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Abstract The recognition of human activity has been deeply explored during the recent
years. However, most proposed solutions are mainly devised to operate in ideal conditions,
thus not addressing crucial real-world issues. One of the most prominent challenges refers to
common sensor technological anomalies. Sensor faults and failures introduce variations in
the measured sensor data with respect to the equivalent observations in ideal conditions. As
a consequence, predefined recognition systems may potentially fail to identify actions in the
anomalous sensor data. This paper presents a novel model devised to cope with the effects
introduced by sensor technological anomalies. The model builds on the knowledge gained
from multi-sensor configurations, through asymmetrically weighting the decisions provided
at both activity and sensor levels. Insertion and rejection weighting metrics are particularly
used to eventually yield a unique recognized activity. For the sake of comparison, the tolerance
to sensor faults and failures of standard activity recognition systems and the new proposed
model are evaluated. The results prove classic activity-aware systems to be incapable of
recognition under the effects of sensor technological anomalies, while the proposed model
demonstrates to be robust against both sensor faults and failures.

Keywords Wearable sensors · Sensor anomalies · Sensor failures · Sensor faults ·Decision
fusion · Weighted decision · Activity recognition

1 Introduction

The automatic assessment of human behavior has gained much interest during the recent
years. Also known as human activity recognition (AR), it aims at autonomously identifying
human conducts from the observation of a person’s actions and their interaction with the
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surroundings. Sensing technologies, capable of measuring behavioral characteristics, such
as human body motion, are used to observe these actions. On-body inertial sensors are on the
forefront of these technologies. These sensors can measure the movements of the body parts
on which they are mounted, and be easily embedded into daily use garments or items such as
watches or belts. Accordingly, they can be conveniently worn and ubiquitously used, which
proves to be essential for the daily usage of recognition systems. Not only are AR systems
devised to help better understand human behavior, but also assist people during their daily
tasks and routines. Examples of applicationdomains explored in the past are healthcare [6,53],
rehabilitation [2,45], sports [26,36], wellbeing [18,22], industrial maintenance [34,47] or
gaming [24].

The activity inference process, also referred to as activity recognition chain (ARC, [43]),
consists of a set of steps combining signal processing, pattern recognition and machine
learning techniques to implement a specific AR system. Concretely, a set of sensors usually
deliver rawunprocessed signals,which represent themeasuredmagnitude (e.g., acceleration).
The registered information is sometimes filtered to remove electronic noise and artifacts [35,
46]. To capture the dynamics of the signals, these are normally partitioned in data windows
of a fixed size [9]. Subsequently, a feature extraction process is carried out on each data
window to provide a handler representation of the signals for the pattern recognition stage.
A wide range of heuristics [32], time–frequency domain [33,41] and other sophisticated
mathematical and statistic functions [7] are commonly used. In some cases, a feature selector
is used to reduce redundancy among features, as well as to minimize dimensionality [31].
The resulting feature vector is provided as input to a classifier, which ultimately yields the
recognized activity or class to one of the considered for the particular problem. Extensive
topical reviews on classical AR methods can be seen in [28,40].

AR approaches can be mainly categorized according to the considered sensor topology.
Recognition systems may operate on data measured through a sole sensor, thus requiring
from a single ARC (SARC). This is the most widely used approach by current vendors of
AR applications, since they generally build on data collected through a single smartwatch
[1,37], bracelet [22], fitness band [20,51] or clip [18]. Capturing the motion of different
body parts normally improves the system’s recognition capabilities. To do so, multi-sensor
configurations are required, which are less common in commercial solutions. In that case,
the data collected through each sensor node need to be fused to eventually provide a single
recognized activity. This may be performed either at the feature level, i.e., by aggregating
the features extracted from each sensor data stream (feature fusion multi-sensor ARC or
FFMARC) or at the classification level, i.e., by combining the decisions developed on the
data of each respective sensor (decision fusion multi-sensor ARC or DFMARC).

Although much effort has been put into the development of reliable AR systems, most
previous approaches assume that the sensor setup remains identical during the lifelong use of
the system, which has been recently proven to be an unrealistic assumption [10]. Particularly,
wearable sensors are subject to an intensive use and potential harsh conditions, therefore also
prone to degradation and failures. Technological anomalies may lead to changes in the sensor
data streams, which are normally unforeseen during the design phase or unpredictable at run-
time use. Consequently, models trained on ideal signal patterns may react in an undesired
manner to imperfect or anomalous sensor data. This potentially translates into a partial or
total malfunctioning of the AR system.

Thiswork investigates the tolerance of standardAR systems to sensor technological anom-
alies. Based on the limitations of classic AR approaches, a novel alternate model is here
proposed to cope with the effects of sensor faults and failures. This solution is particularly
devised to maintain the recognition capabilities even in the event of sensor anomalies, which
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Fig. 1 Examples of the effects of some of the most prominent sensor technological anomalies

is found to be of primal necessity in critical applications where the activity-aware service
must not be interrupted. The rest of the paper is organized as follows. Section 2 presents the
main technological anomalies to which on-body sensors are subject. The method proposed
to deal with sensor technological anomalies is described in Sect. 3. Section 4 evaluates the
robustness of standard AR models and the proposed new model to the effects of sensor tech-
nological anomalies. The results are extensively discussed in Sect. 5, while final conclusions
are summarized in Sect. 6.

2 Sensor Technological Anomalies

2.1 Signal Effects

Electronic devices are subject to diverse technological anomalies. On-body inertial sensors
are particularly prone to changes in the bias, scale factors, non-linearity or electronic noise,
among other effects (see Fig. 1), normally due to decalibration or battery failures. Some of
these anomalies have been extensively studied in the past, and important improvements have
been certainly made to minimize their effects. Nevertheless, some others are more difficult
to handle from a hardware perspective and therefore more likely to appear during the use of
these devices.

