
Neural Process Lett (2016) 43:445–458
DOI 10.1007/s11063-015-9430-9

Stacked Autoencoders Using Low-Power Accelerated
Architectures for Object Recognition in Autonomous
Systems

Joao Maria1 · Joao Amaro1 · Gabriel Falcao1 ·
Luís A. Alexandre2

Published online: 12 May 2015
© Springer Science+Business Media New York 2015

Abstract This paper investigates low-energy consumption and low-power hardware mod-
els and processor architectures for performing the real-time recognition of objects in
power-constrained autonomous systems and robots. Most recent developments show that
convolutional deep neural networks are currently the state-of-the-art in terms of classification
accuracy. In this article we propose to use of a different type of deep neural network—stacked
autoencoders—and show that within a limited number of layers and nodes, for accommo-
dating the use of low-power accelerators such as mobile GPUs and FPGAs, we are still able
to achieve both classification levels not far from the state-of-the-art and a high number of
processed frames per second. We present experiments using the color CIFAR-10 dataset.
This enables the adaptation of the architecture to a live feed camera. Another novelty equally
proposed for the first time in this work suggests that the training phase can also be performed
in these low-power devices, instead of the usual approach that uses a desktop CPU or a
GPU to perform this task and only runs the trained network later on the FPGA. This allows
incorporating new functionalities as, for example, a robot performing runtime learning.

Keywords Deep learning · Neural networks · Stacked autoencoder · Parallel computing ·
FPGAs · Mobile GPUs · OpenCL · Low-power · Autonomous systems

B Gabriel Falcao
gff@co.it.pt

Joao Maria
jmaria@co.it.pt

Joao Amaro
jamaro@co.it.pt

Luís A. Alexandre
luis.alexandre@ubi.pt

1 Department of Electrical and Computer Engineering, Instituto de Telecomunicações,
University of Coimbra, R. Silvio Lima, 3030-290 Coimbra, Portugal

2 Department of Informatics and Instituto de Telecomunicações, University of Beira Interior,
R. Marques d’Ávila e Bolama, 6201-001 Covilhã, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-015-9430-9&domain=pdf

446 J. Maria et al.

1 Introduction

Over the last years, deep neural networks (DNNs) have established as the state-of-the-art in
terms of classification performance on many different tasks [7,11,12]. In particular, convolu-
tional neural networks (CNNs) have assumed greater and greater importance [7], since they
have shown performances 30–80 % superior when benchmarking against 7 typical datasets
commonly used to assess these algorithms.

Against what was considered the best approach in the recent past, they have shown that
using several layers can lead to superior performance [5,6,15,19]. Such use of multiple
representation stages can be achieved using CNNs or other types of DNNs such as stacked
denoising autoencoders (SDAE). Also impactful, in order to obtain superior classification
performance, is the number of samples currently used to train these algorithms. They surpass
the dozens to hundreds of thousands, which has considerably increased the computational
complexity required to train these networks for achieving good performance.

The fact that these models are computationally intensive to train has encouraged the
porting of these algorithms for execution on graphics processing unit (GPU) devices [21].
This allowed concurrent execution of different parts of the neural network either at training
or classification phases, thus accelerating the long processing times. However, top performer
GPUs, which are mainly desktop accelerators coupled to a host CPU, have reached power
and heat dissipation walls, as the number of stream processors included on a single die has
risen to thousands [14]. Also, power, heat dissipation and physical limitations in the chip
limit the frequency of operation of these devices to values around 1 GHz.

There have been previous attempts at implementing deep learning architectures on FPGAs,
but to the best of our knowledge, the high costly training phase was always performed first
on a separate machine, either recurring to CPUs or GPUs to perform that computation, and
the trained model was then implemented on the FPGA [8,10].

Also, the computational power of mobile GPUs in smartphones and tablets opens new
possibilities for portable processing power, mainly in the area of computer vision [25]. In
fact these platforms are equipped with a variety of sensors and cameras suitable for this type
of application.

