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Abstract A new and efficient classification model is introduced in this paper. The proposed
model enjoys the information of null space of within-class and range space of within-class.
And the proposed model aims at defining a reliable spatial analysis criterion for the remote
sensing image, taking advantage of the differences in different areas. Finally, by incorporat-
ing fisher linear discriminant analysis and support vector machine (or K-nearest neighbor)
classifier among image pixels, the model obtained more accurate classification results.
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1 Introduction

Remote sensing image classification has become one of the hot topic in recent twenty years
that is because the image contains much useful information, which plays an important role
in the development of society and economy. Remote sensing image combines imaging tech-
niques with the spectral techniques togethers, are widely used in civil and military areas.
However, remote sensing image classification is a complex process that may be affected
by many factors. For instance, the availability of high quality images, proper classification
approach, and the analytical ability of researchers. For a particular study, it is often difficult
to identify the best classifier due to the lack of a guideline for selection and the availability
of suitable classification models to band. Hence, many scientists have made great efforts

B Jianqiang Gao
jianqianggaohh@126.com; dr.jq.gao@gmail.com

Lizhong Xu
mathtwo@hotmail.co.in

1 College of Computer and Information Engineering, Hohai University, Nanjing 210098,
People‘s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-015-9447-0&domain=pdf


806 J. Gao, L. Xu

[1–10] to improve classification accuracy. In many reports, supervised, semi-supervised and
unsupervised are the three popular leaning methods for remote sensing image classification,
such as, maximum-likelihood classifiers, neural networks and neurofuzzy models [11–13].
However, there is an important hughes phenomenon [14] for hyper-spectral images. So, it
needs a long time to deal with the high dimensional data.

The purpose of classification is to estimate the different species of each geographic region
in remote sensing image. It is usually formulated as a segmentation task where an appearance
model is first used to filter the pixel and then threshold setting strategies are utilized to infer the
affiliation of the pixel in current frame. Hence, how to effectivelymodel the appearance of the
target region and how to accurately infer the affiliation from all ground-based ancillary data
are two main steps for a successful classification system. Although a variety of classification
algorithms have been proposed, remote sensing image classification still cannot meet the
requirements of most practical applications. Many elegant features in the field of pattern
recognition can be used to discriminate the category from image and ancillary data. However,
the extraction of useful information and modeling are very difficult to achieve because the
remote sensing image exhibits more complex spectral character, high-dimensional data, and
the selection of band. Hence, traditionalmodels to achieve robust classification are not always
feasible.

In recent years, Quan et al. [15] proposed a multiscale segmentation method, which is
combining the probabilistic neural network (PNN) with the multiscale autoregressive model.
A hybird classifier was proposed by Zhang et al. [16] for polarimetric synthetic aperture radar
(SAR) images. Besides, graph-based learningmethod is becoming an emergent research topic
in image classification, some related research can be found in [17–20]. In addition, multiview
learning approach based image annotation also becoming one of the hot topic in image
processing [21,22]. However, for hyper-spectral remote image classification, the challenge is
to develop approaches that are powerful enough to make use of the intricate details.While the
growing number of spectral channels enables discrimination among a large number of cover
classes, lots of traditional algorithms fail on these data because of mathematical or practical
limitations. For instance, the maximum likelihood and other covariance-based classifiers
require, asmany training samples each class as the number of bands plus one, which produces
a severe problem of field sampling for multi-bands hyper-spectral image. In high dimensional
data analysis, such as hyper-spectral remote sensing image, the dimension reduction process
plays an important role in all supervised or unsupervised classification approaches which
require the estimation of second order statistics. The aim of dimension reduction process
is to map a set of high dimensional data into a low dimensional space while preserving the
intrinsic structure of that data. The most famous dimension reduction methods have been
reported in the literature, such as principal component analysis (PCA) and its generalized
kernel PCA [23,24], locally linear embedding (LLE) [25] and spatial and spectral oriented
dimension reduction (SASO-DR) [26]. However, this operation of dimension reduction can
result in an undesirable loss of information. In addition, many researchers believe that the
kernel trick is one of the best tools for solving high dimensional data classification [27–30]
or pattern recognition problem [31–33]. Actually, the kernel trick [34] is applied to project
the original data into a feature space in which the data become linearly (or approximate
linearly) separable. Fauvel et al. [27] proposed a spatial-spectral kernel-based approach with
the spatial and spectral information were jointly used for the classification. A kernel-based
block matrix decomposition approach for the remote sensing image classification can be
found in [35].