One of the most difficult to overcome, and limiting, data losing effect is associated to
changes in the sensor dynamic range. These variations may appear due to a misconfiguration
of the sensor or when the system is not adequately supplied. Sensor misconfigurations rarely
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take place; however, battery malfunctions are more frequently observed. In the event of a
battery fault, internal amplifiers and analog-to-digital converters are not appropriately sup-
plied. In turn, the amplification and conversion process is not correctly performed, leading to
a new reduced dynamic range. This translates into distortions in the signals gleaned from the
sensor, such as flattening or skew, which basically correspond to an underrepresentation of
the measured data, mainly for those samples that fall out of the bounds of the new dynamic
range (see Fig. 1, second row, right column).

Another key shortcoming of on-body sensors, which applies to any wireless technology,
refers to energy limitations. Sensor batteries are not of unlimited capacity and therefore need
to be recharged from time to time. Moreover, sensor batteries lose charge over time, and
its capacity reduces as they are charged and drained. Hence, there exist potential situations
in which a sensor is not supplied, and consequently no data delivered. Permanent critical
failures may appear in more extreme situations, for example, when the sensor device falls to
the ground, is accidentally hit or physically damaged in any other way. In those situations, not
only could the sensor get broken, but simply an essential electronic component be destroyed
(e.g., communication interface, processing unit). As a consequence, it is normal to expect an
absence of signal or data (see Fig. 1, bottom, left corner).

2.2 Tolerance of Standard Activity Recognition Models

Although some sensor anomalies may be removed during the preprocessing stage of the ARC
(e.g., electronic noise and spurious spikes filtering), others are more difficult to overcome or
avoid, especially at runtime. In case of a critical sensor failure or misfunctioning (e.g., sensor
out of battery or totally broken), systems based on a single sensor unit demonstrate futile. As
a matter of fact, SARCmodels rely on a single data stream, thus they cannot operate since no
data is available. In these circumstances, the use of redundant or multi-sensor configurations
seems to be a reasonable alternative. However, not all multi-ARC models are seen to cope
with the problem of a discharged or broken sensor. In fact, FFMARC models suffer from
similar limitations to SARC approaches to this respect. FFMARC aggregates the features
extracted from each sensor node into a single vector, which is used as input to a classifier
or reasoner. Therefore, if data from a sensor is missing, no features can be obtained from
that particular node; consequently, the feature vector turns to be incomplete and no activity-
aware capabilities are supported. Conversely, this problem is not seen to occur to DFMARC
models. DFMARC approaches are based on the aggregation of the decisions computed from
the processing of each individual sensor data stream. Therefore, even whether a sensor data
stream is not available, a decision may be made by combining the decisions obtained from
the remaining active sensors.

Most DFMARC approaches proposed in past work are based on two main techniques,
namely, hierarchical decision (HD) and majority voting (MV). HD is based on favoring those
sensor entities that generally behave better, thus allowing them to decide first. Accordingly,
decisions are made in strict order of classification capabilities, with the ranking normally set
according to performance criteria. In MV, the eventual recognized class is simply the one
endorsed by a plurality of sensor classifiers. Although highly used in activity recognition,
HD and MV models show significant weaknesses when dealing with sensor technological
anomalies. An example is used next to illustrate this. Let us consider a sensor setup consisting
of seven sensors worn in diverse body parts. A classifier is learned for each sensor, and their
corresponding performance metrics, e.g., accuracy in %, obtained after evaluation. Let us
assume the resulting performance values are, e.g., S1 → 99 %, S2 → 85 %, S3 → 82 %,
S4 → 49%, S5 → 36%, and S6 → 31%. Now, if the HDmodel is used, the overall accuracy
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of the system will principally depend on the performance of the decisor ranked on top of the
hierarchy (i.e., S1). If a low-ranked sensor (e.g., S4–S6) becomes unavailable, no variation
is expected in the system performance. However, if any sort of sensor anomaly affects the
top-ranked decisors (e.g., S1, S2) the recognition capabilities may seriously worsen. For
example, if S1 gets out of battery, the bulk of the decisions would rely on S2, thus a drop
on the recognition performance may be expected. Conversely to HD, MV does benefit from
the disappearance of sensors with poor performance. Thus for the above example, if S4, S5
or S6 shutdown, an improvement in the global performance can be expected. Unfortunately,
this also applies the other way around. Then, if high-rated sensors become unavailable, the
probability ofmisrecognition increases, especially when it results into amajority of low-rated
decision makers. For example, if S1 gets out of the pool of decision makers, a plurality of
low-rated sensors (S4, S5, S6) would outnumber a minority of higher-rated sensors (S2, S3),
thus potentially leading to an overall low performance. According to this, HD andMVmodels
are qualitatively shown to have limited capabilities to deal with sensor failures. Moreover,
from the previous example, it can be easily ascertained that the most beneficial approach
would consist in determining the activity from the decisions provided by the highest-rated
sensors (i.e., S2 and S3), which roughly corresponds to the combination of both HD and MV
models.

3 Hierarchical Weighted Classifier

Taking into account the advantages and drawbacks of HD andMV approaches, a new ensem-
ble model is here presented to cope with the effects of sensor technological anomalies. The
model combines the decisions obtained from each individual sensor, making them all part of
the decision process. However, the decisions are first ranked based on their relative impor-
tance, by means of weights derived from the individual performance of each classification
entity. Moreover, the decisions are not only combined at the sensor level but also at the activ-
ity level, which is devised to increase both reliability and robustness of recognition systems,
and also considered of special importance to support flexible sensor setups.

The proposed model, hereafter called hierarchical weighted classifier (HWC), is com-
posed by three decision making levels or stages (see Fig. 3). Given an scenario with M nodes
of information (sensors) and N classes (activities), a set of M by N base classifiers (cmn ,
∀m = 1, . . . , M, n = 1, . . . , N ) are defined. These are binary classifiers specialized in the
discrimination of the activity or class n by using the information obtained from the sensor or
node m. Each base classifier applies an one-versus-rest binary classification strategy,1 which
further allows for the use of any type of standard classification paradigm. This defines the
first layer of the model, here identified as base, class or activity level. The second classifi-
cation level, so-called sensor level, is defined through M node or sensor classifiers (Sm , ∀
m = 1, . . . , M). Sensor classifiers are not machine learning-type entities, but rather decision
making structures. Each sensor classifier consists of N base classifiers (one per class), whose
decisions are combined through an activity-dependent weighting scheme. Finally, the last
layer, so-named network level, is in charge of the weighting and aggregation of the decisions
given by each sensor classifier, eventually providing the recognized activity or class. The
weights used in the network level depend on the recognition capabilities of each individual
sensor classifier.