In this paper we propose the use of stacked autoencoders (SAEs) in low-power mobile
GPUs and FPGAs to perform the real-time classification of objects. Instead of a traditional
approach to improve on the state-of-the-art regarding classification accuracy, this work aims
at reaching a sub-optimal classification performance, by proposing solutions that are capable
of achieving those performances in real-time running in low-power devices. Among the
multiple applications that can benefit from such use of deep neural networks, we find robots
and other types of autonomous vehicles that are limited to severe low-power constraints.
We used a parallel computing language and framework—OpenCL—to develop kernels for
concurrent execution on these accelerators [9]. We have parallelized both the training and
classification phases of the process, which allows the robot to perform the training of newly
acquired datasets during runtime. Although we can find in the literature a vast set of works
describing the implementation of neural networks on FPGAs, for the best of our knowledge
the inclusion of the training phase on an FPGA has never been reported before.

We achieved 10 fps on the training phase and more importantly, real-time performance
during classification, with 119 fps while classifying the CIFAR-10 color dataset. In the
end, the approach proposed in this work is capable of achieving classification performances
comparable to the mid level of the Kaggle table [16], and above the accuracy obtained from
processing raw pixels as the input data [17], while demanding power consumption levels
ranging from 6.6 to 16 W, which makes them suitable for being incorporated in autonomous

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 447

systems. Moreover, the proposed solution is scalable to future devices that expectedly should
have more hardware resources and processing cores available [22], allowing more frames
per second to be processed or more complex deep neural networks to be developed.

2 Sub-optimal Neural Networks: The Stacked Autoencoder

We are interested in using deep learning for object recognition. One of the simplest methods
consists of using a series of autoencoders, stacked on top of each other.

An autoencoder (AE) is a restricted version of anMLP that has one hidden and one output
layer, such that the weight matrix of the last layer is the transposed of the weight matrix of
the hidden layer (clamped weights) and the number of output neurons is equal to the number
of inputs.

In fact, an AE is trying to obtain at its output the values present in the input. Since the
hidden layer is usually of a smaller size that the input layer, the network has to be able to
represent the input data in some compressed way.

The process of training the AE, can be formalized in the following way. The j-th input
value can be represent by x j , the weight matrix components by {Wi j }, and the input size by
n, with i = 1, . . . , nh and j = 1, . . . , n, where nh is the number of hidden layer neurons.
The hidden layer neurons output, called the encoding, is obtained with hi = s(ai) where

ai = bi +
n∑

j=1

Wi j x j , (1)

bi is the bias of the hidden layer neuron i and s(·) is the sigmoid function. The ouput layer
values, or the decoding, is given by

x̂ j = s(â j) = s

(
c j +

nh∑

i=1

WT
i j hi

)
, (2)

where c j is the bias of the output layer neuron j . A possible cost function to use for the
training algorithm is

C(x̂, x) =
n∑

k=1

(x̂k − xk)
2 . (3)

When the sigmoid is used as the activation function, the weight update is done with:

Wi j = Wi j − η

n∑

k=1

[
(x̂k − xk)x̂k(1 − x̂k)

(
hi + Wikhi (1 − hi)x j

)]
, (4)

bi = bi − η

n∑

k=1

[
(x̂k − xk)x̂k(1 − x̂k)Wikhi (1 − hi)

]
(5)

and
c j = c j − η(x̂ j − x j)x̂ j (1 − x̂ j) . (6)

This process of adjusting theAE’sweights in an unsupervisedmanner is called pre-training
(Fig. 1).

The stacked autoencoder (SAE) is built by first pre-training several AEs such that the
first learns to approximate the inputs from the dataset, the second learns to approximate the

123

448 J. Maria et al.

ENCODER

INPUT
IMAGE

OUTPUT
IMAGE

DECODER

Fig. 1 Pre-training process of the first autoencoder

hidden representations of the first and so on. The output layer is not an AE but a regular
MLP layer and has as many neurons as there are classes in the problem. We use the softmax
as the activation function of the output layer. So, for the output layer neuron i , its output is
given by

f (ai) = eai
∑L

k=1 e
ak

, (7)

where L represents the number of classes (and output layer neurons) and ai is the activation
of neuron i obtained using an expression similar to (1) but where the xi are replaced by the
hi and the bi by the respective hidden-layer biases.

