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Abstract Manifold learning algorithms mainly focus on discovering the intrinsic low-
dimensional manifold embedded in the high-dimensional Euclidean space. Among them,
locally linear embedding (LLE) is one of the most promising dimensionality reduction meth-
ods. Though LLE holds local neighborhood information, it doesn’t fully take the label infor-
mation and the global structure information into account for classification tasks. To enhance
classification performance, this paper proposes a novel dimensionality reduction method for
face recognition, termed embedded manifold-based kernel Fisher discriminant analysis, or
EMKFDA for short. The goal of EMKFDA is to emphasize the local geometry structure
of the data while utilizing the global discriminative structure obtained from linear discrimi-
nant analysis, which can maximize the between-class scatter and minimize the within-class
scatter. In addition, by optimizing an objective function in a kernel feature space, nonlinear
features can be extracted. Thus, EMKFDA, which combines manifold criterion and Fisher
criterion, has better discrimination, and is more suitable for recognition tasks. Experiments
on the ORL, Yale, and FERET face databases show the impressive performance of the pro-
posed method. Results show that this proposed algorithm exceeds other popular approaches
reported in the literature and achieves much higher recognition accuracy.

Keywords Face recognition · Dimensionality reduction · Manifold learning ·
Locally linear embedding · Kernel discriminant analysis

1 Introduction

Face recognition is one of the most active and challenging research topics in computer vision
and pattern recognition due to its wide-ranging applications in many areas, such as identity
authentication, access control, surveillance, and human-computer interaction.
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2 G. Wang et al.

During the past two decades, considerable progress has been made in face recognition
and many new methods have been proposed. Up to now, the appearance-based method with
subspace learning is the main subject and direction for current research. For the appearance-
based method, facial images can be modeled as points in high-dimensional image space,
causing the curse of dimensionality. A common way to resolve this problem is to project
the data onto low-dimensional subspace through dimensionality reduction techniques. Wang
et al. [1] presents four reasons for dimensionality reduction of the observation data: (1) to
compress the data to reduce the storage requirement; (2) to extract features from the data for
face recognition; (3) to eliminate noise; and (4) to project the data to a lower-dimensional
space so as to be able to discern the data distribution.

In many existing dimensionality reduction algorithms, Principal Component Analysis
(PCA) [2] and Linear Discriminant Analysis (LDA) [3] are two of the most popular dimen-
sionality reduction methods. PCA aims to find a set of mutually orthogonal basis vectors
that capture the directions of maximum variance in the data. PCA is optimum for the mini-
mization of reconstruction error. However, it is not ideal for classification purpose because
it doesn’t take the class information of the sample into account. In contrast with PCA, LDA
is a supervised learning method. LDA can produce an optimal discriminative subspace by
maximizing the ratio of the trace of the between-class scatter to the trace of the within-class
scatter. Because the class information is available, LDA usually outperforms PCA for recog-
nition tasks. However, LDA is optimal only when the data of each class is in an approximate
Gaussian distribution. Since the dimensionality of samples is usually higher than the number
of training samples, an intrinsic limitation of traditional LDA is that it fails to work when the
within-class scatter matrix becomes singular, which is known as the small sample size (SSS)
problem. To address this problem, many effective and efficient methods have been proposed
in the literature [4–7].

Recently, a lot of studies have shown that facial images may lie on a nonlinear submani-
fold [11,26,27]. Although PCA, LDA, and their extension methods have been successfully
applied to linear data, they are all designed to deal with the flat global Euclidean structure
and may fail to discover the essential curved or nonlinear structure of the original input data
with nonlinear distribution. In order to overcome this problem, a number of nonlinear dimen-
sionality reduction methods, including kernel based techniques and manifold learning based
ones, have been developed. The basic idea of kernel based techniques is to implicitly map
the observed patterns into potentially much higher dimensional feature space by a nonlinear
mapping determined by a kernel trick. It is possible that the nonlinear structure data will be
linearly separable in the kernel space. The most widely used kernel techniques are Kernel
Principal Component Analysis (KPCA) [8] and Kernel Discriminant Analysis (KDA) [9],
which can be viewed as the kernel versions of PCA and LDA. KPCA and KDA have been
proven effective in real world applications.