The main goal of this paper is to establish a new and efficient classification model
applicable in remote sensing image processing by using mathematical theory. The model
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is a three-step process with adjustment of parameters. (1) The information of same areas
associated with each pixel is modeled as the within-class set which generates within-class
scatter matrix Sw, at the same time the information of different areas associated with mean
pixel of each same areas is modeled as the between-class set which generates between-class
scatter matrix Sb. (2) A projectionmatrixW (W = [α ·W1, (1−α)·W2]) can be obtained by
solving an optimal problem with using fisher linear discriminant analysis (FLDA) approach
in the null space of Sw and range space of Sw. Where α (0 ≤ α ≤ 1) is a non-negative
parameter constant to balance the null space of Sw and range space of Sw. (3) The projec-
tion matrixW was used to project the original data into a new low-dimension feature space,
and then support vector machine (SVM) (or KNN) classifier was used in the last step. The
advantage of the proposed model is that the spatial information of remote sensing image can
be fully used in classification processing. So, we abbreviate that by calling it parameterized
null-range-Sw.

The remainder of this paper is organized as follows. Section 2 briefly reviews the formu-
lations of FLDA, KNN and SVM. In Sect. 3, the derivation process of the proposed model is
described in detail. The effectiveness of the model is demonstrated in Sect. 4 by experiments
on several real remotely sensed images. Finally, Sect. 5 concludes this paper.

2 Review of FLDA, KNN and SVM

2.1 Fisher Linear Discriminant Analysis (FLDA)

The main idea of FLDA is to perform dimension reduction while preserving as much infor-
mation as possible. Linear discriminant analysis (LDA) aims to find the optimal projection
matrix such that the class structure of the original high-dimensional space is preserved in the
low-dimensional space. However, the FLDA cannot be directly applied because the Sw has
zero eigenvalues. Hence, many methods are proposed to solve it, such as LDA/QR [36], null
subspace method [37], range subspace method [38] and based-median method [39,40].

In this subsection, we first introduce some important notations used in this paper. Let c
be the number of classes, Ni be the number of samples from i th class, N be the number of
total samples from each class, Ai

j be the j th sample from i th class and mi be the mean of
i th class samples.

N =
c∑

i=1

Ni , (1)

mi = 1

N

Ni∑

j=1

Ai
j , (i = 1, . . . , c). (2)

The optimal projection matrix W = [w1, w2, . . . , wr ] can be obtained via maximizing the
following criterion [41]. Where r is at most min(c − 1, N ).

J (W ) = WT SbW
WT SwW

, (3)
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where, Sb and Sw are the between-class and within-class scatter matrices, respectively. m0

is the global mean of all classes samples.

Sb =
c∑

i=1

(mi − m0)
T (mi − m0), (4)

Sw =
c∑

i=1

Ni∑

j=1

(Ai
j − mi )

T (Ai
j − mi ), (5)

m0 = 1

c

c∑

i=1

mi . (6)

Pan et al. [42] gave a spectral regression discriminant analysis for hyperspectral image clas-
sification. Ghosh et al. [43] proposed a context-sensitive technique for unsupervised change
detection in multitemporal remote sensing images. Bandos et al. [44] analyzed the classi-
fication of hyperspectral remote sensing image with LDA in the presence of a small ratio
between the number of training samples and the number of spectral features.

