig. 1). The relocation of the
set of neighborhood neurons, Mc, Mc ⊂ Nc, which are far from the winning neuron in the
n-dimensional space is illustrated in the Fig. 1. Note that the set Mc depends on iteration τ .

Assume that the SOM algorithm is learning the input data points. In some stage, the
relocation of the neighborhood neurons in the set Mc increases the inter-neuron distances
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Fig. 1 Contraction of neighbor neurons of the BMU

(see Fig. 1). Let have a given data point xm , which activates the nearest neuron in the map
at iteration τ . The neighborhood neurons of the BMU move towards the data point xm on
the line intersecting both xm and w j , w j ∈ Nc. Based on the updating formula in (3) the
distance that neuron w j moves is ‖Δw j‖ where,

Δw j = β(xm − w j ), 0 ≤ β < 1.

Therefore, by applying the updating rule to the neuron w j , there exist data points xi ∈ S j ,
that the value

Δd(xi , w j ) > 0,

after updating the neuron w j , if

d(xm, w j ) ≤ cos(θm,i )d(xm, xi ), (7)

where θm,i is the angle between vectors (xi − xm) and (w j − xm) (see Fig. 1). Let have the
subset of data points, Q j ⊂ S j , where every data point xi ∈ Q j holds the condition (7).
Thus, the increment in the value of inter-neuron distance, ΔDj , is:

ΔDj =
|Q j |∑

i=1

Δd(xi , w j ), (8)

where, |.| is the cardinality of a set of data. Furthermore, consider a subset of neurons Fc ⊂ Nc

including neurons w j , which are far from the BMU in the n-dimensional space. Therefore,
the value E in (1) increases by:

ΔE =
|Fc|∑

j=1

ΔDj , (9)

after the data point xm is presented to the network and (3) is applied to the set Nc.

3.1 Modified Learning Algorithm

In this section we design an algorithm to minimizeΔE given by (9) forw j , j = 1, . . . , |Nc|
at iterations τ > T/ρ. The idea is to modify the update formula (3) in Step 3 of Algorithm 1
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Fig. 2 The updating procedures
in the SOM algorithm

by adding a constraint parameter. We introduce a constraint parameter γ ∈ R, which defines
a subset Cc of the set of neighborhood neurons Nc which are close to the BMU:

Cc = {w j : d(wc, w j ) < γ dmin, w j ∈ Nc}, (10)

where γ > 1 and

dmin = min
{
d(wc, w j ) : w j ∈ Nc

}
. (11)

Also we have

ψ = dmax

dmin
, (12)

and

dmax = max{d(wc, w j ) : w j ∈ Nc}. (13)

One can see from (10) that |Cc| < |Nc| for values of γ close to 1 and both sets coincide
as γ → ∞. The set Cc contains neighborhood neurons in a 2-Dim topological space while
preserving the condition of adjacency ofw j ∈ Cc in the n-dimensional space. In the step 3 of
Algorithm 1, if we update neighborhood neurons of the setCc then the weight vectors, which
are far from the best matching unit, will not be considered in Eq. (3). Therefore, following
(10):

dmin ≤ d(wc, w j ) < γ dmin ∀ w j ∈ Cc, γ > 1. (14)

Since the distance d(wc, w j ), w j ∈ Cc is sufficiently small, it is easy to see that Δd(xi , w j )

in (8), where

Δd(xi , w j ) < d(wc, w j ),

is depended on the upper bound, d(wc, w j ) (see Fig. 2).
Therefore, by limiting the value of d(wc, w j ), then we have:

Δd(xi , w j ) < γ dmin .

One can see that the values ΔDj in (9) are minimized.
Thus, the constrained learning algorithm can be summarized as follows.

Algorithm 2 Constrained learning algorithm

Step 1. Cc = ∅, select γ and find dmin from Nc using Eq. (11).
Step 2. Select neuron wi ∈ Nc, if ‖wi − wc‖ < γ dmin then

Cc = Cc ∪ wi

Step 3. If all neurons in Nc have been visited then goto 4, otherwise goto 2.
Step 4. Update the set of neighborhood neurons w j ∈ Cc using Eq. (3).

Thus, we minimize the Eq. (9) by applying Algorithm 2 in the step 3 of Algorithm 1 at
iteration τ .
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3.2 Adaptive Selection of Parameter γ

In this section, we propose linear, hyperbolic and sigmoid formulation of the constraint
parameter γ in Eq. (10) with respect to iteration τ . Considering Algorithm 2, one can see
that fixed values of γ reduce the interaction of neurons in early iterations thus, the neurons
do not converge to the domain of input data accurately. From Eq. (10) it is easy to see that
Cc ≡ Nc for the large values of γ . Therefore the behavior of the algorithm for large values
of γ is similar to that of classical SOM.