Unlike kernel based techniques, manifold learning based methods are straightforward in
finding the intrinsic low-dimensional nonlinear data structure hidden in the observation space.
In addition, kernel based techniques do not consider the structure of the manifold on which
the images may lie. In the past few years, many manifold learning based methods have been
presented. Among the various methods, the most well-known ones include ISOmetric fea-
tureMAPping (ISOMAP) [10], Locally Linear Embedding (LLE) [11], Laplacian Eigenmaps
(LE) [12,13], Maximum Variance Unfolding (MVU) [14], Local Tangent Space Alignment
(LTSA) [15], Local Coordinates Alignment (LCA) [16], and Local Spline Embedding (LSE)
[17]. These algorithms differ in the representations of the local geometries that they attempt
to preserve. ISOMAP preserves the global geodesic distances of all pairs of samples. LLE
is based on the linear coefficients of local reconstructions. LE preserves proximity relations
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based on the undirectedweighted graph. LTSAuses the local tangent space as a representation
of local structure. LCA obtains the local coordinates as representations of a local neighbor-
hood. LSE exploits the local tangent space as a representation of the local geometry. These
manifold learning methods yield impressive results on some benchmark artificial and real
world datasets. However, they yield maps that are defined only on the sample data, and it is
unclear how to construct the mapping function for out-of-sample data. Later, zhang et al. [33]
proposed a unified patch alignment framework for subspace learning. It divided the subspace
learning into the patch optimization step and whole alignment step. Most subspace learning
methods, such as PCA, LDA, LLE, ISOMAP, and LE, can be formulated in this framework.
All algorithms have an almost identical whole alignment stage and intrinsic differences of
them are how to build patches and the associated optimization.

Recently, He et al. proposed Neighborhood Preserving Embedding (NPE) [18] and Local-
ity Preserving Projections (LPP) [19], which are linear manifold learning methods, derived
from LLE and LE respectively. However, these methods are only designed to best preserve
data locality or similarity in the embedding space. For face recognition problems, these
methods are not optimal because they ignore the class label information of the sample data,
which can be effectively applied to further enhance classification performance. Based on the
idea of LPP, many extension manifold learning methods such as Local Discriminant Embed-
ding (LDE) [20], Marginal Fisher Analysis (MFA) [21], and Locality Sensitive Discriminant
Analysis (LSDA) [22] are proposed to address the classification problem. In addition, based
on LLE and Maximum Margin Criterion [30], Li et al. proposed local linear discriminant
embedding (LLDE), which is a supervised learning method [28]. Although these methods
are successful in many circumstances, they often fail to deliver good performance when
facial images are subject to complex nonlinear changes due to large pose, expression, or
illumination variations, for they are linear methods in nature.

Global dimensionality reduction techniques such as PCA, LDA, KPCA, and KDA do not
preserve the local manifold of the facial structure, whereas the local dimensionality reduction
techniques such as LLE, ISOMAP, LE, and LTSA don’t preserve global features of facial
images. To take advantage of these methods while avoiding their disadvantages, we present
a new algorithm called Embedded Manifold-based Kernel Fisher Discriminant Analysis, or
EMKFDA. The objective function of EMKFDA is formulated by combining the ideas of
LLE and LDA. That is to say, EMKFDA builds patches globally with considering the local
geometry. By mapping the input data to a high-dimensional feature space using the kernel
technique, nonlinear features are extracted. EMKFDA can not only preserve local geometry
information, but also preserve global structure information. At the same time, EMKFDA
captures the discriminate features among the samples, considering the different classes in the
subjects, which produces the considerably improved results in face recognition. Experiments
based on the ORL, Yale, and FERET face databases demonstrate that the proposed algorithm
has more discriminating power than other methods.

The rest of the paper is organized as follows: In Sect. 2, we review briefly the LLE and
KDA. The algorithm detail of EMKFDA is introduced in Sect. 3. Experimental results for
recognition using the ORL, Yale, and FERET face database are given in Sect. 4. Finally,
conclusions are summarized in the last Section.

2 Related Work

Before describing the proposed method, we will firstly review briefly LLE and KDA in
this section, which are relevant to the proposed method. We begin with a description of
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the dimensionality reduction problem. Consider N data points X = [x1, x2, . . . , xN ] ∈ RD

sampled from one underlyingmanifoldM . The goal of dimensionality reduction is tomap the
high-dimensional data into a low-dimensional feature space. Let us denote the corresponding
set of N points in the reduced space as Y = [y1, y2, . . . , yN ] ∈ Rd , where d << D, in which
yi is a low-dimensional representation of xi (i = 1, 2, . . . , N ).