2.2 K-Nearest Neighbor (KNN)

K-nearest neighbor is a nonparametric approach for classification. It does not require the
priori knowledge such as priori probabilities and the conditional probabilities. It operates
directly towards the samples and is categorized as an instance-based classification method.
Details can be found in the [45,46].

2.3 Support Vector Machine (SVM)

In this subsection, we briefly review the support vector machine. Given a labeled training
set {(x1, y1), . . . , (xN , yN )}, where xi ∈ R

d and yi ∈ {−1,+1}, and �(·) is a nonlinear
mapping. Generally speaking, to a high-dimension space, � : Rd → H, the SVM algorithm
solves

min
w,ξi ,b

{
1

2
‖w‖2 + C

∑

i

ξi

}
, (7)

constrained to

yi (〈�(xi ), w〉 + b) ≥ 1 − ξi , ∀i = 1, 2, . . . , N . (8)

ξi ≥ 0, ∀i = 1, 2, . . . , N . (9)

wherew and b define a linear classifier in the feature space. According to the Cover’s theorem
[47], the nonlinear mapping function� is used in the transformed samples feature space. The
parameter C controls the generalization capabilities of the classifier and it must be selected
by the user, and ξi are positive slack variables enabling to deal with permitted errors.

In mathematics, the primal problem (7) is solved through its Lagrangian dual problem
(10) because of the high-dimension of vector w.

max
αi

⎧
⎨

⎩
∑

i

αi − 1

2

∑

i, j

αiα j yi y j 〈�(xi ),�(x j )〉
⎫
⎬

⎭ , (10)
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constrained to 0 ≤ αi ≤ C and
∑

i αi yi = 0, i = 1, 2, . . . , N . Where auxiliary variables αi

are Lagrange multipliers corresponding to constraints in (8). All � mappings are performed
in the form of inner products. So, a kernel function K needs to be defined as (11).

K (xi , x j ) = 〈�(xi ),�(x j )〉. (11)

By introducing (11) into (10), and then solving the dual problem, we can obtain the solution
w = ∑N

i=1 yiαi�(xi ). For any test vector x , the decision function can be obtained as below.

f (x) = sgn

(
N∑

i=1

yiαi K (xi , x) + b

)
, (12)

where b can be easily obtained from the αi that are neither 0 nor C . Details can be found
in [48]. The SVM technique is widely used in remote sensing image can be found in [27–
29,49–52].

3 Proposed Parameterized Null-Range-Sw (P-NRSw) Model

3.1 P-NRSw Model

In this subsection, our motivation came from the reserve of several details of remote sensing
image. In our proposedmodel, we treat the same class areas and different class areas of remote
sensing image as the within-class scatter matrix (Sw) and between-class scatter matrix (Sb),
respectively. To distinguish each area of remote sensing image, we hope the differences as
small as possible from the same areas, on the contrary, the differences as large as possible from
the different areas. Meanwhile, inspired and motivated by the idea of FLDA, we proposed
P-NRSw model to deal with the same and different areas of remote sensing image.

From a mathematical theory point of view, the proposed P-NRSw model consists of three
subsequent steps. Firstly, the P-NRSwmodel projects the original space onto the null space of
Sw using an orthogonal basis of null (Sw), and then in the projected space, a transformation
that maximizes the between-class scatter is computed (generate project matrix W1). At the
same time, the P-NRSwmodel projects the original space onto the range space of Sw by using
a basis of range (Sw), and then in the transformed space the maximization of between-class
scatter is pursued (generate project matrixW2). Secondly, select the appropriate parameters
α (0 ≤ α ≤ 1) while the project matrix is constructed as W = [α · W1, (1 − α) · W2].
Where α is a non-negative parameter constant to balance the null space of Sw and range
space of Sw. Finally, the projection matrix W was used to project the original data into a
new low-dimension feature space, and then SVM (or KNN) classifier was used in the last
step. The details can be found in the followings:

In the following, first a brief description of some important notations are given in this
section. For convenience, we list these notations in Table 1.