In Step 2 of Algorithm 2 we consider γ not as a fixed constant but parameter depending
on iteration τ . Moreover, γ (τ) decreases as τ increases. Hence, to ensure the validity of the
proposed formulations, the constraint functions allow the algorithm to perform similar to
SOM in early stages and gradually applies the constrained learning algorithm. In order to
have such property we require γ to satisfy the following conditions: there exist τ̄ > 1 such
that:

{
γ (τ) > ψ 1 < τ < τ̄

1 < γ (τ) ≤ ψ τ̄ ≤ τ < T
(15)

It is clear there are different ways to choose γ satisfying the conditions (15). In this paper,
we will define γ as a linear, hyperbolic and sigmoid constraint functions of τ .

3.2.1 Linear formulation

In the case of linear constraint function one can approximate γ as follows:

γ (τ) = ρ

(1 − ρ)
(ψ − 1)

(
τ

T
− 1

ρ

)
+ ψ, (16)

where ρ ∈ N defines the τ̄ = T/ρ which is the iteration from which the constrained learning
algorithm is applied to Algorithm 2. It is easy to see that the function (16) satisfies condition
(15).

3.2.2 Hyperbolic Formulation

The hyperbolic expression for γ is given as

γ (τ) =
⎧
⎨

⎩
∞ 1 < τ < τ̄

ψ
τ−ϕ

+ 1 τ̄ < τ < T
(17)

where

ϕ = τ̄ − dmax

dmax − dmin
,

and τ̄ = T/ρ.

3.2.3 Sigmoid Formulation

Finally, we propose the following sigmoid function to define γ :

γ (τ) = ε(ψ − 1) tanh

(−τ + τ̄

δ

)
+ 1

2
(ψ + 1), (18)
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Fig. 3 Performance of constraint γ using equation (16) on 20 × 20 SOM where r = 3, ρ = 5, T = 5 and
|A| = 20. a Performance of γ , b comparing |Cc| with and without constraint

where 0 < ε < 1 and 1 < δ < T defines the slope of changes depending on iterations.
It should be noted that if δ is chose close to 1 then we have a rapid changes in constraint
function (18).

To explain the idea, the performance of the proposed algorithm is presented in Fig. 3. The
Fig. 3a shows that from iteration 2 onwards (τ > τ̄ ) the algorithm applies the constraint
to the learning process and γ dmin is decreasing and always less than dmax as τ → T ,
consequently, the cardinality of Cc in (10) decreases (see Fig. 3b). The algorithm prevents
further modification to the neighborhood neurons which are far from the BMU in the n-
dimensional space.

4 The CSOM Algorithm and Its Implementation

In this section, we apply adaptive formulations of constraint γ in Step 2 of Algorithm 2. Then
Algorithm 1 for solving vector quantization problem (1) can be rewritten as follows.

Algorithm 3 CSOM algorithm

Step 1. Initialize dimension, maximum iteration (T ), radius (r ) of the network and finally
weight vectors w j , j = 1, . . . , q . Set τ := 1.
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Table 1 Initialization of SOM parameters in Algorithm 3

Data sets Input size SOM dimension r T

Small (|A| < 103) 10 × 10 2 200

Medium (103 < |A| < 104) 15 × 15 2 300

Large (104 < |A| < 0.5 × 105) 20 × 20 2 300

Very large (0.5 × 105 < |A| < 0.8 × 105) 15 × 15 3 100

(|A| > 0.8 × 105) 25 × 25 3 30

Step 2. Select data xi and find closest neuron c, where

c = argmin
j

‖xi − w j‖. (19)

Step 3. Compute the set Nc and dmin and dmax using Eqs. (11) and (13) respectively.
Step 4. Compute γ (τ) using Eqs. (16), (17) or (18) and set Cc = ∅.

Step 4.1 Select neuron wi ∈ Nc, if ‖wi − wc‖ < γ (τ)dmin then

Cc = Cc ∪ wi .

Step 4.2 If all neurons in Nc have been visited then goto Step 5, otherwise goto Step 4.2.
Step 5. Update the set of neighborhood neurons Cc using the following equation:

w j (t + 1) = w j (t) + α(τ)h(τ )(xi − w j (t)), w j ∈ Cc. (20)

Step 6. If all input data xi are presented to the network go to Step 7 otherwise, go to Step
2.

Step 7. Calculate Eτ using Eq. (1) and if τ > T terminate otherwise set τ = τ + 1 and go
to step 2.