2.1 Locally Linear Embedding (LLE)

Locally Linear Embedding is a nonlinear manifold learning method. The LLE algorithm
is based on simple geometric intuitions, where the input data is composed of N points
xi , xi ∈ RD, i ∈ [1, N ], each of dimensionality D, which were obtained by an underlying
manifold. As an output, it provides N points yi , yi ∈ Rd , i ∈ [1, N ] where d << D.
Suppose there are sufficient data (such that the manifold is well sampled), each data point
and its neighbors are expected to lie on or near a locally linear patch of the manifold. A brief
description of LLE algorithm is as follows:

Step I For each individual point, its K nearest neighbor points in the original high-
dimensional space are found, typically based on the Euclidean distance.

Step II After identifying the K nearest neighbor points, this step seeks the optimal recon-
struction weights. The reconstruction cost function to be minimized is defined as:

ε(W ) =
N∑

i=1

∥∥∥∥∥∥
xi −

N∑

j=1

Wi j xi j

∥∥∥∥∥∥

2

, (1)

where xi j is the neighbors of xi . Considering the constraint term
∑N

j=1 Wi j = 1, and if xi
and xi j are not neighbors, Wi j = 0, compute the weight matrix W according to the least
squares.

Step III The weight matrix W is fixed and the embedded coordinates yi , i = 1, 2, . . . , N
are computed by minimizing the following embedding cost function:

φ(Y ) =
N∑

i=1

∥∥∥∥∥∥
yi −

N∑

j=1

Wi j yi j

∥∥∥∥∥∥

2

= tr(YMY T ), (2)

subject to 1/N · ∑N
i=1 yi y

T
i = Id×d , and

∑N
i=1 yi = 0. In Eq. (2), Y is the output matrix

assembled by yi , M = (I −W )T (I −W ) is a sparse, symmetric, and semi-positive definite
matrix, tr denotes the operation of trace.

The optimal embedding is provided by the d bottom eigenvectors of M starting from the
second one and Y is the rows of these eigenvectors.

The detail of theoretical justification about LLE can be found in Ref. [31].

2.2 Kernel Discriminant Analysis (KDA)

Kernel Discriminant Analysis is a nonlinear extension of Linear Discriminant Analysis via
kernel trick to deal with nonlinear feature extraction and classification. Themain idea of KDA
is to first map the original data x into a high-dimensional feature space F by a nonlinear
mapping φ : x ∈ RD → φ(x) ∈ F , and then implement LDA in the feature space F . Note
that the feature space F could have a much higher, possibly infinite, dimensionality.
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Suppose there are c known pattern classes ω1, ω2, . . . , ωc with every class ωi having ni
elements where

∑c
i=1 ni = N , the within-class scatter matrix Sφ

w and the between-class

scatter matrix Sφ
b in the feature space can be denoted as:

Sφ
w =

c∑

i=1

ni∑

j=1

(φ(x j ) − μ
φ
i )(φ(x j ) − μ

φ
i )T , (3)

Sφ
b =

c∑

i=1

ni (μ
φ
i − μφ)(μ

φ
i − μφ)T , (4)

where μ
φ
i is the mean vector of class i in the feature space and μφ is the total mean vector in

the feature space.
The optimal projection matrix w for KDA can be obtained by maximizing the ratio of the

determinant of the between-class scatter matrix to that of the within-class scatter matrix in
the feature space F :

J (w) = argmax
w

∣∣∣wT Sφ
b w

∣∣∣
∣∣∣wT Sφ

ww

∣∣∣
. (5)

In general, the maximization problem for KDA can be converted to calculating the gen-
eralized eigenvectors of the generalized eigen-equation as follows:

Sφ
b w = λSφ

ww. (6)

According to the theory of reproducing kernel [23], any w must lie in the space, which is
spanned by φ(x1), φ(x2), . . . , φ(xN ), i.e.,

w =
N∑

i=1

aiφ(xi ) = φa. (7)

After substituting Eqs. (3), (4), (7) into Eq. (6), we can obtain an equivalent eigenvalue
problem as follows:

Kba = λKwa, (8)

where Kb =
c∑

i=1
ni (mi − m)(mi − m)T , Kw =

c∑
i=1

ni∑
j=1

ni (ξ j − mi )(ξ j − mi )
T ,

ξ j = [k(x1, x j ), k(x2, x j ), . . . , k(xN , x j )]T ,

mi = 1

ni

⎡

⎣
ni∑

j=1

k(x1, x j ),
ni∑

j=1

k(x2, x j ), . . . ,
ni∑

j=1

k(xN , x j )

⎤

⎦
T

,

m = 1

N

[
N∑

i=1

k(x1, xi ),
N∑

i=1

k(x2, xi ), . . . ,
N∑

i=1

k(xN , xi )