3 OpenCL Parallelism for Neural Networks

3.1 The OpenCL Programming Framework

A cross-platform parallel computing framework such as OpenCL opens a broad range of
possible applications. Currently supported in x86 andARMCPUs, desktop andmobileGPUs,
several APUs and FPGAs [9], the OpenCL programming framework provides the means to
easily port an existing code into any compatible device [22], provided there is a software
development kit (SDK) for that desired platform. The OpenCL framework links a host to one
or more OpenCL devices, forming a single heterogeneous computational system [13]. The
framework is structured in the following manner:

1. Platform layer The platform layer supports the host program, finding available OpenCL
devices and their capabilities and then creating a connection through a context environment
(Fig. 4).

2. Runtime The runtime component allows the host program to manipulate context environ-
ments once they have been created, sending kernels and command queues to the device.

3. Compiler From the OpenCL kernels the compiler produces program executables. The
OpenCL C programming language implemented by the compiler supports a subset of the
ISO C99 language with extensions for parallelism [13].

A parallel implementation of a standard sequential algorithm, as described in Fig. 2, can
induce a considerable speedup on the overall processing time. In the sequential algorithm
the calculation is performed one row at a time, and a computationally expensive control
check is performed at the end of every loop. In the parallel algorithm, the parallel function

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 449

Fig. 2 Traditional sequential
processing versus parallel
processing

Fig. 3 Multithread parallelism
on a vector addition computation
(in OpenCL and through this text
a work-item defines a computing
thread)

(called kernel) is launched n times, equal to the expected number of loops in the sequential
version, and the calculations are performed simultaneously on all vector points, by distinct
work-items (i.e., computing threads) [9] as depicted in Fig. 3.

3.2 OpenCL Kernels for Neural Network Parallelism

To enable the processing parallelism on the SAE described in Sect. 2, three OpenCL kernels
(special functions that run on the OpenCL compatible devices) were developed (Fig. 4):

1. Feed-Forward Linked to the feed-forward phase of the training algorithm, this kernel sends
the data through the network and computes the sigmoidal activation function. The parallel
kernel is launched across two dimensions, for a total ofHiddenNodes × BatchSize simul-
taneous work-items (OpenCL threads) for the encoder computation, and VisibleNodes ×
BatchSize for the decoder. Section 3.2.1 presents a detailed description of this phase.

Fig. 4 OpenCL platform model
comprised of a host CPU and one
or more devices

x86 or ARM CPU

Host Binary

Main
Thread

FPGA

Compute Unit #1

Precompiled Device
Binaries (AOCXs)

Mobile GPU

Compute
Unit #1

Compute
Unit #4

Run�me
Kernels

Run�me
Kernels

Compute
Unit #2

Run�me
Kernels

Compute
Unit #3

Run�me
Kernels

Compute Unit #2

Precompiled Device
Binaries (AOCXs)

OPENCL
PLATFORM

123

450 J. Maria et al.

Fig. 5 Feed forward work-items
spread across two dimensions

Stream Processors

Nodes int idx = get_global_id(0);

selp
ma S

 in

t i
dy

 =
 g

et
_g

lo
ba

l_
id

(1
);

Work-Items

for(int i=0; i<InNodes ; i++)
 sum += WEIGHTS [i + idx * InNodes] *
 INPUT[i + idy * InNodes];

OUTPUT[idx + (idy*OutNodes)] = sigmoid(sum +

 WEIGHTS [InNodes *OutNodes + idx]);

2. Back Propagation—Output Layer Computes the reconstruction error on the output
(decoder) layer and the gradient-based back-propagation algorithm for that same layer,
launching VisibleNodes simultaneous work-items. Section 3.2.2 presents a detailed
description of this phase.

3. Back Propagation—Hidden Layer Since the back-propagation on the hidden (encoder)
layer is dependent on the gradient from the decoder layer rather than the reconstruction
error, a third kernel was developed for that purpose. The back-propagation on the hidden
layer is then launched on HiddenNodes simultaneous work-items. Section 3.2.3 presents
a detailed description of this phase.

3.2.1 Feed-Forward

After the weights and required batch from the dataset are loaded to the OpenCL device’s
global memory, the feed-forward phase can begin. In this phase, one particular work-item is
responsible for the activation of one input image from the batch, in one of the output nodes
from the selected layer. On each of the work-items, the weighted sum is computed over a
loop with the input nodes size. A bias for the output node is added to the weighted sum and
an activation sigmoid function produces the final output.