1 Other approaches as the one-versus-one may be similarly applied; however, the one-versus-rest model is
particularly recommended here to minimize the number of classification entities.
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Fig. 2 Training steps of the HWC model

The training of the HWC model requires just a few steps (Fig. 2). Firstly, the training
dataset is partitioned into three equally-distributed parts. One of these partitions is used to
train all base classifier entities.After training, a secondpartition is used to test the performance
of each base classifier. From here, statistical metrics are obtained and further used to define
the first level of weighting parameters. Sensor classifiers are completely defined at this point.
Then, the weighting parameters of the network level are assessed. To that end, the third yet
unused part of the dataset is utilized to evaluate the performance of each individual sensor
classifier. Then, the network level weights are extracted from the performance statistics of
each sensor classifier. The HWC is, at this point, completely characterized.

Two weighting schemes are proposed for the HWC model. The first approach, firstly
introduced in [8], consists in weighting the decisions provided by each classifier through
a single weight. Thus, two weights are used in this model: an αmn weight for each base
classifier cmn , and a γm weight for each sensor classifier Sm . These weights are used to
ponder both insertions and rejections2 in a similar way (i.e., unified weighting). This model
is generically identified as HWCαγ . The second novel approach (Fig. 3) corresponds to
an improved version of the former model, in which two independent weights are used to
ponder insertions and rejections (i.e., insertion–rejection weighting). Concretely, αmn and
βmn weights are respectively used to ponder insertions and rejections of each base classifier
cmn , while γm and δm weights serve the same purpose for each sensor classifier Sm . In
this way, it is possible to leverage the potential of all classifiers even when they are either
accurate inserters or good rejecters. This new model, hereafter identified as HWCαβγ δ , is
neatly described next.

As stated before, two weights are obtained at the activity level. These parameters are
defined as αmn and βmn , and respectively represent the insertion and rejection weights for
cmn . The values of αmn and βmn are obtained from the performance assessment of each
base classifier. In particular, αmn corresponds to the sensitivity of cmn , whilst βmn relates to

2 In machine learning, insertions (hits) and rejections (deletions) respectively refer to positive and negative
classifications. For the one-versus-rest decision strategy, an insertion is observedwhen the classifier recognizes
a class to belong to its class of specialization, while a rejection is generated when the class is identified to
belong to any of the rest of the classes.
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are γ -weighted (insertions) and δ-weighted (rejections), and once again combined to provide the eventual
recognized activity

its specificity. We have selected these performance parameters since they represent well the
insertion and rejection capabilities of the classifier. Given TPmn (true positives) the number of
correctly identified samples, FPmn (false positives) the incorrectly identified samples, TNmn

(true negatives) the number of correctly rejected samples and FNmn (false negatives) the
incorrectly rejected samples, all specifically computed from the evaluation of the classifier
cmn , αmn and βmn are obtained as follows:

αmn = Sensitivity (cmn) = TPmn

TPmn + FNmn
(1)

βmn = Specificity (cmn) = TNmn

TNmn + FPmn
(2)

A voting method is at this point considered to fuse all the decisions provided by the base
classifiers for each corresponding sensor classifier. For a sensor m, given a window instance
smk characterized through the corresponding feature vector fm(smk), and being q the activity
or class predicted by cmn for that instance, if such class belongs to the class of specialization
of cmn (i.e., q = n), the classifier will set its decision to αmn for the class n and 0 for the
rest of classes. Otherwise (i.e., q �= n), the decision is set to 0 for the class n and to βmn

for the others. In summary, the weighted decision for cmn (i.e., WDmn) may be defined as
(∀ {q, n} = 1, . . . , N ):
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WDmn ( fm(smk)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αmn, fm(smk) classified as q

0, fm(smk) not classified as q
(∀q = n)

βmn, fm(smk) not classified as q

0, fm(smk) classified as q
(∀q �= n)

(3)

The aggregation of the weighted decisions provided by each base classifier for themth sensor
classifier (Sm) may be computed as follows:

Om ( fm(smk)) =
N∑

n=1

WDmn ( fm(smk)) (4)

The class predicted by Sm is the class q for which the sensor classifier output is maximized:

qm ( fm(smk)) = argmax
q

(Om ( fm(smk))) (5)

For the next level, similar parameters to αmn and βmn are obtained, here defined as γm
(insertions) and δm (rejections). Nonetheless, the way these are computed varies slightly
with respect to the formers. At the network level the classifiers are not binary but multiclass
models. Therefore, the evaluation of each sensor classifier requires to extend sensitivity and
specificity concepts to the multiclass case (see details in [52]).

According to this generalization, γm and δm may be described as:

γm = 〈γm1, γm2, . . . , γmn〉 =
〈

TPm1

TPm1 + FNm1
,

TPm2

TPm1 + FNm2
, . . . ,

TPmn

TPmn + FNmn

〉

(6)

δm = 〈δm1, δm2, . . . , δmn〉 =
〈

TNm1

TNm1 + FPm1
,

TNm2

TNm1 + FPm2
, . . . ,

TNmn

TNmn + FPmn

〉

(7)

where {TP/TN/FP/FN}mn refer to the classification counting values. Conversely to the
binary case, these values are here computed for each class k across the confusion matrix
results obtained from the evaluation of Sm (∀ m = 1, . . . , M, n = 1, . . . , N ).