In Algorithm 3, weight vectors w j , j = 1, . . . , q are initialized with a uniform pattern
in order to be comparable with the basic SOM. The maximum number of iterations T is set
according to size anddimension of data sets.We setT large for small data sets because for such
data sets the time complexity is less to obtain stable network over input data. The topology
of network is rectangular [15] with the same number of neurons in each column and row (i.e.
n×n). Each interior neuron is connected with 8 neighborhood neurons, however this number
is less than 5 for border neurons. Furthermore, the radius of the map r is set to 2 and 3 for
small and large number of neurons (see Table 1). The dimension of the map is selected based
on the dimensionality of data sets thus, for very large data sets (0.5×105 < |A| < 0.8×105)
with high dimension (high time complexity) the size of map is set to 15 × 15, whereas for
2-dimensional very large data sets (|A| > 0.8 × 105) it is set to 25 × 25.

In step 4 of Algorithm 3, we set values of ρ ∈ {ρ : 2 ≤ ρ ≤ 0.7×T, ρ ∈ N} for Eqs. (16)
and (17) which depends on data set size and the maximum iteration number T . If the number
of data points is large then we choose ρ so that to apply the constrained learning in the most
first T/2 iterations. If the size of data set is small, then ρ is chosen in order to apply the
constraint in early iterations (ρ ≥ 2). In all experiments, the parameters ε and δ in Eq. (18)
are set to 0.83 and T/4, respectively. The parameter η in Eq. (5) is set to 1 for all data sets.
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Table 2 The brief description of
data sets

Data sets Number of
instances

Number of
attributes

Fisher’s iris plant 150 4

Wine 178 13

TSPLIB1060 1060 2

Image segmentation 2310 19

D15112 15112 2

Gamma telescope 19020 10

NE 50000 2

Pla85900 85900 2

ρ ρ

(a) (b)

Fig. 4 The sensitivity of choosing different values of parameter ρ ∈ {ρ : 2 ≤ ρ ≤ 0.7 × T, ρ ∈ N} on Iris
and Wine data sets. E is the value of quantization error. a Iris, b Wine

5 Numerical Results

To demonstrate the efficiency of the proposed algorithm, the numerical experiments were
carried out using a number of real-world data sets. Algorithm 3 was coded in NetBeans IDE
under Java platform and the algorithm is tested on a MAC OSX with 2.7GHz core i7 CPU
and 10GB of RAM. Eight data sets: 2 small (Iris and Wine), 2 medium size (TSPLIB1060
and Image Segmentation), 2 large (D15112, Gamma Telescope) and 2 very large (NE1 and
Pla85900) data sets are used in experiments. Iris, Wine, Image Segmentation and Gamma
Telescope data sets are data sets with 4, 13, 19 and 10 attributes, respectively, which can
be found in UCI Machine Learning Repository [19]. TSPLIB1060, D15112 and Pla85900
are 2 dimensional data sets from TSPLIB library [22] and NE data set from [26]. A brief
description of data sets is presented in Table 2.

5.1 Validation of Parameter ρ in Adaptive Constraints

The sensitivity of choosing different values of parameter ρ in (16), (17) and (18) on Iris and
Wine data sets is presented in Fig. 4. One can see that this parameter in sigmoid constraint
is more sensitive than other two constraint functions in both data sets. Furthermore, in both
data sets, the hyperbolic constraint is less sensitive to the parameter ρ and produces high
quality maps with less quantization error.

1 North East.
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Table 3 The quantization error, E , using different settings of parameter ρ in CSOM (Linear, Hyperbolic and
Sigmoid functions)

Const. ρ Ave. Std.

10 20 40 60 80 100 140

Iris

Lin. 0.2951 0.3019 0.2990 0.3097 0.2817 0.3004 0.2994 0.30 0.01

Hyp. 0.2106 0.2011 0.1952 0.1944 0.2049 0.2069 0.1925 0.20 0.01

Sigm. 0.7730 0.3062 0.2636 0.2692 0.2693 0.2720 0.2834 0.35 0.19

Wine

Lin. 14.5293 14.4811 13.0406 13.8492 13.4721 14.3073 14.3171 14.00 0.57

Hyp. 12.1234 13.1810 12.4003 13.1966 12.2707 12.6803 12.7122 12.65 0.42

Sigm. 54.1000 13.5297 14.6650 14.4896 15.2834 13.8161 14.9614 20.12 15.00

Const. ρ Ave. Std.