]T

.
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Fig. 1 An example of the nonlinear manifold of LLE. a A two-dimensional manifold. b Three–dimensional
data sampled from (a). c The 2D visualization of the 3D manifold by using LLE [11]

3 Embedded Manifold-based Kernel Fisher Discriminant Analysis (EMKFDA)

3.1 Basic Idea of EMKFDA

Manifold learning methods suppose that the input data lies on or nearly on a low-dimensional
manifold embedded in the high-dimensional observation space. For visualization, the goal of
manifold learning is to map the original data set into a low-dimensional space that preserves
the intrinsic structure as well as possible. For classification, it aims to project the sample data
into a feature space in which the samples from different classes could be clearly separated. On
the basis of the assumption, Roweis and Saul [11] proposed a nonlinear manifold learning
method— LLE. Figure 1 depicts the nonlinear manifold of LLE. LLE has demonstrated
excellent results for exploratory analysis and visualization of multivariate data. But it is
suboptimal from the perspective of pattern classification. In addition, LLE doesn’t preserve
the global feature of the input data. EMKFDA aims to make full use of the class information
and kernel trick to improve the discriminant ability of the original LLE. EMKFDA combines
local geometry structure and global discriminant structure of the data manifold to form the
high quality feature set. EMKFDA also uses kernel trick to preserve the nonlinear structure
of the data samples. At the same time, EMKFDA retains the local information and global
information of the data, whichmakes the recognition insensitivity to absolute image intensity
and insensitivity to contrasting and local facial expressions.

3.2 Theoretical Derivation of EMKFDA

Give a data set X = [x1, x2, . . . , xN ] in a D-dimensional space. Each data xi belongs to one
of C classes {X1, X2, . . . , XC }. Each class contains ni samples, i = 1, 2, . . . ,C . Then the
data is mapped into a Hilbert space F through a nonlinear mapping function φ : X → F .
The problem that the proposed algorithm solves is to find a transformation matrix that map
the set X to the set Y = [y1, y2, . . . , yN ] in a d-dimensional space (d << D).

It iswell-known that the originalLLEalgorithmmight be unsuitable for pattern recognition
task because it yields an embedding only based on the training data set. To begin with, the
data is mapped into an implicit space F using a nonlinear function φ : X → F . In order
to circumvent the out-of-sample problem, an explicit linear map in F from φ(X) to Y ,
i.e. Y = V Tφ(X), is constructed. The basic idea of LLE is that the same coefficients that
reconstruct the point φ(xi ) in F should also reconstruct its embedded counterpart yi in Rd .
Thus the objective function for the original LLE can be converted to the following form:

J1(V ) =
N∑

i=1

∥∥∥∥∥∥
yi −

K∑

j=1

Wi j y j

∥∥∥∥∥∥
= ‖Y (I − W )‖2

123
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= tr(Y (I − W )(I − W )T Y T )

= tr(V Tφ(X)Mφ(X)T V ). (9)

Mapping newdata points to the low-dimensional space for LLEbecomes trivial once linear
transformation matrix V is determined. However, LLE does not take class information and
global structure information into account, which are important for face recognition problems.
The linear transformation is not always the optimal one that the proposed method pursues.
That is to say, we need a new criterion that can be used to automatically find an optimal linear
transformation for classification.

To obtain optimal linear discriminant embedding, we introduce Fisher criterion to the
objective function of LLE. According to Ref. [19], the total scatter matrix Sφ

t , the within-
class scatter matrix Sφ

w, and the between-class matrix Sφ
b can be formulated, respectively, as

follows:

Sφ
t = 1

N

N∑

i=1

(φ(xi ) − μ)(φ(xi ) − μ)T

= 1

N
φ(X)(I − eeT /N )φ(X)T

= φ(X)Gφ(X)T , (10)

Sφ
w =

C∑

i=1

∑

x∈Xi

(φ(x) − μi )(φ(x) − μi )
T

= φ(X)(I − E)φ(X)T = φ(X)Lφ(X)T , (11)

Sφ
b = Sφ

t − Sφ
w

= φ(X)(G − L)φ(X)T

= φ(X)Bφ(X)T , (12)

where G = I − (1/N )eeT , L = I − E , and B = G − L . I represents an identity matrix,
e = [1, 1, . . . , 1]T , and Ei j = 1/nc if xi and x j belong to the cth class; otherwise, Ei j = 0.