Consider a original multi-band remote sensing image with N samples (different class
areas) where each sample contains d bands. By this assumption, a N × d matrix X can be
constructed which has the components x1 to xN , where each component is consists of the
bands of remote sensing image. Therefore, the dataset that consists of N samples {(xi , yi )}Ni=1,
where xi ∈ R

d , and yi ∈ {1, 2, . . . , c} denotes the class label of the i th sample, N is
the sample size, d is the data dimensionality, and c is the number of classes. Let the data
matrix X = [x1, x2, . . . , xN ] be partitioned into c classes as X = [X1, X2, . . . , Xc], where
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Table 1 Notation description Notation Description

X Data matrix

Xi i th class data matrix

N The number of samples

Hb Precursor of between-class scatter

Hw Precursor of within-class scatter

Sb Between-class scatter matrix

Sw Within-class scatter matrix

W1 Projection matrix form null space Sw

W2 Projection matrix form range space Sw

W Combination projection matrix form W1
and W2 With parameter α

α Non-negative parameter

Xi ∈ R
d×ni , ni is the size of the i th class Xi and

∑c
i=1 ni = N . Define matrices Hw and Hb

as follows:

Hw = 1√
N

[
X1 − m1e

T
1 , . . . , Xc − mce

T
c

]
, (13)

Hb = 1√
N

[√
n1(m1 − m0), . . . ,

√
nc(mc − m0)

]
, (14)

where mi is the centroid of the i th class, m0 is the global centroid, ei is the vector of all ones
of length ni . Hw ∈ R

d×N , Hb ∈ R
d×c. Then Sw and Sb can be expressed as follows:

Sw = HwHT
w , (15)

Sb = HbH
T
b . (16)

Chen et al. [37] finds solution vectors in null (Sw) and Yu and Yang [38] restricts the space to
range (Sb). However, these methods may ignore this fact that the solution vectors may from
two different spaces. Hence, the proposed P-NRSw model to obtain solution vectors in both
spaces. Considering the singular value decomposition (SVD) of Sw ∈ R

d×d .

Sw = Uw�wU
T
w = [Uw1︸︷︷︸

s

Uw2︸︷︷︸
d−s

]
[

�w1 0
0 0

] [
UT

w1

UT
w2

]
, (17)

where s =rank (Sw), null (Sw) = span(Uw2), Uw ∈ R
d×d , Uw1 ∈ R

d×s , Uw2 ∈ R
d×(d−s).

In the transformed space by Uw2, let the between-class scatter matrix be S̃b = UT
w2SbUw2,

S̃b ∈ R
(d−s)×(d−s). Then the basis of range (S̃b) can be found by the SVD of S̃b as (18).

S̃b = Ũb�̃bŨ
T
b = [ Ũb1︸︷︷︸

r1

Ũb2︸︷︷︸
d−s−r1

]
[

�̃b1 0
0 0

][
Ũ T
b1

Ũ T
b2

]
, (18)

where r1 =rank (S̃b), Ũb ∈ R
(d−s)×(d−s), Ũb1 ∈ R

(d−s)×r1, Ũb2 ∈ R
(d−s)×(d−s−r1). In the

transformed space by the basis Ũb1 of range (S̃b), let Y be the matrix whose columns are the
eigenvectors corresponding to nonzero eigenvalues of
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Fig. 1 Flowchart of our approach

S∗
b = Ũ T

b1U
T
w2SbUw2Ũb1. (19)

On the other hand, in the transformed space by the basis Uw1, let the between-class scatter
matrix Ŝb = UT

w1SbUw1, Ŝb ∈ R
s×s . Then the basis of range (Ŝb) can be found by the SVD

of Ŝb as (20).