Since the decisions are made in a multiclass fashion, γm and δm are used to reward or
penalize each identified class. Accordingly, given qm the decision of Sm for the sample smk ,
the set of weighted decisions for this classifier are defined as:

WDm (qm ( fm(smk))) =
{

γmn, n = qm ( fm(smk))

−δmn, n �= qm ( fm(smk))
(∀n = 1, . . . , N ) (8)

The output at the network level is now calculated taking into account the individual outputs
obtained from each sensor classifier. Given a sample sk , defined through the corresponding
data windows obtained from each respective sensor ({s1k, s2k, ..., sMk}), and being char-
acterized through the corresponding feature vectors ({ f1(s1k), f2(s2k), ..., fM (sMk)}), the
aggregated output is:

O (xk) = O ({ f1(s1k), f2(s2k), ..., fM (sMk)}) =
M∑

p=1

WDp
(
qp

(
f p(spk)

))
(9)

Finally, the class q yielded on top of the hierarchy is obtained as:

q = argmax
q

(O (xk)) (10)
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4 Evaluation of the Tolerance Against Sensor Technological Anomalies

This section aims to quantitatively analyze the capabilities of the proposed HWC model
to deal with sensor technological anomalies. To that end, the HWC is first compared to
standard AR models in ideal conditions, in order to prove that it provides similar recognition
capabilities to them. Next, the model is evaluated for the case in which critical sensor failures
are assumed. Finally, the recognition capabilities under the effects of moderate sensor faults
are assessed.

4.1 Benchmark Dataset

Sensor technological anomalies normally appear in a random and occasional manner, thereby
it may be complicated to find them during experimental recordings. Nevertheless, an interest-
ing characteristic of these anomalies is that their effects may be reasonably easily modeled.
Therefore, the approach followed in this work consists in synthetically introducing sensor
hardware anomalies into activity data, which is experimentally recorded in a daily living
setting.

The activity dataset used in this work was first introduced in [11] and has been widely
used to benchmark AR models. This dataset has been considered especially interesting for
evaluation, since not only includes data collected in a natural out-of-lab settings but for a
diverse sample population and different activities. Moreover, this is one of the few publicly
available datasets.3

The dataset comprises acceleration data collected for twenty subjects, aged 17–48, while
performing a set of daily living activities. Concretely, five bi-axial accelerometers are
employed to register the motion experienced by the subjects’ right hip (H), dominant wrist
(W), non-dominant arm (A), dominant ankle (K) and non-dominant thigh (T), respectively.
From the complete activity set, the most representative nine were selected covering from
intense activities such as running and cycling to fitness exercises like stretching and strength-
training, moderate routines such as walking and climbing stairs or sedentary activities like
sitting, standing and lying down.

4.2 Experimental Setup

For the AR process, the diverse stages of the ARC are implemented. Raw acceleration sig-
nals are acquired through the on-body inertial sensors. The recorded signals are affected by
spurious spikes and electronic noise, which are removed through a 20 Hz cutoff low pass
elliptic FIR filter. This is demonstrated to not eliminate valid information for daily physical
activity assessment [12,32]. The signals are subsequently partitioned into windows of data
of approximately 6 s, as suggested in [11]. Next, features are extracted to characterize each
window data. To analyze the computational complexity required for this problem, diverse
feature vector dimensions are tested (1, 5, 10 and 20 features). Here, a subset of the complete
group of features proposed in a previous work is considered [7]. These features correspond
to the combination of statistical functions such as median, kurtosis, mode, range, and mag-
nitudes or functions obtained from a domain transformation of the original data such as
energy spectral density, spectral coherence or wavelet coefficients (“a1 to a5” and “d1 to d5”
Daubechies levels of decomposition), among others. The best features ranked through the
use of a receiver operating characteristic feature selector [50] are chosen until complete the

3 Dataset files and description could be obtained at http://architecture.mit.edu/house_n/data/Accelerometer/
BaoIntilleData04.htm.
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14 O. Banos et al.

feature vector lengths defined for each case. Specific of each ARC model, SARC builds on
a single feature vector extracted from the data of the corresponding used sensor. FFMARC
aggregates all feature vectors computed across the five sensor streams into a single fea-
ture vector. DFMARC uses the feature vector extracted from each sensor as input to each
respective sensor classifier.

The classification stage is different for each ARC model. SARC and FFMARC employ
standard multi-class classifiers. Four machine learning paradigms, which have been widely
and successfully used in past AR approaches, are here considered. They comprise, decision
trees (DT, [17]), which were proved to perform well in [11,27,38]; naive Bayes (NB, [50])
utilized in [29,33,41]; k-nearest neighbor (KNN, [14]), used in [3,5,21,39] and support vector
machines (SVM, [15]) employed in [19,21,23,30,49]. Concretely, the k value is empirically
tuned for the KNNmodels while SVM implements a radial basis function (RBF) kernel with
automatically tuned (grid search) hyper-parameters γ and C . These standard classifiers are
also used as core of the base classifiers used by the DFMARC approaches (here, HD, MV
and HWC).

Systems evaluation is carried out through a cross validation process. Although leave-
one-subject-out cross validation (LOOXV) has been used in the literature, it is here rather
chosen a ten-fold cross-validation (10-fold XV) process to compare the diverse models. In
fact, as summarized in [4] and according to [13,25], LOOXV is the best technique for risk
estimation, whereas 10-foldXV is themost accurate approach formodel selection.Moreover,
this process is repeated 100 times to ensure statistical robustness as well as to procure an
asymptotic convergence to a correct estimation of the systems performance [48].

4.3 Performance in Ideal Conditions

TheHWCis particularly devised to dealwith the effects of sensor failures and faults.However,
not only should the model be useful to overcome these limitations, but also be valid for AR
tasks in normal circumstances. Therefore, the HWC recognition capabilities in invariant
setups is first evaluated. Moreover, the performance of the model is compared to the baseline
given by standard AR systems.