Thus, Fisher criterion can be rewritten as:

J2(V ) = tr
(
V Tφ(X)Bφ(X)T V

)

tr
(
V Tφ(X)Lφ(X)T V

) . (13)

By combining Eq. (9) and Eq. (13), we can formulate a final objective function as follows:

J (V ) = max

(
tr

(
V Tφ(X)Bφ(X)T V

)

tr
(
V Tφ(X)Lφ(X)T V

) − μ · tr
(
V Tφ(X)Mφ(X)T V

))
, (14)

whereμ is a parameter to balance the global discriminant information and the local geometry
information, and μ > 0.

Since LLE wants to find a projection direction v to make tr
(
V Tφ(X)Mφ(X)T V

)
as

small as possible, we can instead here choose −tr
(
V Tφ(X)Mφ(X)T V

)
and make it as

large as possible in the low-dimensional space.
Alternatively, we can reformulate Eq. (14) as:

J (V ) = max
(
tr

(
V Tφ(X)Bφ(X)T V

)
− μ·tr

(
V Tφ(X)Mφ(X)T V

))

s.t. V Tφ(X)Lφ(X)T V = I. (15)

123



8 G. Wang et al.

As each column of V should lie in the span of all training samples in F , there exist
coefficients a j ( j = 1, 2, . . . , N ) such that v = ∑N

j=1 a jφ(x j ) = φ(X)a, where a =
[a1, a2, . . . , aN ]T . Therefore, Eq. (15) can be rewritten as:

J (V ) = max
(
tr

(
AT K (B − μ·M)K A

))

s.t. AT K LK A = I, (16)

where A = [a1, a2, . . . , aN ], K = φ(X)Tφ(X) is a kernel matrix with elements Ki j =
k(xi , x j ), and k is a kernel functionwhich satisfies k(xi , x j ) = φ(xi )·φ(x j ) = φ(xi )Tφ(x j ).

The above constrained maximization problem can be solved by Lagrange multiplier
method:

L(ai ) = aTi K (B − μ·M)Kai + λi

(
1 − aTi K LKai

)
.

Compute the gradientswith respect toai and set the gradients to zero,wehave the following
maximization eigenvalue problem:

K (B − μ·M)Kai = λi K LKai . (17)

The transformationmatrix A can be constituted by the d eigenvectors corresponding to the
first d largest eigenvalues of Eq. (17). Once A is obtained, for any data x in the input space,
the nonlinear feature is given as y = V Tφ(x) = AT [k(x1, x), k(x2, x), . . . , k(xN , x)]T .
3.3 The outline of EMKFDA

The algorithmic procedure of EMKFDA can be described in Table 1.

Table 1 The algorithm of EMKFDA

Step 1. Construct the kernel matrix:

Compute the kernel matrix K = φ(X)T φ(X) whose elements are Ki j = k(xi , x j ) = [φ(xi ) · φ(x j )].
Step 2. Compute the weight matrix:

The optimal reconstruction weights can be computed by minimizing the reconstruction cost function:

J (W ) =
N∑
i=1

∥∥∥∥∥φ(xi ) −
K∑
j=1

Wi jφ(x j )

∥∥∥∥∥

2

, where
K∑
j=1

Wi j = 1, and Wi j �= 0 if φ(x j ) is one of the K same

class nearest neighbors of φ(xi ); otherwise, Wi j = 0.

Step 3. Compute matrix M , G , L , B:

M = (I − W )(I − W )T , G = I − (1/N )eeT , L = I − E, B = G − L , where I is an identity
matrix, e = [1, 1, . . . , 1]T , Ei j = 1/nc if xi and x j both belong to the c th class; otherwise Ei j = 0.

Step 4. Compute the transformation matrix:

Solve the generalized eigenvalue problem: K (B−μ·M)Kai = λi K LKai , withλ1 > λ2 > · · · > λd > 0,
and compute the matrix A = [a1, a2, . . . , ad ].
Step 5. Extract EMKFDA features:

For any data point x in RD , the embedded feature in Rd is given by y = V T φ(x) =
AT [k(x1, x), k(x2, x), . . . , k(xN , x)]T.
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4 Experimental Results

To evaluate the efficiency of the EMKFDA algorithm, we compared the recognition rate of
the proposed method with that of other methods, such as Eigenfaces (PCA) [2], Fisherfaces
(LDA) [3], NPP [29], LPP [19], MFA [21], LSDA [22], KDA [9], and LLDE [28] on three
well-known face databases: the ORL [24], Yale [25], and FERET [32] face databases. Note
that, NPP and LPPwere implemented in a supervised setting. In short, the recognition process
had three steps. First, we calculated the face subspace from the training samples; then the new
facial image to be identified was projected into low-dimensional subspace via a projection
matrix; finally, the new facial image was identified using a nearest neighbor classifier with
Euclidean distance. All of our experiments were performed on the Windows XP Platform
with 2.00GHz Intel Pentium Dual CPU and 2GB RAM, and MatLab (Version R2008a)
programming environment.