Ŝb = Ûb�̂bÛ
T
b = [ Ûb1︸︷︷︸

r2

Ûb2︸︷︷︸
s−r2

]
[

�̂b1 0
0 0

] [
Û T
b1

Û T
b2

]
, (20)

where r2 = rank(Ŝb), Ûb ∈ R
s×s , Ûb1 ∈ R

s×r2, Ûb2 ∈ R
s×(s−r2). In the transformed space

by the basis Ûb1 of range (Ŝb), let Z be the matrix whose columns are the eigenvectors
corresponding to nonzero eigenvalues of

S�
b = Û T

b1U
T
w1SbUw1Ûb1. (21)

Therefore, the two projection matrices W1 = Uw2Ũb1Y and W2 = Uw1Ûb1Z , which are
from the null space of Sw and the range space of Sw, respectively. In order to obtain stronger
discriminant information, the parameter α is introduced to W1 and W2 in proposed model
(Viz.W = [α ·W1, (1−α) ·W2]). Finally, the classified results of remote sensing image test
data set will be obtained throughW and SVM (or KNN). Figure 1 shows a block diagram of
our method.

3.2 Analysis of Computational Complexities

In this subsection, we analyze computational complexities for the discussed methods. The
computational complexity for the SVD decomposition depends on what parts need to be
explicitly computed.We use flop counts for the analysis of computational complexities where
one flop (floating point operation) represents roughly what is required to do one addition
(subtraction) or one multiplication (division) [53]. For the SVD of a matrix H ∈ R

p×q when
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Table 2 Complexities
description

Need to be computed explicitly Complexities

U, � 4p2q + 13q3

U1, � 6pq2 + 11q3

U, �, V 4p2q + 22q3

p � q , H = U�V T = [ U1︸︷︷︸
q

U2︸︷︷︸
p−q

]�V T , where U ∈ R
p×p , � ∈ R

p×q and V ∈ R
q×q , the

complexities (flops) can be roughly estimated as follows (Table 2).
For the multiplication of the p1 × p2 matrix and the p2 × p3 matrix, 2p1p2p3 flops

can be counted. Compared to the traditional FLDA, null subspace approach [37], range sub-
space method [38] and popular morphology-based feature extraction method, which involves
careful design and complex steps, such as, a series of opening and closing operations, our pro-
posed method is more efficient and computationally straightforward. Moreover, with a SVD
decomposition and a simple sorting process of eigenvectors, while the morphology-based
approach cannot achieve it. As a result, the proposed P-NRSw is more discriminative for
remote sensing image classification, which is confirmed by our experiments in the following
section.

4 Experimental Results and Analysis

In this section, we demonstrate the effectiveness of the proposed P-NRSw model on remote
sensing image classification tasks. The twopublicly available databases namelySanFrancisco
of 2012 GRSS data fusion contest (2012 GRSS data) and KSC-AVIRIS data, respectively.

It is well known that the selection of kernel function is very important to achieve better
performance in classification tasks. Polynomial kernel [PK, Eq. (22)], Gaussian kernel [GK,
Eq. (23)], and Sigmoid kernel [SK, Eq. (24)] are three commonly used kernel functions.
To evaluate the efficiency of proposed model, the three kernel functions are used in our
experiment.

k(x, y) = (g · x · y + 1)3. (22)

k(x, y) = exp(g · ||x − y||2). (23)

k(x, y) = tanh(g · x · y − 1). (24)

In SVM, the penalty term C and the width of kernel g are need to be tuned. And the libsvm
[54] was used. Each original remote sensing image dataset was scaled between [0, 1] by
using a per band range stretching method. The within classification accuracy (WCA) and the
total classification accuracy (TCA) criteria [26] are used in our comparison.

WCAi = Pi
Mi

× 100, (25)

TCA =
∑c

i=1 Pi
P

× 100. (26)

In these equations, Pi denotes the number of correctly classified samples in i th class, Mi is
the number of samples in i th class, c is the number of classes, and P is the total number
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Fig. 2 The images of training set (a) and test set (b)

Table 3 Number of the training
and test samples of 2012 GRSS
data

(i th class) Information
classes

No. of training
samples

No. of test
samples

(1) Grass 200 6200

(2) Road 200 1601

(3) Roof 200 2605

(4) Shadow 200 1427

(5) Trail 200 1142

(6) Tree 200 2223

(7) Water 200 5100

Total 1400 20,298

samples in the test data. In addition, the kappa coefficient (κ)was calculated using confusion
matrix in our experiments.