The HWC was defined upon the observation of the pros and cons of HD and MVmodels.
Therefore, the first comparison is performed for these three models. In Fig. 4, the confusion
matrices computed from the assessment of the performance of HD, MV and HWC models
are shown. For the HWC, the weighting model proposed in [8] (unified weighting, HWCαγ )
and the novel model proposed in this work (insertion–rejection weighting, HWCαβγ δ) are
respectively evaluated. From the results, HD and MVmodels demonstrate worst recognition
capabilities. A high misclassification rate is observed when simple feature sets are employed.
The performance is nevertheless enhanced when the feature sets are significantly enriched
(Fig. 4c, d). This is motivated by the improvement of the recognition capabilities of each
individual sensor classifier. This improvement translates into more accurate decisions on top
of the hierarchy, thus reducing the errors made by the HD model. For the MV model, the
aggregated decisions build then on a potential plurality of accurate sensor classifiers. HWC
largely exceeds the recognition capabilities shown by HD and MV models. Moreover, this
happens to occur for all classification paradigms and independently of the complexity of the
feature vector. Indeed, very promising results are already obtained when a sole feature is
used for each base classifier. The performance turns to be practically absolute (confusion
matrices almost diagonal) when richer feature vectors are used. Both HWCαγ and HWCαβγ δ

provide outstanding results, which proves the potential of the HWC structure. However, the
latter model surpasses the performance of the former. This proves the importance of the
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Fig. 4 Confusion matrices obtained from the experimental evaluation of each DFMARC modality (HD, MV,
HWCαγ , and HWCαβγ δ) and machine learning paradigm (DT, KNN, NB, and SVM). Diverse feature vector
lengths are considered; (a 1, b 5, c 10, and d 20 features). Confusion matrix legend (activities): 1 walking, 2
running, 3 cycling, 4 sitting, 5 standing, 6 lying down, 7 stretching, 8 strength-training, 9 climbing stairs

considered weighting scheme. Accordingly, and for the sake of simplicity, the HWCαβγ δ

will be used in advance as the predominant HWC model.
Most of the contributions in the AR domain are based on a SARC or FFMARC model.

These approaches have shown good recognition capabilities in a wide sort of AR problems.
Accordingly, SARC and FFMARC models are here used to define the performance baseline
for the recognition in ideal circumstances. For the considered experimental setup, five SARC
models are devised (one per sensor), whilst the fusion of the features extracted from each
sensor data stream is implemented for the FFMARC approach. In Fig. 5, the performance
results obtained from the evaluation of SARC, FFMARC and HWC models are depicted.
Clearly, FFMARC and HWC stand out as the most accurate models. In general, FFMARC
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16 O. Banos et al.

Fig. 5 Accuracy (mean and standard deviation) results from the evaluation of SARC (S), FFMARC (FF) and
HWCαβγ δ (HWC) approaches. Results are averaged across all sensors for the SARC model. Diverse feature
vector lengths are considered for evaluation (1, 5, 10, and 20 features). Legend: <classification paradigm
><AR approach>

outperforms the HWC model for simple feature sets (1 and 5 features). This is quite reason-
able since the aggregated feature vector used in FFMARC is richer than the ones used for
each HWC base classifier. For example, when a single feature is extracted from each sensor
stream, base classifiers operate on a 1-dimensional (1-D) feature space, while the classifica-
tion model used in FFMARC operates in a 5-D feature space. Anyway, the differences are
not higher than 7 % accuracy, at worst case. The gap between both models reduces as more
features are employed, with HWC the most accurate approach for some cases, and perfor-
mance levels close to absolute. Conversely to FFMARC and HWC, SARC models provide
fair results, especially for reduced feature sets. Here again, enriching the feature vector trans-
lates into an improvement in the performance of the model, yet providing accuracies below
90 %.

To put it in a nutshell, the HWC proves as reliable as other standard AR approaches under
ideal circumstances, while theoretically surpassing them in terms of tolerance to sensor
technological anomalies. This is now evaluated in the next two sections.

4.4 Tolerance to Sensor Failures

In the event of a sensor failure or shutdown, SARC and FFMARCmodels were proved to not
be capable of operating. SARCmodels cannot process the information because of a practical
lack of information. FFMARC may utilize the information of the remaining active sensors;
however, the aggregated feature vector cannot be built since no values can be gleaned from
the affected sensor. Conversely to SARC and FFMARC models, the HWC was devised to
deal with the situation of having missing sensors.

In the following, the recognition capabilities under the event of critical sensor failures are
analyzed. To that end, a HWC model designed for the predefined sensor setup (i.e., all five
sensors) is tested on diverse setup configurations, respectively corresponding to the cases
in which data from a sensor or various sensors are not available. Concretely, the HWCαβγ δ
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Fig. 6 Confusion matrices for the HWCαβγ δ model for all possible sensor setup configurations after the
effect of sensor failures. KNN and the 10 features setting is used for the base classifiers. Top title of each
confusion matrix identifies active sensors and overall accuracy (in brackets). Sensors legend H hip, W wrist,
A arm, K ankle, T thigh. Confusion matrix legend (activities) 1 walking, 2 running, 3 cycling, 4 sitting, 5
standing, 6 lying down, 7 stretching, 8 strength-training, 9 climbing stairs

with KNN and ten features is employed, given its remarkable recognition capabilities in ideal
conditions (Figs. 4, 5). The results of this evaluation are summarized in Fig. 6.

In case one sensor stops delivering data, the performance remains almost similar to what
is observed when all sensors are available (>97 % accuracy). For example, only a 2 %
drop is seen when the sensors placed on the thigh (T) or wrist (W) are missing. A high
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tolerance is also observed for two non-operating sensors, subtly lower than in case of having
one missing sensor. Not only may the HWC cope with failures on two sensors, but also
on three of them. In fact, there is almost no significant drop on the performance for some
combinations of active sensors (W–T, W–K, H–W), while less than a 4 % is seen for the
rest. In the worst case scenario, the AR system must rely on data captured through a single
active sensor. As a consequence, the recognition capabilities are seen to reduce, although
in a different way for each sort of sensor. For example, the accuracy is superior to 91 %,
i.e., less than 6 % from baseline, for setups in which only W, H or T remain operative. The
performance decays to approximately 81 % when A or K are the only functioning sensors.
This is strictly related to the informativeness of the body parts on which these sensors are
correspondingly mounted. Obviously, in the rare case of becoming all sensors unavailable,
e.g., given a simultaneous battery discharge, no operation may be expected. Therefore, it has
not been explicitly evaluated here.

