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Abstract In this paper we develop a novel multiple kernel learning (MKL) model that
is based on the idea of the multiplicative perturbation of data in a new feature space in
the framework of uncertain convex programs (UCPs). In the proposed model, we utilize
the Kullback–Leibler divergence to measure the difference between the estimated kernel
weights and ideal kernel weights. Instead of directly handling the proposed model in the
primal, we obtain the optimistic counterpart of its Langrage dual in terms of the theory of
UCPs and solve it by using the alternating optimization. In the case of a varying parameter,
the proposed model gives the solution path from a robust combined kernel to some combined
kernel corresponding to the initially ideal kernel weights. In addition, we also give a simple
strategy to select the initial kernel weights as the ideal kernel weights if any prior knowledge
of kernel weights is not available. Experimental results on several data sets show that the
proposed model can obtain competitive performance with some of the state-of-the-art MKL
algorithms.

Keywords MKL · Uncertain convex programs · Robust counterparts · Optimistic
counterparts · KL divergence · Data classification

1 Introduction

Multiple kernel learning (MKL) [1–4] has gained some successful applications in many areas
such as scene classification and bioinformatics.Unlike single kernel leaning algorithmswhere
the kernel parameters within a kernel are optimized, the aim of MKL is to search for a linear
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or nonlinear combination of predefined kernels by optimizing some performance measures.
The predefined kernels inMKL generally encode different information frommultiple diverse
sources and thusMKL gives the enough flexibility in dealing with data with multiple sources.
In addition to that, MKL which obtains an optimal kernel from multiple kernels also pro-
vides a possible strategy of kernel selection in kernel-based learning methods. Consequently,
MKL has an advantage in achieving good generalization performance in many learning
tasks.

With the advance in MKL, many MKL algorithms have been proposed during the past
several years. In the original work of Lanckriet et al.[5], MKL is formulated as a semidefinite
programming (SDP) problem. In [6], the SDP problem is further reduced to a second-order
cone programming (SOCP) problem [7]. However, these two MKL algorithms are only suit-
able for handling small-scale or medium-scale data sets due to the high computational cost
of SDP or SOCP. In order to improve the efficiency of MKL, some fast MKL algorithms
[8–16] have been proposed. Among them, the alternating optimization [14] may be one of
the most widely used methods, where the kernel weights and the coefficients of the span
of samples are alternately updated. In [8], Sonnenburg et al. proposed a semi-infinite linear
programming (SILP) problemwhere a cutting plane method is used to update kernel weights.
In order to avoid the instability of the solution in SILP, Rakotomamonjy et al. [10] used a
reduced gradient method to learn kernel weights. Obviously one advantage of the alternat-
ing optimization in solving MKL is that the existing SVM solvers can be directly utilized
in some cases. In addition to finding fast algorithms for solving MKL, some researchers
also designed novel MKL models where kernel weights are usually controlled by different
regularizers. Kloft et al. [4] developed L p-norm MKL which generalizes L1-norm MKL. In
order to make the trade-off between the orthogonal information and sparse kernel weights,
a generalized MKL model by imposing an elastic-net-type constraint on kernel weights is
proposed in [12]. In [17], the entropy of kernel weights is used as the regularizer to con-
trol kernel weights in MKL. Overall, these models further contribute to the development of
MKL.

Recently, there has also been an increasing interest in developing uncertain convex pro-
grams (UCPs) [18,19]. UCPs can deal with data uncertainty by using an uncertainty set
consisting of every possible value of some parameters [20–23]. UCPs are associated with
the robust counterpart of the convex program and the optimistic counterpart of its uncertain
Lagrange dual. In [19], it is shown that strong duality between the robust counterpart and the
optimistic counterpart holds under the Slater-type strict feasibility condition. In [20], Jeyaku-
mar and Li pointed out that strong duality between the robust counterpart and the optimistic
counterpart holds for uncertain polyhedral convex programming problems. In [21], Li et al.
further relaxed the condition of strong duality between the robust counterpart and the opti-
mistic counterpart, in which robust strong duality holds for partially finite convex program
problems.

In UCPs, data uncertainty may be introduced if the input data is contaminated by noise or
measurement errors. Data uncertainty may also be modeled as two typical forms: the additive
perturbation and the multiplicative perturbation. The additive perturbation is that the data is
contaminated by additive noise or errors while the multiplicative perturbation is that the data
is contaminated by multiplicative noise or errors. In fact, we find that the kernel weights in
L1-norm MKL take values in some sets. If we regard the kernel weights in L1-norm MKL
as uncertain parameters in UCPs and think that data is perturbed by uncertain parameters
in the multiplicative form, classical L1-norm MKL will become the optimistic counterpart
of an SVM-based optimization problem. This new explanation for L1-norm MKL allows
us to develop new MKL models which are based on the robust counterpart of SVM-based
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optimization problems. Consequently, in this paper we propose a novel MKLmodel from the
viewpoint of UCPs. Note that the solution of the proposed model is feasible no matter how
the data is perturbed in an uncertainty set. We also introduce the KL divergence to measure
data uncertainty in the new feature space. Thus our model may yield good performance in
some classification problems, compared with some MKL models. As often done in UCPs,
we resort to solving the optimistic counterpart of the Langrage dual of our model if strong
duality holds. It is interesting to note that the proposedmodel can be transformed into a convex
optimization problem. But we adopt the alternating optimization to solve it in this paper. In
addition, a strategy for setting initially ideal kernel weights in the proposed model is also
given.As shown in the experiments, the proposedmodel gives the enoughflexibility to control
kernelweights by varying an important parameter and achieves comparable performancewith
previous MKL methods.