4.1 2012 GRSS Data

The data fusion contest has been annually organized by the data fusion technical committee of
the IEEE Geoscience and Remote Sensing Society (GRSS) since 2006. Detailed description
can be found in [55]. In our experiments, the data set is a subset of 477×342 pixels of original
image. Meanwhile, we only considered seven classes such as grass, road, roof, shadow, trail,
tree, and water, to characterize this area. The distributions of training set and test set are
shown in Fig. 2. The class definitions and the number of samples for each experiment is
listed in Table 3.

In SVM, the parameters C (1 ≤ C ≤ 10) and g (2−10 ≤ g ≤ 210)are determined by five
fold cross validation strategy. Performance indicators (PIS) denotes WCAi (i = 1, . . . , c),
TCA, and κ . The results by using the above mentioned three kernels (α = 0.5) are reported
in Tables 4, 5 and 6, respectively.

According to the results in Tables 4, 5 and 6, the proposed P-NRSw method gives a
slightly better results in terms of total classification accuracy and kappa value. No matter
what parameters C we use, the P-NRSw almost give a slightly better results. When the
sigmoid kernel was used in this experiment, four methods give a worse results. So, the kernel
function is very important to achieve better classification. From a practical point of view, the
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Table 4 TCA (%) and κ of 2012
GRSS data (Polynomial kernel)

Method C = 2 g = 223 C = 7 g = 223

TCA κ TCA κ

N(Sw) 87.1416 0.8399 87.1761 0.8403

R(Sb) 77.4214 0.7182 86.0479 0.8265

SVM 87.1527 0.8400 87.0500 0.8411

P-NRSw 87.2549 0.8412 87.5209 0.8446

Table 5 TCA (%) and κ of 2012
GRSS data (Gaussian kernel)

Method C = 25 g = 240 C = 30 g = 240

TCA κ TCA κ

N(Sw) 87.6293 0.8459 87.6293 0.8459

R(Sb) 86.0922 0.8271 86.0479 0.8265

SVM 88.0310 0.8510 88.1401 0.8522

P-NRSw 88.1959 0.8529 88.2304 0.8534

Table 6 TCA (%) and κ of 2012
GRSS data (Sigmoid kernel)

Method C = 1100 g = 0.05 C = 1200 g = 0.05

TCA κ TCA κ

N(Sw) 80.4168 0.7513 81.4908 0.7661

R(Sb) 76.8007 0.7122 76.8302 0.7126

SVM 82.0584 0.7825 83.9015 0.7969

P-NRSw 83.9097 0.7972 84.4221 0.8038

gaussian kernel is the best choose. Figure 3 shows the classification results by using KNN
classifier with different k values.

According to the results in Fig. 3, the proposed P-NRSw achieves the best classification
results in terms of total classification accuracy. Compared with SVM, the KNN classifier is
the best for 2012 GRSS data. In addition, the influence of the parameter α will be investigated
in the following experiment, which is shown in Fig. 4. Figure 4 shows that the TCA rises at
first and then keeps stable and then it begins descend slowly; but when the value of α = 0.5,
the TCA is the best.

In order to further analyze the effectiveness of P-NRSw model, the KSC-AVIRIS data is
used for the next experiment.

4.2 KSC-AVIRIS Data

Detailed description of KSC-AVIRIS data can be found in [35,55]. The image is 614 × 512
pixels. Fig. 5 shows the original image with brands 11, 21, and 31. In this data set, there are
lots of singular points. So, In the experiments, the singular point was replaced by using its
surrounding mean value. 50 samples are randomly taken from each class as training samples
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Fig. 3 TCA of different k values (2012 GRSS data, α = 0.5)
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Fig. 4 TCA of different parameters α of P-NRSw with Gaussian kernel (2012 GRSS data)

and the rest are used test samples (see Table 7). In order to evaluate the generalization power
of method more accurately, we adopt five fold across validation strategy.