10 40 80 100 140 180 200

TSPLIB1060

Lin. 346.8374 351.0316 345.5140 358.7634 332.5446 333.2026 371.6440 348.51 13.83

Hyp. 468.8084 462.0523 418.3928 401.7283 502.9605 376.1342 371.4968 428.80 50.17

Sigm. 344.4523 347.7434 376.8300 324.9194 328.8889 336.5058 334.9467 342.04 17.30

Image Segmentation

Lin. 25.3648 25.4697 25.1439 24.8948 25.0708 24.6638 24.7583 25.05 0.30

Hyp. 22.0328 21.3622 21.7399 20.9122 21.4309 21.9969 21.2374 21.53 0.41

Sigm. 39.7772 26.5647 28.4100 22.8137 26.2363 26.5249 26.1327 28.07 5.42

In order to validate the performance of the constraint parameter ρ, the quantization errors
using different settings of this parameter in four data sets, Iris,Wine, TSPLIB1060 and Image
Segmentation are presented in Table 3. Furthermore, the average and standard deviation of
quantization errors are calculated to check the robustness of this parameter in each constraints.
From these results one can see that the CSOMwith hyperbolic constraint obtains less average
quantization error and sufficiently low deviation in high dimensional data sets, Iris, Wine and
Image segmentation than other two constraints. The sigmoid constraint is the one with low
average quantization error and deviation in TSPLIB1060 data set. The linear constraint is the
second-best constraint, which obtains less deviations in all four data sets.

5.2 Comparison with the SOM

The error values e of the quantization values E using Eq. (1) for different iterations on all data
sets are presented in Tables 4 and 5. The error e is calculated using the following formula:

e = E − Ebest

Ebest
× 100%. (21)

In these tables t stands for the CPU time used by an algorithm and the numbers in these
tables should be multiplied by the number indicated after the name of each data set to get
true values of Ebest . We include results for different iterations of each to demonstrate their
performance. As it is presented in these tables, in early iterations the CSOM is performing
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Table 4 Results for small and medium size data sets

τ Ebest SOM CSOM

Linear Hyperbolic Sigmoid

e t e t e t e t

×100 Iris

1 2.4136 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

5 0.8222 0.00 0.08 0.00 0.01 0.00 0.01 0.00 0.01

10 0.4199 80.52 0.10 80.52 0.02 0.00 0.02 80.52 0.02

50 0.2160 119.03 0.21 119.03 0.12 0.00 0.09 119.03 0.12

100 0.1941 51.16 0.34 46.01 0.23 0.00 0.17 57.50 0.24

200 0.1881 53.06 0.53 43.86 0.43 0.00 0.33 16.59 0.40

×101 Wine

1 1.4507 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

5 0.3349 144.94 0.10 144.94 0.03 0.00 0.02 144.94 0.03

10 0.2605 231.32 0.13 231.32 0.06 0.00 0.04 231.32 0.06

50 0.1343 318.54 0.36 331.72 0.27 0.00 0.16 318.54 0.28

100 0.1093 111.99 0.60 70.72 0.53 0.00 0.29 123.97 0.54

200 0.1082 59.98 1.10 18.02 0.93 0.00 0.55 9.24 0.78

×102 TSPLIB1060

1 5.7347 0.00 0.12 0.00 0.04 0.00 0.04 0.00 0.04

5 3.2195 0.00 0.32 15.95 0.31 0.00 0.30 0.00 0.30

15 3.8098 37.06 0.69 0.00 0.96 37.06 0.98 37.06 0.94

75 2.7782 0.00 2.93 8.64 4.93 0.00 4.98 0.00 4.81

150 0.9196 23.26 5.58 0.00 9.75 23.26 9.87 23.26 9.56

300 0.3124 7.23 10.48 1.66 18.53 16.55 18.75 0.00 17.98

×101 Image Segmentation

1 1.1162 0.00 0.32 0.00 0.37 0.00 0.36 2.57 0.34

5 0.8451 16.36 1.21 48.89 1.66 0.00 1.55 14.71 1.57

15 0.6216 71.44 3.19 76.54 4.57 0.00 3.77 50.97 4.31

75 0.2999 173.92 14.87 122.67 21.37 0.00 14.51 137.71 21.14

150 0.2152 100.33 29.34 77.83 41.58 0.00 26.92 1.77 33.43

300 0.2051 27.50 56.53 18.77 76.05 0.00 51.06 0.20 57.09

same as the classical SOM until the constraint is applied to the learning process, then the
CSOM performs much better than the SOM. From these results one can see that the CSOM
outperforms SOM in all data sets and the hyperbolic constraint finds best solution (providing
the lowest value of E) on 5 data sets (Iris, Wine, Image Segmentation, Gamma Telescope
and NE), sigmoid on 3 data sets (TSPLIB1060, D15112 and Pla85900) and linear is the
second-best constraint in 3 data sets (TSPLIB1060, Gamma Telescope and Pla85900).