4.5 Tolerance to Sensor Faults

Conversely to the case of sensor failures, a faulty sensor is capable of delivering data. Nev-
ertheless, sensor faults generally entail signal degradation. As introduced in Sect. 2, when
the sensor circuitry is not adequately supplied a reduction of the sensor dynamic range may
be observed. This shortening translates into a change in the boundaries of the signal space,
thus potentially leading to a misrepresentation of the measured motion data (see Fig. 1). For
example, the sensors used in this study are capable of converting all measured accelerations
within the range [−10g, 10g], with g = 9.8 m/s2 the gravitational constant and the sign
representing the direction of the acceleration. Therefore, if the dynamic range reduces to a
tenth of the original interval (i.e., [−1g, 1g]), most of the digitized signals will likely not
represent the actual measured body motion.

The tolerance of HWC and standard AR models to this phenomena is here analyzed. To
that end, the performance of the recognition systems is evaluated for two scenarios. In the
first case, the dynamic range is reduced to a 30 % of the original one (i.e., [−3g, 3g]). In
this new signal space, active exercises leading to abrupt movements and high accelerations,
are expected to be misrepresented, whereas, low intensity activities will in principle not
suffer relevant variations. In the second more challenging scenario, the dynamic range is
reduced to a 10 % of the predefined interval (i.e., [−1g, 1g]). Here, changes in all measured
activity patterns are envisioned. It must be noted that these scenarios are neatly selected after
inspecting the considered dataset: highest acceleration values are around 5g, therefore no
relevant influence is expected when changing the dynamic range beyond± 5g.

For experimental purposes, the changes in the dynamic range are simply modeled through
a thresholding process. Thus, those measurements that fall out of the bounds of the new
considered dynamic range are set to the extreme values of this new range. Similar parameters
to the considered for the study of the tolerance to sensor failures are here used for the AR
models (i.e., KNNand ten best ranked features, which render highest average performance for
all AR models in absence of anomalies, Fig. 5). For the SARC model, the dynamic range of
the corresponding utilized sensor is modified. For multi-sensor approaches (i.e., FFMARC,
HD, MV and HWC), various configurations with an increasing number of faulty sensors are
evaluated. The anomalous sensors are randomly selected from one iteration to another, but
for the case in which all sensors are faulty. The evaluation results are presented in Table 1.

A considerable performance worsening is seen for most AR systems when the dynamic
range is reduced to a 30 % of the original one. SARCmodels are clearly the most sensitive to
sensor faults. Nonetheless, practical differences are observed among the sensors considered
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in this study. Concretely, those sensors placed on body locations that are subject to lower
accelerations demonstrate more robust, here hip and thigh, with a performance drop around
15 % with respect to baseline. On the contrary, wrist, arm and ankle sensors suffer from a
higher reduction on their performance, which is of 35 % at worst. The reason is that sensors
worn on the extremities are normally subject to higher accelerations, especially during the
execution of intense activities such as running or cycling, and also walking to a lesser extent.
These accelerations values are prone to fall out of the bounds defined by the new dynamic
range. More tolerance to sensor faults is gained when using multi-sensor configurations.
Nevertheless, once again not all models behave similarly. FFMARC appears to be the most
vulnerable multi-sensor model to changes in the dynamic range, especially when two or more
sensors malfunction. More than 20 % drop with respect to the baseline is observed when two
sensors are affected, 35 % for three anomalous sensors and more than 50 % for four or more
faulty sensors. DFMARC approaches turn to be the most tolerant. MV demonstrates capable
of dealing with changes on a sole sensor, but low tolerance to anomalies in a plurality of
sensors (>40 % performance drop from baseline). More robustness is shown by the HD
model when top-ranked sensor classifiers are not affected by anomalies; however, as the
number of erroneous sensors increases, also grows the possibility of having a faulty high-
ranked sensor. At worst conditions, the performance of the HD model is observed to drop
up to 40 % from baseline. The high standard deviation for the HD results may be explained
since the anomalous sensors are randomly selected from one iteration to another, thus leading
to diverse configurations in which the designated faulty sensors may be either low-ranked
(good HD performance) or high-ranked (poor HD performance). From all evaluated models,
the HWC clearly stands out as the most robust approach to sensor faults. In fact, almost no
worsening is detected when a minority of the sensors are affected, and only a 10 % drop is
seen when three faulty sensors are considered. The performance reduces to approximately
70 % accuracy when the complete set of sensors function defectively.

A much higher impact is seen when the dynamic range is shorten to a 10 % of the default
interval. Here, the performance of SARC models plummet to negligible values. This is also
seen for FFMARC. Just for only one anomalous sensor the accuracy drops more than 25 %,
above 50 % for two affected sensors and nearly 80 % when all sensors are faulty. The
performance also declines more abruptly for the DFMARC approaches. HD shows a similar
tendency to what was seen for the former fault scenario. MV provides a reasonable tolerance
to one faulty sensor, but no practical utility when two or more behave anomalously. Again,
the most robust approach is the HWC, which shows almost no worsening for one erroneous
sensor, and an acceptable drop for two faulty sensors. Yet, the model is not capable of
overcoming the effects of a majority of faulty sensors in this complex scenario.