In SVM, the parameters C and g (from 2−10 to 210, the step is 20.2) are determined by
five fold cross validation strategy. In the following experiments, the α = 0.5. The optimal
parameter and results are shown in Tables 8, 9 and 10 with different kernels.

From Tables 8, 9 and 10, the proposed P-NRSw performs better than other three methods
in terms of total classification accuracies and kappa coefficient. In addition, according to

123



816 J. Gao, L. Xu

Fig. 5 KSC-AVIRIS data, (Bands 11, 21, 31) acquired over KSC

Table 7 Class codes, names, and
number of the training and test
samples (KSC-AVIRIS)

(i th class)
Information
classes

No.
samples

No. of training
samples

No. of test
samples

(1) Scrub 761 50 711

(2) Willow swamp 243 50 193

(3) Cabbage palm
hammock

256 50 206

(4) Cabbage palm/oak 252 50 202

(5) Slash pine 161 50 111

(6) Oak/broadleaf
hammock

229 50 179

(7) Hardwood swamp 105 50 55

(8) Graminoid marsh 431 50 381

(9) Spartina marsh 520 50 470

(10) Cattail marsh 404 50 354

(11) Salt marsh 419 50 369

(12) Mud flats 503 50 453

(13) Water 927 50 877

Total 5211 650 4561

Table 8 TCA (%) and κ of
KSC-AVIRIS data (Polynomial
kernel)

Method C = 23.4 C = 27.8 C = 24.4 C = 27.4

g = 20.6 g = 2−9.6 g = 2−5.8 g = 2−1.2

N(Sw) R(Sb) SVM P-NRSw

TCA 91.5589 92.8744 92.0000 92.9840

κ 0.9055 0.9202 0.9102 0.9214

the TCA and α, we also found that the best result (TCA = 93.1155%, κ = 0.9229) is
from gaussian kernel. Figure 6 shows the classification results by using KNN classifier with
different k values.

According to Fig. 6, no matter what k we use, the P-NRSw almost gives a better result.
Therefore, the robustness is significant. However, compared with SVM, the result is not ideal
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Table 9 TCA (%) and κ of
KSC-AVIRIS data (Gaussian
kernel)

Method C = 20.8 C = 29 C = 26.6 C = 28

g = 26.2 g = 2−10 g = 2−7.4 g = 20.8

N(Sw) R(Sb) SVM P-NRSw

TCA 91.6027 92.9182 90.7825 93.1155

κ 0.9060 0.9207 0.8997 0.9229

Table 10 TCA (%) and κ of
KSC-AVIRIS data (Sigmoid
kernel)

Method C = 25 C = 28.8 C = 210 C = 28.6

g = 21.6 g = 2−7.8 g = 2−7.8 g = 20.6

N(Sw) R(Sb) SVM P-NRSw

TCA 91.5589 92.5016 90.8100 92.6990

κ 0.9055 0.9161 0.8970 0.9182
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Fig. 6 TCA of different k values (KSC-AVIRIS data, α = 0.5)

by usingKNNclassifier forKSC-AVIRIS data.Of course,we also found that the classification
result is the best with k = 4. Table 11 shows the classification result of each class.

The results of Table 11 clearly show the superiority of the proposed method. Meanwhile,
for the “Willow swamp”, “Cabbage palm hammock”, “Cabbage palm/oak”, “Graminoid
marsh”, “Spartina marsh”, “Cattail marsh”, “Salt marsh”, and “Mud flats” classes the P-
NRSw produces better classification results.