This feed-forward kernel has the original image as input for the first AE, with the extracted
features from one AE serving as the input for the next AE in the network, culminating on
the full SAE network. A visual representation of the work-items/dimension can be seen
in Fig. 5.

3.2.2 Back Propagation: Output Layer

When the feed-forward passage ends on a batch, an output is obtained for each of the images
in the batch, with the same size as the input. The back-propagation kernel on the output layer
performs a pixel-by-pixel comparison of input and output, resulting in a reconstruction error.
Each work-item computes the reconstruction error and gradient-based back-propagation in
one of the visible nodes of the output layer, for all the images in the batch.

The partial derivative for the weights is then calculated via the gradient, the value for the
bias is obtained directly from it, and with the value for the weights also being dependent
on the output from the encoder. When all the samples have been processed, a mean of the
gradient is computed, due to the batch training method. A visual representation of the work-
items/dimension can be seen in Fig. 6.

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 451

Fig. 6 Back propagation
work-items for the output layer
(decoder)

Stream Processors

sedo
N tuptu

O

 i
nt

 id
x

=
ge

t_
gl

ob
al

_i
d(

0)
;

Work-Items

for(int i=0; i<Samples; i++){
 ERROR[idx + i*OutNodes] = OUTPUT[idx + i*OutNodes] –
 ORIGINAL[idx + i*OutNodes];

 GRADIENT[idx + i*OutNodes] = OUTPUT[idx+i*OutNodes] *
 (1 – OUTPUT[idx + i*OutNodes]) * ERROR[idx+i*OutNodes];

 delta B[idx] += GRADIENT[idx + i*OutNodes];
 for(int j = 0; j< InNodes; j++)
 deltaW[idx*InNodes + j] += INPUT[i*InNodes + j] *
 GRADIENT[idx + i*OutNodes];
}

delta B[idx] /= Samples;
for(int j = 0; j< InNodes; j++)

 delta W[idx*InNodes + j] /= Samples;

Fig. 7 Back propagation
work-items for the hidden layer
(encoder)

Stream Processors

sedo
N neddi

H

 i
nt

 id
x

=
ge

t_
gl

ob
al

_ i
d(

0)
;

Work-Items

for(i=0; i<Samples; i++){
 sum = 0.0;
 for(j=idx*InNodes, k=i*InNodes; j<idx*InNodes + InNodes;
j++, k++)
 sum += WEIGHTS[j] * OUTPUT_GRADIENT[k];

 GRADIENT[idx + i*OutNodes] = OUTPUT[idx +i *OutNodes] *
 (1 - OUTPUT[idx + i*OutNodes])
* sum;

 deltaB[idx] += GRADIENT[idx + i*OutNodes];
 for(j = 0; j< InNodes; j++)
 deltaW[idx*InNodes + j] += ORIGINAL[i*InNodes + j] *
 GRADIENT[idx +
i*OutNodes];
}

deltaB[idx] /= Samples;
for(j = 0; j< InNodes; j++)

 deltaW[idx*InNodes + j] /= Samples;

3.2.3 Back Propagation: Hidden Layer

For the hidden layer, the gradient is obtained from the gradient of the output layer, rather
than, as before, from the reconstruction error. This is the main reason for the development
of this separate kernel, as it mimics the previous back-propagation kernel in the remaining
computations. It is also launched across only one dimension, equal to the number of hidden
nodes.

The product of the weights of this layer and the output gradient is summed across input
nodes, with the resulting sum replacing the error in the previous algorithm, finally obtaining
the gradient for this layer. The kernel then proceeds to compute the partial derivatives as
described in the output layer kernel.

When the back propagation for this hidden layer comes to an end, the partial derivatives
are then copied to the host where a simple loop updates the weights and bias, this being a fast
and computationally easy operation. A visual representation of the work-items/dimension
can be seen in Fig. 7.