CSOM finds significantly better solution on 5 data sets (Iris, Wine, TSPLIB1060, Image
Segmentation, and Pla85900) than SOM from 6.2 % on Pla85900 up to 37.48 % on Wine
data set. In this case, the minimum improvement gained by the CSOM is on D15112 data set
where the obtained solution is only 0.57 % better than SOM . In other two data sets (Gamma
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Table 5 Results for small and medium size data sets

τ Eopt SOM CSOM

Linear Hyperbolic Sigmoid

e t e t e t e t

×102 D15112

1 2.3218 0.00 0.38 0.00 0.53 0.00 0.53 0.00 0.44

5 1.3541 0.00 1.47 0.00 2.39 0.00 2.40 0.00 2.26

15 1.3809 0.00 3.86 0.00 6.76 20.75 5.98 0.00 6.78

75 0.6992 46.57 18.02 46.57 32.92 0.00 24.09 46.57 33.52

150 0.4455 17.53 35.81 17.53 65.82 0.00 46.26 17.53 67.26

300 0.3698 0.57 71.02 1.35 121.22 16.68 90.40 0.00 122.56

×102 Gamma Telescope

1 1.2449 0.00 0.67 0.00 1.12 0.00 1.20 0.00 1.21

5 1.3468 0.00 3.01 0.00 5.70 0.00 5.64 0.00 6.10

10 1.3494 0.00 5.78 0.00 11.16 3.50 10.26 0.00 11.80

50 0.7721 35.40 27.09 42.07 56.26 0.00 35.50 35.40 59.44

100 0.4555 62.70 55.89 44.35 109.41 0.00 60.30 45.27 115.24

200 0.3510 5.16 109.68 3.28 196.90 0.00 107.47 0.37 159.77

×10−1 NE

1 2.6821 0.00 0.94 0.00 2.48 0.00 2.49 0.00 2.81

5 0.9135 195.44 4.02 195.44 12.88 0.00 11.68 195.44 14.00

10 0.8027 237.05 7.48 237.05 25.89 0.00 20.50 237.05 28.10

25 0.5573 361.44 17.69 270.02 64.85 0.00 41.76 361.44 72.94

50 0.2725 819.82 34.62 231.30 130.26 0.00 71.59 819.82 147.50

100 0.1515 4.16 68.15 6.14 248.12 9.31 124.55 0.00 263.54

×105 Pla85900

1 3.9514 0.00 4.51 0.00 9.44 0.00 8.94 0.00 8.53

5 3.6387 0.00 20.99 0.00 52.89 0.00 50.47 0.00 49.78

10 3.8160 0.00 40.62 0.00 106.15 0.00 100.96 0.00 100.30

15 3.0293 0.00 59.94 0.00 166.88 0.00 156.32 0.00 156.20

20 1.2720 31.16 77.79 0.00 218.68 14.34 199.25 31.16 209.46

30 0.1747 6.64 114.26 0.11 298.67 98.17 274.29 0.00 289.62

Telescope and NE) the CSOM reduces the value of the quantization error E about 5 % on
the rest of the data sets. Note that in the most data sets CPU time required by the Constrained
SOM is slightly larger than that of by the SOM. This is due to the fact that the CSOM tries to
find nearest neighborhood neurons in n-dimensional space. Since both the NE and Pla85900
are large data sets the SOM algorithm requires more iterations than in other smaller data sets
to spread neurons over the whole data set. Therefore, in these data sets constraints are applied
at iterations close to T/2 to ensure that values calculated by constraint functions (16)–(18)
are true values.

To see the performance of proposed algorithm, In Fig. 5 we present values of E obtained
by the SOM and the CSOM depending on iteration τ in Iris, Wine, Image Segmentation and
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(a) (b)

(c) (d)

Fig. 5 Convergence of CSOM versus SOM. a Iris, b wine, c image segmentation, d NE

NE data sets. From these figures, it is obvious that both the SOM and the CSOM converge
as τ → T . Comparing values of E in all data sets, one can see that the CSOM converges
significantly faster than the SOM in iterations less than 20. The CSOM with the hyperbolic
constraint produces best results in all 4 data sets.

5.3 Complexity Comparison with SOM

The time complexity of Self Organizing Map is linear with respect to number of data points
but it is dependent quadratically on the number of the neighborhood neurons to be updated
by the winner neuron. The most time consuming step in the SOM algorithm is Step 2 and
Step 3 where the Eq. (3) is calculated. In Table 6, the total number of calculations of (3),
N = Tρn, for all data sets is presented. From these results, one can see that the number N
obtained by CSOM is considerably less than those with the classical SOM in all data sets.
The complexity is improved significantly using the proposed algorithm in 4 data sets: Iris,
Image Segmentation, D15112 and NE.