In addition, according to Tables 4, 5, 6, 8, 9 and 10, we can see that P-NRSw shows better
performance as compared to N(Sw), R(Sb), and SVM in terms of TCA and κ . As reported
before, the classification accuracies achieved via P-NRSw are higher. So, the parameter α

plays an important role in classification by contacting with the null space of Sw and the
range space of Sw. Hence, the influence of the parameter α also will be investigated in the
following experiment, which is shown in Fig. 7, which is displays the results of TCA with
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Table 11 Classification
accuracies (%) and κ of
KSC-AVIRIS data (KNN, k=4)

Bold values indicate the best
result for P-NRSw method

PIS N(Sw) R(Sb) P-NRSw

WCA1 84.3882 81.1533 89.7328

WCA2 93.2642 86.0104 93.7824

WCA3 83.0097 75.2427 88.3495

WCA4 57.9208 58.9109 65.8416

WCA5 84.6847 73.8739 82.8829

WCA6 67.5978 58.6592 62.0112

WCA7 92.7273 72.7273 87.2727

WCA8 90.8136 86.8766 91.0761

WCA9 98.0851 92.1277 98.9362

WCA10 96.6102 94.9153 97.1751

WCA11 90.2439 89.9729 92.6829

WCA12 98.6755 93.5982 98.8962

WCA13 100 100 100

TCA 90.7696 87.1958 92.2605

κ 0.8966 0.8567 0.9132
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Parameter α of P−NRSw with Gaussian kernel
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)

P−NRSw

 (KSC−AVIRIS data)

Fig. 7 TCA of different parameters α of P-NRSw with Gaussian kernel (KSC-AVIRIS data)

different parameters α. And meanwhile, it shows that the TCA rises at first and then it begins
descend fast; but when the value of α = 0.7, the TCA is the best. We know that the value
of α is used to control the contribution between the null space of Sw and the range space of
Sw.

Compared the classification results with Tables 4, 5, 6, 8, 9 and 10, gaussian kernel give
the best result. From what has been discussed above, the P-NRSw outperforms other three
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Table 12 TCA (%), κ and times
(s) for N(Sw), R(Sb), SVM,
P-SVM and P-NRSw of different
data sets

Method #1 #2

TCA κ Time TCA κ Time

N(Sw) [37] 87.6293 0.8459 161 91.6027 0.9060 47

R(Sb) [38] 86.0922 0.8271 158 92.9182 0.9207 52

SVM [10] 88.1401 0.8522 198 92.0000 0.9102 56

P-SVM [10] 88.1585 0.8528 212 93.0241 0.9118 67

P-NRSw 88.2304 0.8534 225 93.1155 0.9229 74

methods. In addition, from a theoretical point of view, P-NRSw offers a stable method to
handle remote sensing image classification problems.

In order to further verify the effectiveness of the proposed model, we made the following
experiment. Table 12 gives the total classification accuracy (TCA), kappa coefficient and
time cost of different data sets. #1 and #2 denote the 2012 GRSS data set and KSC-AVIRIS
data set, respectively. All the methods were implemented by using MATLAB R2010b on a
desktop PC equipped with an Intel Core 2 i3 (at 2.40 GHz) and 2 GB of RAM memory.

According to Table 12, we can see that P-NRSw shows better performance as compared
to P-SVM, SVM, R(Sb) and N(Sw) in terms of TCA and kappa value. However, it is worth
noting that the elapsed time of P-NRSw algorithm is more than other algorithms. This is
because the most time consuming step is the calculation of decomposition from Sw and Sb.
In addition, compared with the P-SVM method, the proposed P-NRSw method can provide
higher classification accuracies with respect to TCA.

5 Conclusion and Future Work

In this paper, a new and efficient remote sensing image classification model P-NRSw been
proposed. The goal of the proposed model is to make full use of detail information to search
an effective projection matrix for improving the performance of image classification. For
remote sensing image, the P-NRSw takes advantage of within-class similarity and between-
class diversity to build a mathematical model. Then, based on the FLDA, the SVM (or KNN)
is applied to obtain classification results. Experimental results obtained on two data sets
confirm the effectiveness of the proposed P-NRSw, which provided efficient discriminant
information for remote sensing image classification tasks. In addition, the authors realize
that more work must be done to improve the classification results in the further.
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