4 Experimental Results

4.1 The CIFAR-10 Dataset

The CIFAR-10 dataset consists of RGB images of 32 by 32 pixels, each containing one
photograph from ten distinct classes: airplane, automobile, bird, cat, deer, dog, frog, horse,

123

452 J. Maria et al.

Table 1 Hardware overview of the computing platforms

Platform Host CPU OpenCL Device Device memory

GPU Intel i7 4790K NVIDIA GTX Titan 6 GB GDDR5

mGPU Qualcomm Krait 400 Qualcomm Adreno 330 2 GB LPDDR3*

FPGA Intel i7 2600k Altera Stratix V D5 2 × 4 GB DDR3

* Shared memory (between Host and OpenCL device)

Table 2 Cost and power
consumption for the OpenCL
devices, as per indicated
manufacturer data

Platform Process
technology (nm)

Price (USD) Power (W)

GPU 28 1000 250

mGPU 28 475 10

FPGA 28 4000 30

ship and truck. The dataset is divided into a training set with 50,000 images and a test set
with 10,000 images. Each set has an equal distribution of elements from each one of the ten
classes. A full discussion of the dataset and the data itself can be obtained online [18].

4.2 Apparatus

The computing platforms used in these experiments are stated in Table 1, with further spec-
ifications presented in Sects. 4.2.1 and 4.2.2. The desktop GPU is used only for reference
purposes, as our focus is mainly on low-power devices.

The OpenCL devices are manufactured using the same 28nm process design technology.
Predictably, even though the low-power alternatives present similar power consumption lev-
els, the desktop GPU has an estimated power consumption an order of magnitude higher.
Regarding the purchase costs, the prices differ nearly an order of magnitude between low-
power solutions. The mobile GPU also costs only half as much as the desktop version, as
seen in Table 2.

The OpenCL devices’ throughput performance during the training duration of the SAE is
barely affected by the disparity of the host platforms. It was verified via the profiling tool,
that the percentage of total computational time on the OpenCL device was 99.86 %, with the
host CPU running idle most of the time.

4.2.1 mGPU

TheAdreno 330GPUshares a unified globalmemorywith theKrait CPU, using the remaining
space from the 2 GB of LP-DDR3 memory, with up to 12.8 GB/s memory bandwidth [23].
The processing core of the Adreno 330 is composed of four compute units (CUs), each with
32 stream processors (SPs), providing 128 SPs in total.

For testing purposes, a developing platform from Qualcomm was used, the DragonBoard
[24], with a Snapdragon 800 SoC, comprised of an ARMv7 Krait 400 CPU at 2.15 GHz and
the OpenCL device, the Adreno 330GPU clocked at 450MHzwith 2 GB of shared LP-DDR3
at 1600 MHz. This platform is currently running Android 4.3—Jelly Bean.

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 453

10

(y=0 | x)P

(y=9 | x)P
32 x 32

RGB

Fig. 8 Topology of the stacked autoencoder for the CIFAR-10 dataset

4.2.2 FPGA

One of the current FPGAs from Altera with OpenCL support is the Stratix V GS D5 [1].
This device has been developed for digital signal processing (DSP) and integrates 3180
18x18, high-performance, variable-precision multipliers, 36 full-duplex 14.1 Gbps trans-
ceivers, along with 457000 logic elements, 172600 adaptive logic modules and 690,400
registers. The memory interface allows for up to six independent banks of DDR3 SDRAM
on a 72-bit data bus, with connection to the Host made via an 8-lane PCIe 3.0 bus with up to
10 GB/s sustained bandwidth.

The FPGA host system has an Intel i7 2600k at 3.4GHz, with 2× 4 GBDDR3 of memory,
running CentOS release 6.4. The FPGA board is a Nallatech PCIe 385N Stratix V D5 [20],
populated with 2 × 4 GB of DDR3 at 1600MHz. The FPGA is used in conjunction with
the Altera SDK compiler for OpenCL, version 13.1, in compliance to the 1.0 version of
the OpenCL standard [2,4]. This produces a high-level description of the architecture for
reconfiguring the FPGA substract, without the specific need of a long development time
solution based on hardware description languages, such as Verilog or VHDL [3].

These OpenCL-based descriptions of the architecture allow the developer to manipu-
late several parameters at programming level, namely: (i) the number of compute units
(CU), which are hardware replications of the system for achieving data-parallelism; (ii) loop
unrolling that eliminates branch conditional verifications at the end of loops, thus accelerating
execution time; and (iii) single instructionmultiple data (SIMD)vectorized hardware process-
ing that applies the same instruction to distinct data elements. The best results described in
this section were achieved using two CUs on the feed-forward kernel (the one that is used
more often), one CU for the other kernels, a loop unroll factor of two and no SIMD vec-
torization, since the FPGA resources were exhausted by the first two optimizations. These
results occupy 88 % of the FPGA resources and process each epoch in 16.87 s.