5.4 Distortion Error

Note that the error E shows the quantization quality of the network. However, there is
a distortion measurement which can be used to calculate the overall quality of the map.
Unlike the quantization error, the distortion measure ξ considers both vector quantization
and topology preservation of the SOM. The distortion measure is defined as follows [1]:
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Table 6 Total number of calculations of (3), N , for all data sets

τ SOM CSOM τ SOM CSOM

Linear Hyperbolic Sigmoid Linear Hyperbolic Sigmoid

Iris (×104) Wine (×104)

1 1.05 1.05 1.05 1.05 1 4.72 4.72 4.72 4.72

5 5.34 5.34 5.34 5.34 5 22.4 22.4 18.1 22.4

10 10.5 10.5 9.05 10.5 10 44.4 44.4 28.1 44.4

50 51.6 51.6 18.6 51.6 50 220 212 68.4 220

100 103 99.0 23.1 92.8 100 437 392 93.7 407

200 205 159 31.0 96.2 200 872 611 135 421

TSP.1060 (×105) Image Seg. (×106)

1 0.81 0.81 0.81 0.81 1 1.59 1.59 1.59 1.29

5 3.82 3.85 3.82 3.82 5 7.82 7.83 6.59 6.72

15 11.3 10.9 11.3 11.3 15 23.6 23.3 13.5 20.6

75 56.1 50.3 56.1 56.1 75 118 111 26.1 105

150 112 93.0 112 112 150 235 214 33.0 110

300 223 143 123 141 300 462 361 42.9 110

D15112 (×106) Gamma Tel. (×106)

1 0.62 0.62 0.62 0.620 1 3.71 3.71 3.71 3.71

5 3.09 3.09 3.09 3.09 5 18.6 18.6 18.6 18.6

15 9.26 9.26 6.24 9.26 10 37.1 37.1 32.3 37.1

75 46.5 46.5 11.7 46.5 50 187 178 70.9 187

150 93.4 93.4 15.1 93.4 100 376 338 89.3 353

300 187 146 21.1 141 200 756 558 120 372

NE (×106) Pla85900 (×106)

1 1.94 1.94 1.94 1.94 1 6.90 6.90 6.90 6.90

5 9.68 9.68 7.78 9.68 5 34.5 34.5 34.5 34.5

10 19.4 19.4 12.7 19.4 10 68.9 68.9 68.9 68.9

25 48.6 48.6 21.3 48.6 15 101 101 101 101

50 97.9 97.9 29.4 97.9 20 130 127 120 130

100 196 147 40.6 170 30 200 164 135 175

ξ =
∑

xi∈A

∑

w j∈Ψ

hcj‖xi − w j‖2, j �= c, (22)

where c is the BMU of xi and hcj is the neighborhood function of neurons c and j at max
iteration T defined by Eq. (4).

Table 7 presents the numerical results of distortion measure (22) on all data sets. From
these results, one can see that the proposed algorithm outperforms the SOM in all data sets.
The improvement of distortion error, ξ , is significance in eight data sets (wine, TSPLIB1060,
image segmentation, TSPLIB3038, D15112, gamma telescope, NE and Pla85900). The value
nd in the Table 7 presents the number of neurons which never activated (dead neurons) by
the input data points. The number of dead neurons, nd , for CSOM in all data sets is equal or
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Table 7 Results of distortion measure on all data sets

Dataset SOM CSOM

Linear Hyperbolic Sigmoid

ξ nd ξ nd ξ nd ξ nd

Iris ξ × 10−3 1.75 33 0.47 29 1.18 23 1.37 27

Wine ξ × 10−3 1.85 24 0.29 17 0.25 24 0.13 22

TSP1060 ξ × 104 1.32 16 0.82 7 0.99 20 0.57 10

Image Seg. ξ × 10−4 7.13 9 0.74 6 1.01 13 0.74 4

D15112 ξ × 103 4.04 0 0.49 0 20.50 49 0.44 1

Gamma Tel. ξ × 10−9 4.85 0 0.02 1 0.12 0 0.03 0

NE ξ × 10−6 1.09 19 0.37 1 0.19 7 0.01 9

Pla85900 ξ × 105 16.30 0 0.10 0 0.26 4 0.08 0

less than that for the SOM. This means that the proposed algorithm activates more neurons
and distributes the neurons more efficiently than the classical SOM.

5.5 Topographic Product

In this section the neighborhood relations preservation of CSOM is compared with the SOM
using topographic product. This measure demonstrate how nearby neurons in the input space
are mapped onto neighboring locations in the output space. Many topology preservation
measures have been proposed and a complete review can be found in [2,28].

The topographic product is a measure of the preservation of neighborhood relations in
maps between spaces. The basic idea is that for each neuron the ordering of remaining neurons
in output and input spaces are defined based on their distances in each space. Then the error
is minimized if for each neuron these orderings become identical, i.e the k-th nearest neuron
in output space is the k-th nearest neuron in the input space.

The notation for nearest-neighbor indices is defined as nA
k ( j), which denotes the k-th

nearest neighbor of node j , with the distances measured in the output space:

nA
k ( j) : d A

(
j, nA

k ( j)

)
= min

j ′∈A/

{
j,nA

1 ( j),...,nA
k−1( j)

} d( j, j ′).