5 Discussion

5.1 Performance in Ideal Conditions

This work does not aim at delving into the capabilities of AR systems devised for ideal
settings. In fact, much research has been already performed to this respect during the last
years, and good models are available. The evaluation in ideal conditions was rather planned
to compare the recognition capabilities of the proposed HWC with respect to other well-
known standard AR approaches. Moreover, these results serves to this work as a baseline
for the performance of this model in absence of sensor anomalies. From the evaluation, it
can be concluded that the use of multi-sensor configurations is especially recommended to
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ensure a high quality of recognition. SARCmodels demonstrate limited recognition capabil-
ities, particularly when the systems are designed to be simple. On the other hand, FFMARC
proves to be the most reliable approach from tested, especially when reduced feature sets are
just considered. Traditional DFMARC models, such as HD and MV, also show interesting
capabilities when building on complex feature sets, but not of much utility when kept sim-
ple. Through combining the main advantages of HD and MV approaches, the HWC model
manages to achieve recognition characteristics similar to FFMARC, even for simple feature
sets. This makes from the HWC a valid approach for AR in idealistic conditions.

5.2 Tolerance to Sensor Failures

Major changes in on-body sensor setups are normally produced by critical sensor failures.
At worst, sensors may get broken or damaged to an extent they stop delivering data. Similar
situations may be observed when a user leaves the sensor behind, it gets out of battery or
it is powered down. Under these circumstances, standard AR models devised for steady
sensor configurations are prone to fail to provide recognition capabilities. In fact, SARC and
FFMARC models cannot strictly operate, thus they present no other option than stopping
the monitoring process until the setup is recovered to its original or default state. Halting the
recognition process could be unacceptable for some applications (e.g., elderly fall detection,
freezing of gait in Parkinson, or epileptic seizures detectors), and especially burdensome and
discouraging for general users of AR applications.

Decision fusionmodels are seen to be a valid solution to help not interrupt the AR process.
In fact, since DFMARC models operate on the individual decisions provided by each sensor
classifier or entity, modifications in the sensor network are in principle supported. Although
applicable,HDandMVwere qualitatively shown to be sensitive to these changes. Conversely,
the HWC demonstrates very robust to sensor failures. In fact, the model practically maintains
the recognition capabilities even when a majority of the sensors are missing. At worst, when
a sole sensor remains operational, the performance is similar or even higher to the obtained
through a SARC approach, thus demonstrating the potential of the HWC even for single
sensor setups, as well as its notable scalability.

Not only should the ARmodels be capable of coping with the effects of occasional sensor
failures but to facilitate user maintenance tasks. Thus for example, to provide a means to
continue operating while a discharged sensor is being recharged is especially important
in realistic applications. As concluded before, the HWC may help to provide a seamless
recognition capabilities, thus supporting quotidian real-world situations in which part of the
sensing infrastructure is temporarily unavailable.

5.3 Tolerance to Sensor Faults

Although less damaging than critical failures, sensor faults may also lead to a potential
malfunctioning of AR systems. Conversely to the formers, faulty sensors are capable of
delivering data, albeit this information is subject to degradation. This is the case of changes
in the sensor dynamic range due to an inadequate energy supply of the device. The most
reduced the dynamic range becomes, the higher the impact this anomaly has. Nevertheless,
changes in the dynamic range produce a different impact on each activity pattern. Intense
activities that involve a high body motion are primarily distorted, since their acceleration
values may potentially fall outside the bounds of the new data range. This is the case of
running, cycling or walking for the activity set considered in this work. On the other hand,
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sedentary or low motion activities could remain unaffected if the variation of the dynamic
range is not much important, although can be also distorted if this reduces dramatically.

The performance of SARC models considerably declines when the considered sensor
suffer from a moderate reduction in its predefined dynamic range. The highest performance
worsening is seen for those SARC models operating on data collected from body parts
subject to intense accelerations (i.e., body extremities), which fits in well with previous
conclusions. The use of various sensors may help overcome the effects of sensor faults;
however, not all multi-sensor models demonstrate similar robustness. FFMARC models are
capable of partially coping with changes in one of the sensors, but show low tolerance to
two or more faulty sensors. Artifacts introduced by individual faulty sensors contaminate the
complete aggregated feature vector, therefore leading to misclassifications. The effects are
more prominent as the number of anomalous sensors increases. DFMARC models benefit
from the independent processing of each sensor classifier.HDandMVdemonstrate capable of
facing the challenge of one faulty sensor; however, their recognition capabilities considerably
dropwhen two ormore sensors behave anomalously. From all testedmodels, the HWC shows
the best fault-tolerance. In fact, almost no worsening is observed when three or less sensors
are affected. The performance reduces when most sensors are distorted, although it is still
higher to what is achieved through other AR models in better circumstances.

When the dynamic range is more severely reduced, SARC and FFMARCmodels demon-
strate almost as useless as for the case of sensor failures.HDandMValso show little resilience
to the effects of critical sensor faults, even when a single sensor is affected, thus of doubtful
utility. Only the HWC demonstrates a strong tolerance to sensor faults, perfectly dealing
with the situation of a faulty sensor and moderately coping with the effects of two anomalous
sensors. Nonetheless, when a plurality of sensors are affected the HWC approach neither
overcomes the effects of severe changes in the sensor dynamic range.

5.4 HWC Advantages

The HWCmodel was originally devised to cope with the effects of sensor failures and faults.
To this respect, promising capabilities have been already demonstrated along this discussion.
Nevertheless, the HWC possesses other remarkable properties of ensemble models [16],
which are especially required inAR systems for the real-world. These properties are discussed
next.

SARC and FFMARCmodels cannot function when a sensor breaks or disappears from the
original sensor topology, whereas DFMARC models may keep the recognition process by
using the informationprovidedby the remaining active sensors. In thisway,DFMARCmodels
in general and the HWC in particular allow for an uninterrupted AR. However, returning the
system to its initial performance require to replace or substitute the failure sensor with a
new one, possibly of different characteristics (e.g., different calibration or signal modality).
In this case, SARC and FFMARC could be newly utilized, but first a complete retraining
of the model is needed. Conversely, decision fusion models only require to train the sensor
classifier that operates on the new sensor. This is a very valuable characteristic in the AR
domain, since depending on the complexity of the recognition problem, the retraining of the
systems may take a significant time.