4.3 Training Hyper-parameters

The training hyper-parameters defined for our SAE consist of a network of size 3072-2000-
750-10, deemed the appropriate size for problem reduction, using a training batch of 64
images and an initial learning rate set at 0.01. An overview of the network topology is
described in Fig. 8.

123

454 J. Maria et al.

Fig. 9 SAE reconstruction error as function of the number of epochs

Table 3 Final SAE training time with a batch size of 64 images and initial learning rate equal to 0.01

Platform First AE training
time

Second AE training
time

Total training
time*

GPU 36m38s 2h37m42s 3h14m20s

mGPU 2h21m00s 14h47m26s 17h08m26s

FPGA 6h26m30s 39h04m33s 45h31m03s

* Lower is better

4.4 Evaluating the Neural Network

As we trained the SAE using the CIFAR-10 dataset, several performance metrics were
recorded for each of the AEs: the reconstruction error on the validation set, the number
of epochs and corresponding duration, amounting in the end to the SAE total training time.

The progression of the reconstruction error for the SAE can be seen in Fig. 9. By training
the first AE during 1010 epochs, we achieved a reconstruction error of 3.906 % for the first
AE. The second AE was trained during another 5230 epochs with a final reconstruction error
of 0.448 %. Since the algorithm remains the same and the weights were initialized with the
same random seed generator, the error is constant across both platforms.

In Table 3 we evaluate the training time in both platforms. In the end, the mobile GPU
produced the fastest results, training the SAE 3× faster than the FPGA.

Themaximum valued output of the network on the Softmax decided the estimated classifi-
cation, varying from 1 to 0, with 1 being total certainty of the result. A variety of classification
outputs were analyzed, along with a graphical output of the estimated classification as a func-
tion of the expected labels, all in Figs. 10, 11, 12. We studied cases of correct classification
with high degree of probability as seen in Fig. 10. Some cases close to being misclassified are
presented in Fig. 11 and finally samples of misclassified images are represented in Fig. 12.
A classification accuracy of 46.51 % was obtained over the 10000 unprocessed test samples
of the CIFAR-10 dataset.

4.5 Throughput and Energy Analysis

A metric for throughput performance, used loosely in our work, is the amount of frames-
per-second (FPS) we can process, where a frame represents a sample from the dataset either

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 455

Fig. 10 Some of the images correctly classified (from CIFAR-10)

Fig. 11 Images that were close to being misclassified (from CIFAR-10)

being trained with, or classified. Since our goal is to produce a solution for robotics and other
low-power applications (used for instance in computer vision), the achievable value of FPS
is important to a possible application where a live camera feed replaces the dataset samples
as the network’s input. Concluding, we use this metric as a reference to the ability of our
implementation to cope with real-time object classification.

123

456 J. Maria et al.

Fig. 12 A collection of misclassified images (from CIFAR-10)

Table 4 Running time and throughput performance while training the first AE with a batch size of 64 images

Platform Feed
forward (s)

Back
propagation (s)

Epoch
total (s)

Training
throughput (FPS)*

GPU 0.15 1.64 1.79 36

mGPU 1.27 5.43 6.70 10

FPGA 3.08 13.79 16.87 4

* Higher is better

Table 5 Running time and throughput performance during the classification of a batch of 64 images

Platform First AE (ms) Second AE (ms) Classification
total (ms)

Classification
throughput (FPS)*

GPU 79 21 100 640

mGPU 459 81 540 119

FPGA 1170 248 1418 45

* Higher is better

The training results for the first AE can be observed in Table 4. The first AE was used as
comparison for these measurements considering it is the largest and most computationally
demanding part of the SAE. This is in fact due to the nature of our SAE, reducing in size as
the network deepens.

After the training process, the SAE is ready to classify the provided test samples. The
decoder’s feed forward and all back propagation is now withdrawn from the computation,
leaving the network with only the encoder from each AE. From such reduced computation
we can obtain a measurement of classification throughput, i.e., how many images we can
classify in a second, as shown in Table 5.