In the same way let nVk ( j) denote the k-th nearest neighbor of j , but with the distances
measured in the input space.

nVk ( j) : dV (w j , wnVk ( j)) = min

j ′∈A/

{
j,nV1 ( j),...,nVk−1( j)

} d(w j , w j ′).

Using nearest neighborhood indexation the following ratios are defined:

Q1( j, k) =
dV (w j , wnA

k ( j))

dV (w j , wnVk ( j))
, Q2( j, k) =

d A
(
j, nA

k ( j)

)

d A

(
j, nVk ( j)

) .
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Table 8 Results of topographic product on all data sets

Dataset CSOM

SOM Linear Hyperbolic Sigmoid

Fisher’s iris plant −5.48 × 10−03 −7.78 × 10−03 5.21 × 10−02 −4.01 × 10−03

Wine −2.55 × 10−03 2.02 × 10−04 4.22 × 10−02 3.09 × 10−03

TSPLIB1060 −3.09 × 10−03 1.79 × 10−03 1.25 × 10−01 9.93 × 10−04

Image seg. −2.40 × 10−03 2.09 × 10−03 1.74 × 10−02 5.72 × 10−04

D15112 1.78 × 10−04 1.05 × 10−04 1.23 × 10−04 8.31 × 10−05

Gamma tel. −8.92 × 10−03 5.27 × 10−03 1.94 × 10−02 1.68 × 10−02

NE −1.38 × 10−03 9.15 × 10−03 1.21 × 10−01 8.33 × 10−04

Pla85900 −8.73 × 10−03 −3.33 × 10−03 6.71 × 10−03 −7.04 × 10−03

The topographic product formula is defined as:

P = 1

N (N − 1)

N∑

j=1

N−1∑

k=1

log(P3( j, k)), (23)

where

P3( j, k) =
(

k∏

l=1

Q1( j, l)Q2( j, l)

)1/2k

.

The topographic product of SOM and CSOM on all data sets are presented in Table 8.
From (23) one can see that the desired value of P is 0. The CSOM algorithm outperforms
SOM algorithm on all cases. The improvement of topographic product value is significant in
Wine, TSPLIB1060, Image Segmentation, D15112 and NE.

5.6 Topology Preservation

In this section we present the topology preservation of the proposed algorithm. We choose
2-dimensional data sets in order to be displayed easily. Figures 6 and 8 show the topology
of the SOM and CSOM for two data sets: TSPLIB1060, NE. It should be noted that only
active neurons are presented in these figures. In Fig. 6a one can see that some of the SOM’s
neurons for the TSPLIB1060 data set are far from the mapped data points which leads to
increments in the quantization error E . These is due to the absorption of these neurons by
their neighborhoods which, in fact, are far from these neurons in the n-dimensional space. On
the contrary one can see from Fig. 6b that the CSOM spreads the neurons over the mapped
data more accurately by overcoming the above mentioned deficiency in the SOM. These
improvements can be obviously seen by comparing Figs. 6a and 6b at the bottom-left and
right of the maps where exists a gap between two groups of data points. The visualization
of neurons on D15112 data set shows similar results. The CSOM converge to the domain
of data points more accurately. This is obviously proved by comparing the top-right side of
Figs. 7a and b. Figure 8 presents the topology of the SOM and CSOM on NE data set. The
CSOM in Fig. 8b is more accurate than the SOM in Fig. 8b where some active neurons are
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(a) (b)

Fig. 6 Topology preservation of CSOM versus SOM. a SOM on TSPLIB1060, b CSOM on TSPLIB1060

Fig. 7 Topology preservation of CSOM versus SOM. a SOM on D15112, b CSOM on D15112

located in the space outside of the region where the data set is located (they are displayed by
an arrow).

5.7 Comparison with Other Algorithms

In this section the CSOM is compared to similar topology preservation algorithms in the
sense of accuracy and computational time. The CSOM is compared with Growing Grid (GG)
[3], Growing Neural Gas (GNG) [8], Growing Hierarchical SOM (GHSOM) [21], Principal
Component Analysis (PCA) [24], Sammon’s Mapping [23], Fuzzy Sammon Mapping [16]
and RPSOM [5] algorithms. The max number of neurons and iteration for GG, GNG and
GHSOM algorithms are set to 400 and 4000, respectively. The same settings as presented in
Table 1 are considered for RPSOM algorithm.