4.1 Face Database

The ORL database contains 400 facial images of 40 individuals (each individual has ten
images)with variations in pose, illumination, facial expression (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). The images were taken with a tolerance for
tilting and rotation of face up to 20◦. Moreover, there was also some variation in the scale
of up to 10%. The Yale database contains 165 facial images of 15 individuals. There are 11
facial images per individual, and these images demonstrated variations in facial expression
(happy, normal, sad, sleepy, surprised, and winking) and lighting condition (center-light, left-
light, right-light). All the images in ORL database and Yale database were manually aligned,
cropped, and resized to a size of 32 × 32 pixels with 256 gray levels per pixel. Figures 2
and 3 show the cropped and resized image samples of one individual in ORL database and
Yale database respectively.

The FERET database contains 14,126 face images from 1199 individuals. In the exper-
iments, we tested the proposed algorithm on a subset of the FERET database. This subset
contains 1400 images of 200 individuals (each individual has seven images). The subset
has variations in facial expression, illumination, and pose. Original images on the FERET
database were normalized such that the two eyes were aligned at the same position. Then,
the facial areas were cropped to 40 × 40 pixels for matching. Some example images of one
person on FERET database are shown in Fig. 4.

Fig. 2 The cropped and resized image samples of one individual in the ORL database
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10 G. Wang et al.

Fig. 3 The cropped and resized image samples of one individual in the Yale database

Fig. 4 Images of one individual in the FERET database

4.2 Experiments on ORL Database

In the experiments, l (= 3, 4, 5, 6) facial image samples were randomly selected from the
image gallery of each individual to form the training sample set. The remaining images
were used for testing. For each given l, the results were averaged over 50 random splits.
Note that, for LDA, there are at most c − 1 non-zero generalized eigenvalues, and so an
upper bound on the dimension of the reduced space is c − 1, where c is the number of the
classes. All the algorithms except PCA, KDA, and EMKFDA involved a PCA phase. In the
PCA phase of LDA, NPP, LPP, MFA, LSDA and LLDE, we kept 100% image energy and
selected all principal components corresponding to the non-zero eigenvalues for eachmethod.
In general, the performance of all these methods varied with the number of dimensions.
Firstly, we tested the impact of selecting different dimensions in the reduced subspace on the
recognition rate. Figure 5 illustrates the recognition rates versus the variation of subspace
dimensions when 3, 4, 5, and 6 images per individual were randomly selected for training. At
the beginning, the recognition rates improved with the increase of the dimensions. However,
more dimensions would not lead to higher recognition rate after these methods attained the
best results. Secondly, the experiments were conducted to examine the effect of the training
number on the performance. The maximal average recognition accuracy of each method and
the corresponding standard deviation and the reduced dimension are given in Table 2 when
the 3, 4, 5, and 6 samples per class were randomly selected for training and the remaining 7, 6,
5, and 4 images were respectively for testing. The proposed EMKFDA algorithm performed
the best among all the cases. Moreover, the optimal dimensionality obtained by EMKFDA
and LDA was much lower than that obtained by PCA.

At last, we tested the impact of parameter coefficient on the recognition rate.We randomly
chose 5 training samples of each subject from the ORL database to form the training set and
the rest are the testing set. The coefficient, i.e. μ, was set to 0.01, 0.1, 1, 10, and 100,
respectively. The maximal average recognition rates for different coefficients are stated in
the Table 3. The optimal recognition rates can be obtained with different coefficients and
the corresponding dimensions, for example, when coefficient was 0.01, the recognition was
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EMKFDA for Face Recognition 11

Fig. 5 Recognition rate versus dimensionality reduction on ORL face database. a Three samples for training.
b Four samples for training. c Five samples for training. d Six samples for training

97.50% at 39 dimensions. However, the recognition rate reached 97.50% at 39 dimensions
with μ equaling to 100. It can be found that the parameter coefficient shows few effects on
the recognition rate on ORL face database.