For the power consumption analysis, we first measured the average static consumption of
the entire system (Host+Device) and then launched the application, measuring the dynamic
average power (Load − Idle), over the SAE training time. The results are shown in Table 6.

123

Stacked Autoencoders Using Low-Power Accelerated Architectures... 457

Table 6 Total SAE training time
and energy consumption

* Lower is better

Platform Total training
time

Average
power (W)

Energy
consumption (kWh)*

GPU 3h14m20s 247 0.800

mGPU 17h08m26s 6.6 0.113

FPGA 45h31m03s 16.0 0.728

Table 7 Throughput per power
ratio for all computing platforms

* Higher is better

Platform Training (FPS/W) Classification (FPS/W)∗

GPU 0.14 2.59

mGPU 1.45 18.03

FPGA 0.24 2.81

By combining throughput performance and average power we were able to measure
throughput per power ratio, which shows a metric for energetic efficiency of these systems
as depicted in Table 7.

5 Conclusions

In this paper we show for the first time, to the best of our knowledge, the training phase
of a deep neural network, a stacked autoencoder (SAE), performed directly on low-power
devices, namely an FPGA and a mobile GPU. Although the time necessary to complete the
training process in these devices is extensive, the overall energy consumption is lower than
the traditional desktop GPU. With a training phase 3× quicker compared to the FPGA, the
mobile GPU still manages to have a total energy consumption 6.4× lower than the FPGA, and
7.1× lower than its desktop counterpart. Since the average power during training remains low
in both mobile GPU and FPGA, the utilization of these solutions in low-power constrained
scenarios is thus shown adequate by this work.

As for the classification phase, since our efforts were towards a SAE implementation
applicable in low-power devices, our accuracy of 46.51 % remains below the current state-
of-the art. With this sub-optimal approach based on the SAE, we have achieved a throughput
capable of real-time classification onboth low-power platforms,with 45FPSon theFPGAand
119FPSon themobileGPU, even though somewhat far from the 640FPSof the desktopGPU.
Regarding the mobile GPU, a future implementation can be linked to the platform’s camera
using an Android interface, providing the capture and classification of images in real-time
for a myriad of applications. The purchase cost remains a major drawback from FPGAs and
makes the usage of the more affordable and readily available mobile GPU a valid alternative.

The mobile GPU and FPGA are then in a class of low-power devices that allow compu-
tationally demanding algorithms to be performed directly on autonomous vehicles, robots
and other low-power demanding applications. As technology progresses and more powerful
FPGAs and mobile GPUs with more hardware resources are developed, we aim at creating
state-of-the-art networks, such as convolutional neural networks (CNNs), running entirely
on those devices and achieving top results in both energy savings and classification accuracy.

Acknowledgments This work has been supported by Instituto de Telecomunicações and Fundação para a
Ciência e a Tecnologia (FCT) under grant UID/EEA/50008/2013.

123

458 J. Maria et al.

References

1. Altera: Stratix V FPGAOverview. http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/
stxv-overview.html

2. Altera: Altera SDK for OpenCL: Optimization Guide (2013) http://www.altera.com/literature/hb/
opencl-sdk/aocl_optimization_guide.pdf

3. Altera: design tools: VHDL (2013) http://www.altera.com/support/examples/vhdl/vhdl.html
4. Altera: SDK for OpenCL (2014) http://www.altera.com/products/software/opencl/opencl-index.html
5. Bengio Y (2009) Learning deep architectures for ai. Foundations and trends®. Mach Learn 2(1):1–127
6. Bengio Y, Lamblin P, Popovici D, Larochelle H et al (2007) Greedy layer-wise training of deep networks.

Adv Neural Inf Process Syst 19:153
7. Ciresan DC,Meier U, Schmidhuber J (2012)Multi-column deep neural networks for image classification.