The value e using 21 and the best value of quantization error,Ebest, are presented inTable 9.
Note that in this table LCSOM, HCSOM and SCSOM represent Linear CSOM, Hyperbolic
CSOM and Sigmoid CSOM, respectively. In all data sets, except Gamma Telescope, the
CSOM produces less quantization error than other algorithms. The GNG algorithm obtains
less error on Gamma Telescope data set in comparison with other algorithms. From the
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Fig. 8 Topology preservation of CSOM versus SOM. a SOM on NE, b CSOM on NE

Table 9 Results of quantization error on all data sets

Alg. Iris Wine TSPLIB1060 Image Seg. D15112 Gamma Tel. NE Pla85900
Ebest

×10−1 ×101 ×102 ×101 ×102 ×101 ×10−2 ×104

1.88 1.08 3.12 2.05 3.70 3.14 1.51 1.75
e

GG 45.35 66.34 2.73 29.59 32.24 5.93 51.04 1452.03

GNG 35.42 34.75 20.36 2.94 4.50 0.00 13.73 249.67

GHSOM 30.23 45.62 47.37 157.50 123.25 109.72 − −
PCA 5.15 16.09 14.47 29.09 4.25 3.23 − −
Sammon 5.79 16.15 14.47 29.10 4.25 3.54 − −
FuzSam 39.17 23.67 13.88 59.85 3.75 42.24 − −
RPSOM 12.01 11.91 8.59 15.72 2.69 14.57 3.00 2.12

LCSOM 43.84 18.03 1.66 18.78 1.37 15.27 6.19 0.10

HCSOM 0.00 0.00 16.56 0.00 16.71 11.61 9.34 98.14

SCSOM 16.58 9.22 0.00 0.21 0.00 12.04 0.00 0.00

results presented in the Table 9, one can see that the PCA is the second best algorithm in Iris,
D15112 and Gamma Telescope data sets. Moreover, the RPSOM is the second best algorithm
in Wine, NE and Pla85900 data sets. The results obtained by GG and GNG algorithms
are close to those obtained by CSOM in TSPLIB1060 and Image Segmentation data sets,
respectively. The RPSOM algorithm generates satisfactory results on NE and Pla85900 data
sets in comparison with CSOM. Note that the PCA, Sammon’s Mapping and Fuzzy Sammon
algorithms failed in two very large data sets, NE and Pla85900, due to high computational
time requirement (more than five hours).

The CPU time required by all algorithms are presented in the Table 10. The CSOM is the
best algorithm in Iris, Wine, NE and Pla85900 data sets in the sense of both accuracy and
the required cpu time. The PCA and GNG algorithms are fast in most of the data sets, but
the generated errors by these algorithms are quit far from the satisfactory results. From these
results one can see that the CSOM outperforms the RPSOM algorithm in all cases.
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Table 10 The CPU time required by all algortihms

Alg. Iris Wine TSPLIB1060 Image Seg. D15112 Gamma Tel. NE Pla85900
t

GG 4.40 4.31 10.67 30.70 163.63 297.60 166.91 622.70

GNG 3.16 4.48 6.20 13.90 26.85 102.10 97.76 115.82

GHSOM 2.06 2.87 62.88 303.68 10848.36 18363.03 - -

PCA 0.04 0.05 0.31 2.31 34.07 131.72 - -

Sammon 3.81 4.36 40.35 194.72 6620.42 9386.41 - -

FuzSam 2.43 3.01 24.64 25.26 144.93 196.65 - -

RPSOM 6.29 7.58 55.57 130.11 804.15 726.64 968.34 445.05

LCSOM 0.42 0.87 17.89 92.19 128.00 211.62 236.54 338.24

HCSOM 0.33 0.55 18.74 73.62 96.05 127.55 156.08 325.50

SCSOM 0.37 0.73 19.78 68.10 123.20 140.72 253.70 315.96

6 Conclusion

In this paper, we develop a modified learning algorithm for the Self Organizing Maps. The
aim is to propose a learning algorithm which restricts the neighborhood adaptations to only
those neurons that are not far from the best matching unit in the n-dimensional space. There-
fore, we introduced an adaptive constraint parameter. This parameter is a decreasing function
with respect to iterations to be applicable to the SOM learning process. The adaptive con-
straint parameter selected as linear, hyperbolic and sigmoid function. The experiments on
eight real-world data sets demonstrate the superiority of the proposed algorithm over the
SOM in the sense of accuracy. The results show that the CSOM converges much faster than
SOM and in all cases with less computational complexity, moreover, improves the topology
preservation and presents promising clustering results. The proposed algorithm outperforms
similar topology preservation algorithms specially in very large data sets in the sense of
accuracy and computational time.

The CSOM is designed for offline training of large data sets however, it can be modi-
fied to be suitable in realtime environments. The constrained learning algorithm updates a
set of neurons based on some parameters which can be saved in the memory for the next
upcoming data points. The modification of the CSOM for realtime training is a part of future
work.
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