The HWC also demonstrates to scale well to the number of used sensors. It has been
shown that the HWC provides good results for diverse sensor setups, even for combinations
of a reduced set of sensors or a sole single device. From this, the HWC proves to not be only
useful for multi-sensor configurations but also applicable in single sensor setups.
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The flexibility of the HWC does not only applies at the sensor level but also at the activity
level. AR systems are normally devised for a set of particular activities; however, the actions
of interest may change in the course of time depending on the particular user and application
needs. For example, additional activities to the originally planned may be required when a
new exercise routine is considered or a workout plan modified. These changes are not only
seen to add new activities but also remove some of these at the point of need. This is found
of special interest to reduce the complexity of the systems and increase their recognition
performance, as well as to procure systems personalization to subjects. Standard AR model
require a complete redefinition of the system when the activity set is varied. Conversely,
the HWC may support this sort of reconfiguration. For the inclusion of new activities, only
new base classifiers must be trained for the added activities, and their associated weights
computed. If an activity is rather removed, an update of the model weights is only required.
These properties are eligible to support important requirements of real-world AR systems
such as self-configuration, auto-adaptation and evolvability.

Two weighting models were evaluated in this work, a unified weighting for both inser-
tions and rejections (HWCαγ ) and an asymmetric model to weight them independently
(HWCαβγ δ).Althoughbothmodels showedgood classification properties, the secondweight-
ing approach demonstrates a higher potential. Through independently weighting insertions
and rejections the HWC becomes more problem-sensitive, therefore capable of leveraging
all base classifiers, even when their classification or rejection capabilities might be unbal-
anced. According to the weights, these could be defined through diverse criteria. In this work,
accuracy (α,γ ) and sensitivity-specificity (α,β,γ ,δ) metrics has been particularly considered;
however, an important asset of this model is that other performance metrics may be likewise
used.

5.5 Open Issues

The comparison with previous work turns to be difficult since the effects of sensor failures
and faults have been seldom investigated in the AR domain. Moreover, there is no gold
standard and also a clear lack of datasets for benchmarking AR models. To compensate all
this, a comparison of the capabilities of the HWC with the most widely used AR solutions
has been provided. Moreover, in order to ensure the reproducibility of our experiments, the
models have been evaluated on a dataset extensively employed in past works. Anyway, a
strong effort must be put in the wearable AR domain to collect new datasets that may serve
to validate these and future contributions.

The models used here to emulate the effects of sensor technological anomalies represent
quite precisely what can be observed in a realistic setting. In fact, no differences are expected
for critical anomalies or sensor failures. However, it would be valuable to not only simulate
their impact but further observe them in a real-world scenario.Unfortunately, this is not an
easy task since sensor failures appear in a random and occasional manner. An approximation
to this could be the dataset collected in [42]. Here the authors gatheredmultimodalARdata, in
which sensors are sometimes switched off but principally for energy saving reasons. Packets
loss are also reported in this dataset; however, these are normally associated to missing data
from turned-off sensors. Again, long-term AR datasets including realistic sensor anomalies
could be worth to benchmark these and new models.

The HWC has been clearly demonstrated as the most robust approach. Nevertheless, for
a plurality of faulty sensors the system reduces its performance, which may be more or
less critical depending on the magnitude of the fault. To overcome this, a error detection
procedure could facilitate to exclude the decisions yielded by faulty sensors. In this line, a
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recent work [44] proposed the use of distance measures and information theory techniques to
identify erroneous measurements in a multi-sensor setup. The HWC could leverage this type
of mechanism to not only identify the damaged sensors, but also update the corresponding
weights (γm and/or δm), thus reducing their impact on the eventual yielded decision.

Not only could changes in the sensor setup be incorporated in the HWC model but also
at the activity level. Sensor anomalies may affect the recognition of part of the activities
(e.g., intense activities when the dynamic range is reduced), but not alter the identification
capabilities for others. Then, instead of reducing the decision weight at the network level
(γm , δm) this could be rather performed at the sensor level (αmn , βmn), so only base classifiers
weights from those unrecognizable activities are modified. This updating procedure is not
only devised to overcome the limitations imposed by sensor technological anomalies but may
be also utilized to dynamically adapt the AR system to people changing conditions.

Finally, it is worth noting that the complexity of theHWCmodel depends on themagnitude
of the AR problem. Therefore, if several activities and sensors are considered, the model may
require from a considerable set of decision entities or base classifiers. Nevertheless, these
are very simple models that may potentially benefit from parallel computing, something that
cannot be that easily applied to other standard models.

6 Conclusions

Classic AR systems assume steady sensor setups that remain invariant during the lifelong use
of the system. Nevertheless, as other electronic devices, on-body sensors are subject to faults
and failures. These technological anomalies lead to changes in the sensor data streams, which
are normally unforeseen during the design phase and unpredictable at runtime. Consequently,
models trained on ideal signal patternsmay react in an undesiredmanner to anomalous sensor
data. This potentially translates into a partial or total malfunctioning of the AR systems.

This work extensively explored the effects of both sensor failures and faults. Standard AR
approaches based on single sensor configurations andmulti-sensor feature fusion demonstrate
low tolerance against sensor technological anomalies. Classic multi-sensor decision fusion
models show a higher robustness, although they are of limited utility when more than one
sensor behave abnormally.

Taking into consideration the limitations of current AR approaches, a novel model, the
hierarchical weighted classifier (HWC), has been presented. The model implements for each
sensor a set of base or activity classifiers, whose decisions are asymmetrically weighted
according to their recognition capabilities and further fused. In ideal conditions, the HWC
renders a performance similar to the best standard AR models. More importantly, it also
proves to remarkably deal with sensor failures, and a high fault-tolerance when a minority
of the sensors are affected. Nonetheless, when a plurality of sensors are affected the HWC
approach neither overcomes the effects of severe sensor faults. In such case, identifying the
anomalous sensors may be of much utility to temporarily leave them out of the recognition
process. The flexibility of the HWC may also help to overcome these extreme situations
through the dynamic reconfiguration of the model.
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