In: IEEE conference on computer vision and pattern recognition (CVPR), Providence, pp 3642–3649
8. Dundar A, Jin J, Gokhale V,Martini B, Culurciello E (2013) Accelerating deep neural networks onmobile

processor with embedded programmable logic. In: Neural information processing systems conference
(NIPS)

9. Falcao G, Silva V, Sousa L, Andrade J (2012) Portable ldpc decoding on multicores using opencl (appli-
cations corner). IEE Signal Process Mag 29(4):81–109. doi:10.1109/MSP.2012.2192212

10. Farabet C, Martini B, Akselrod P, Talay S, LeCun Y, Culurciello E (2010) Hardware accelerated convo-
lutional neural networks for synthetic vision systems. In: IEEE international symposium on circuits and
systems (ISCAS), pp 257–260

11. Gong Y, Jia Y, Leung T, Toshev A, Ioffe S (2013) Deep convolutional ranking for multilabel image
annotation. CoRR abs/1312.4894

12. Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V (2013) Multi-digit number recognition from street
view imagery using deep convolutional neural networks. CoRR abs/1312.6082

13. Group K (2012) The OpenCL specification Version 1.2. https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf

14. Hardavellas N (2011) The rise and fall of dark silicon. USENIX 37(2):7–17
15. Hinton G, Deng L, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T,

Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal
Process Mag 29(6):82–97

16. Kaggle: Public Leaderboard: CIFAR-10: Object Recognition in Images (2013) http://www.kaggle.com/
c/cifar-10/leaderboard

17. Krizhevsky A (2009) Learning multiple layers of features from tiny images. Tech. rep
18. Krizhevsky A, Nair V, Hinton G CIFAR-10 Dataset. http://www.cs.toronto.edu/kriz/cifar.html
19. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural

networks. In: Advances in neural information processing systems 25 (NIPS’2012)
20. Nallantech: PCIe-385N - Altera Stratix V D5 (2012) http://www.nallatech.com/PCI-Express-FPGA-

Cards/pcie-385n-altera-stratix-v-fpga-computing-card.html
21. Oh KS, Jung K (2004) Gpu implementation of neural networks. Pattern Recognit 37(6):1311–1314
22. Owaida M, Falcao G, Andrade J, Antonopoulos C, Bellas N, Purnaprajna M, Novo D, Karakonstantis G,

Burg A, Lenne P (2015) Enhancing design space exploration by extending CPU/GPU specifications onto
FPGAs. ACM Trans Embed Comput Syst 14(2):33

23. Qualcomm: Snapdragon 800 (2013). http://www.qualcomm.com/snapdragon/processors/800
24. Qualcomm: Snapdragon 800 DragonBoard (2013). http://mydragonboard.org/db8074/
25. Wang G, Xiong Y, Yun J, Cavallaro JR (2013) Accelerating computer vision algorithms using opencl

framework on the mobile GPU: a case study. In: IEEE international conference on acoustics, speech and
signal processing (ICASSP)

123

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-overview.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-overview.html
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/support/examples/vhdl/vhdl.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://dx.doi.org/10.1109/MSP.2012.2192212
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.kaggle.com/c/cifar-10/leaderboard
http://www.kaggle.com/c/cifar-10/leaderboard
http://www.cs.toronto.edu/kriz/cifar.html
http://www.nallatech.com/PCI-Express-FPGA-Cards/pcie-385n-altera-stratix-v-fpga-computing-card.html
http://www.nallatech.com/PCI-Express-FPGA-Cards/pcie-385n-altera-stratix-v-fpga-computing-card.html
http://www.qualcomm.com/snapdragon/processors/800
http://mydragonboard.org/db8074/

	Stacked Autoencoders Using Low-Power Accelerated Architectures for Object Recognition in Autonomous Systems
	Abstract
	1 Introduction
	2 Sub-optimal Neural Networks: The Stacked Autoencoder
	3 OpenCL Parallelism for Neural Networks
	3.1 The OpenCL Programming Framework
	3.2 OpenCL Kernels for Neural Network Parallelism
	3.2.1 Feed-Forward
	3.2.2 Back Propagation: Output Layer
	3.2.3 Back Propagation: Hidden Layer

	4 Experimental Results
	4.1 The CIFAR-10 Dataset
	4.2 Apparatus
	4.2.1 mGPU
	4.2.2 FPGA

	4.3 Training Hyper-parameters
	4.4 Evaluating the Neural Network
	4.5 Throughput and Energy Analysis

	5 Conclusions
	Acknowledgments
	References