4.3 Experiments on Yale Database

The experimental design was the same as before. For each individual, l (= 3, 4, 5, 6) facial
image samples were randomly selected for training and the rest were used for testing. For
each given l, we averaged the results over 50 random splits. LDA,NPP, LPP,MFA, LSDA and
LLDE involved a preceding PCA stage to avoid the singularity problem and 100% image
energy was kept in PCA stage. In this experiment, we also tested the impact of selecting
different dimensions in the reduced subspace on the recognition rate. Figure 6 shows the
average recognition rates (%) of PCA, LDA, NPP, LPP, MFA, LSDA, KDA, LLDE and the
proposed method versus the dimensions when the 3, 4, 5, and 6 samples per class were ran-
domly selected for training and the remaining 7, 6, 5, and 4 images were respectively for
testing. Figure 6 shows that the discrimination power of these methods will be enhanced with
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Table 2 Themaximal average recognition rate (%) and the corresponding standard deviationswith the reduced
dimensions on ORL database

Method 3Train 4Train 5Train 6Train

PCA 78.42 ± 2.89 (119) 84.96 ± 1.98 (159) 87.80 ± 1.57 (199) 90.63 ± 2.04 (239)

LDA 87.60 ± 3.08 (39) 91.29 ± 2.56 (39) 94.00 ± 1.90 (39) 94.63 ± 2.15 (39)

NPP 88.00 ± 2.41 (39) 91.50 ± 2.21 (39) 93.65 ± 2.26 (39) 94.69 ± 2.17 (42)

LPP 87.92 ± 2.47 (39) 91.54 ± 2.14 (40) 93.50 ± 1.63 (39) 94.63 ± 1.91 (39)

MFA 89.50 ± 2.38 (35) 92.08 ± 1.88 (39) 94.30 ± 1.60 (42) 95.13± 1.71 (40)

LSDA 88.50 ± 2.13 (39) 91.58 ± 2.31 (39) 94.00 ± 1.96 (40) 95.06 ± 1.16 (40)

KDA 88.43 ± 2.61 (39) 93.50 ± 1.70 (39) 94.70 ± 1.93 (39) 96.44 ± 1.10 (39)

LLDE 90.96 ± 2.06 (39) 94.25 ± 2.11 (39) 96.50 ± 1.58 (39) 96.93 ± 1.23 (39)

EMKFDA 91.92 ± 1.17 (38) 95.41 ± 2.03 (39) 97.50 ± 1.66 (39) 98.75 ± 1.18 (39)

Table 3 Dimensions versus
recognition rate by varying
parameter coefficient in the
proposed algorithm

Parameter coefficient 0.01 0.1 1 10 100

The best average
recognition rate (%)

97.50 97.50 97.50 97.50 97.50

Dimensions 39 38 39 39 39

the increase of final projected dimension, but they will not increase all the time. Moreover,
the effect of the training sample number was also tested in the experiment. Table 4 shows the
maximal average recognition rates and the corresponding standard deviations with dimen-
sions after carrying out PCA, LDA, NPP, LPP, MFA, LSDA, KDA, LLDE and the proposed
method. As with the ORL database, the proposed algorithm also outperformed all other
methods with the Yale database while PCAmethod performed the worst among all the cases.

4.4 Experiments on FERET Database

In the FERET experiment, we investigated the performances of different algorithms under
different numbers of training samples. l(= 3, 5) images of each class were randomly selected
to form the training images and the remaining images for testing. We randomly chose the
training set and performed the experiments 50 times. The final result was the average recogni-
tion rate over 50 random training sets. For subspace learning, we used PCA, LDA, NPP, LPP,
MFA, LSDA,KDA,LLDE, and the proposedmethod, respectively. Note that LDA,NPP, LPP,
MFA, LSDA, LLDE all involved a PCA phase. In this phase, we kept 100% image energy.
Figure 7 demonstrates the recognition rates of different algorithms over the variance of the
dimensionality of subspaces. In addition, we also investigated the performances of different
algorithms over different sizes of the training dataset. The highest recognition accuracies and
the corresponding standard deviations

with dimensions of different algorithms on FERET database are reported on Table 5.
The proposed algorithm performed superior to the other methods. The recognition accuracy
improved from 88.3% with three train images of each individual to 93.85% with five train
of each person.

4.5 Discussion

Several experiments on three standard face databases were conducted. The following obser-
vations should be noted:
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Fig. 6 Recognition rate versus dimensionality reduction on Yale face database. a Three samples for training.
b Four samples for training. c Five samples for training. d Six samples for training

Table 4 Themaximal average recognition rate (%) and the corresponding standard deviationswith the reduced
dimensions on Yale database

Method 3Train 4Train 5Train 6Train

PCA 52.00 ± 3.22 (44) 53.05 ± 2.25 (59) 58.89 ± 3.63 (74) 59.73 ± 2.65 (89)

LDA 60.93 ± 4.33 (14) 66.86 ± 3.80 (14) 74.33 ± 4.00 (14) 75.07 ± 4.57 (14)

NPP 66.67 ± 3.73 (14) 71.71 ± 3.54 (14) 76.67 ± 4.68 (14) 78.13 ± 3.34 (22)

LPP 67.00 ± 3.83 (15) 72.76 ± 2.88 (14) 75.56 ± 3.62 (14) 78.80 ± 4.13 (15)

MFA 67.83 ± 5.07 (14) 72.47 ± 4.45 (13) 69.93 ± 5.42 (12) 80.00 ± 4.87 (15)

LSDA 68.00 ± 3.02 (14) 72.28 ± 3.43 (17) 76.00 ± 4.03 (15) 79.33 ± 3.84 (14)

KDA 67.91 ± 2.97 (14) 72.86 ± 3.65 (14) 76.67 ± 3.95 (14) 78.67 ± 4.12 (14)

LLDE 68.16 ± 4.64 (22) 72.38 ± 3.56 (15) 76.33 ± 3.39 (16) 78.80 ± 4.19 (16)

EMKFDA 68.66 ± 3.96 (14) 73.95 ± 3.94 (14) 78.44 ± 3.99 (14) 81.12 ± 2.19 (14)
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Fig. 7 Recognition rate versus dimensionality reduction on FERET face database. a Three samples for
training. b Five samples for training

Table 5 Themaximal average recognition rate (%) and the corresponding standard deviationswith the reduced
dimensions on FERET database

Method 3Train 5Train

PCA 34.16 ± 1.28 (566) 43.57 ± 1.71 (681)

LDA 58.81 ± 2.48 (81) 64.57 ± 1.64 (199)

NPP 63.25 ± 1.87 (201) 68.57 ± 2.65 (199)

LPP 60.57 ± 1.37 (201) 65.75 ± 2.29 (199)

MFA 77.81 ± 1.37 (206) 79.12 ± 1.88 (199)

LSDA 60.57 ± 1.15 (196) 79.25 ± 1.54 (199)

KDA 83.05 ± 1.40 (21) 90.82 ± 1.56 (31)

LLDE 80.90 ± 1.34 (26) 83.75 ± 1.47 (199)

EMKFDA 88.30 ± 1.10 (31) 93.85 ± 1.02 (51)

(1) The proposed EMKFDA algorithm consistently performed the best in all the experi-
mental cases. The data sets used in this study were the ORL, Yale, and FERET face
databases. The images for each individual varied from pose, illumination to expression.
Some studies have demonstrated facial images likely reside on a low-dimensional sub-
manifold. Compared to PCA and LDA which see only the global Euclidean structure
of face space, EMKFDA explicitly considers the face manifold structure which is mod-
eled by a neighborhood graph. Moreover, EMKFDA utilizes the label information and
nonlinear structure information to enhance the classification performance.

(2) In contrast with NPP and LPP, which only preserve the local neighborhood manifold
information, EMKFDA preserves both local geometrical information and global dis-
criminant structure information, so EMKFDA has stronger discriminant power.

(3) MFA, LSDA, and LLDE capture both the local geometry information and the discrimi-
nant information of the data, but they are linear manifold learning methods. EMKFDA is
a local information and global discriminating information preserving nonlinear dimen-
sionality reduction method.

(4) KDA is a nonlinear dimensionality reduction method; however, it does not possess local
geometry preserving property. The EMKFDA feature set created using the combined
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approach retains the local geometry information as well as the global discriminating
information, which makes EMKFDA obtain better recognition rate.

5 Conclusions

In this paper, based on manifold criterion and Fisher criterion, we have proposed EMKFDA
algorithm, which is a new dimensionality reduction method. EMKFDA preserves not only
the local geometry structure of the data, but also the global discriminant structure of the
data. The objective function of EMKFDA is implemented by mapping the input data into a
high-dimensional feature space using a kernel matrix, so nonlinear feature can be extracted
efficiently. Thus, EMKFDA has better capability of discrimination. Experimental results on
ORL, Yale, and FERET face database have demonstrated the effectiveness of the proposed
algorithm. In the future work, we will further research the proposed method in the tensor
space to consider the image matrix structure information.
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