The rest of this paper is organized as follows. In Sect. 2, we briefly review L1-normMKL
and UCPs. In Sect. 3, we develop an optimization model and give an effective algorithm to
solve this model. Moreover, we also discuss the problem of selecting the initially ideal kernel
weights. In Sect. 4, some experiments are done to evaluate the proposed model. The final
section is the conclusion.

2 Brief Review of L1-Norm MKL and UCPs

2.1 L1-Norm Multiple Kernel Learning

Let D = {(xi , yi )}i=1,...,n be a set of training samples, where xi ∈ Rm and yi ∈ {−1, 1}.
In MKL, a group of mappings ψ j : Rm → H j ( j = 1, . . . , d) are given, each associated
with a kernel K j in a reproducing kernel Hilbert space (RKHS). L1-normMKL based on the
margin maximization can be formulated as [4]

min
w̃,b,θ

f (w̃, b, θ) := 1

2

d∑

k=1

‖w̃k‖2 + C
n∑

i=1

∣∣∣∣∣1 − yi

(
d∑

k=1

〈
w̃k,

√
θkψk(xi )

〉
+ b

)∣∣∣∣∣
+

s.t.
d∑

k=1

θk = 1, θk ≥ 0, (1)

where |z|+ = z if z ≥ 0 and 0 otherwise, ψk(xi ), w̃k ∈ Hk , d is the number of RKHSs, b is a
bias, and C is a regularization parameter. Applying w̃k = wk

√
θk to Eq. (1), one can obtain

min
w,b,θ

f (w, b, θ) := 1

2

d∑

k=1

θk ‖wk‖2 + C
n∑

i=1

∣∣∣∣∣1 − yi

(
d∑

k=1

〈
θkwk,ψk(xi )

〉 + b

)∣∣∣∣∣
+

s.t.
d∑

k=1

θk = 1, θk ≥ 0. (2)

The objective function in Eq. (2) is non-smooth since it contains the form of |z|+. By
introducing extra variables, one can transform Eq. (2) into a smooth objective function under
proper constraints. In addition, Eq. (1) or Eq. (2) may also be converted to a convex opti-
mization problem [4].
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2.2 Uncertain Convex Programs

The uncertain convex optimization problem [18,19] can be described as

min
x

{ f (x,μ0)}
s.t. gi (x,μi ) ≤ 0, i = 1, . . . , d, (3)

where f and gi are convex functions with respect to the variable x, and the uncertain para-
meters μi (i = 0, . . . , d) lie in convex compact uncertainty sets such as polytopes and
ellipsoids. The variable x is robust feasible for Eq. (3) if it satisfies the constraints for every
possible value of μi (i = 0, . . . , d) in an uncertainty set. The robust counterpart of Eq. (3) is
defined as

min
x

max
μ0

{ f (x,μ0)}
s.t. max

μi
gi (x,μi) ≤ 0, i = 1, . . . , d. (4)

The Lagrange dual of Eq. (3) is formulated as

max
λ

min
x

{
f (x,μ0) +

d∑

i=1

λi gi (x,μi)

}
. (5)

The optimistic counterpart of Eq. (5) is defined as

max
λ,μ0,...μd

min
x

{
f (x,μ0) +

d∑

i=1

λi gi (x,μi )

}
. (6)

In general, the optimal value of the objective function in Eq. (4) is not smaller than that of the
objective function of Eq. (6). It is found in [20,21] that the strong duality between Eqs.(4)
and (6) holds under proper conditions. That is, the optimal value of the objective function
in Eq. (4) equals that of the objective function of Eq. (6) under certain conditions. In such
a case, the optimization problem of Eq. (4) can be transformed into that of Eq. (6) and thus
one solves Eq. (6) instead of Eq. (4) if directly solving Eq. (4) is difficult.

3 Our Proposed Method

In this section, we first introduce an optimization model based on the idea of UCPs. Then
we give its optimistic counterpart of its Lagrange dual and solve it by using the alternating
optimization. In addition, we also discuss how to set the initially ideal kernel weights.

3.1 Problem Formulation

From Eq. (1), one can observe that each sample is mapped into a new feature space by
a composite map ψθ = √

θ1ψ1 × · · · × √
θdψd . It is observed that the projected data√

θkψk(xi )(i = 1, . . . , n) will vary as the parameters θk(i = 1, . . . , d) change. Thus√
θkψk(xi ) can be considered as the multiplicative perturbation of ψk(xi ) in terms of the

parameter θk . This actually corresponds to data uncertainty in the new feature space. This
is different from the additive perturbation in [21] where the data is perturbed in the original
feature space rather than in the mapping feature space. Based on this point, we regard Eq. (1)
as the optimistic counterpart of f (w̃, b, θ), where w̃ and b are unknown variables and θ is
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an uncertain parameter taking values in a simplex. This also gives a new explanation for Eq.
(1) in terms of the uncertain parameter θ and thus Eq. (1) falls into the framework of UCPs.
When the optimal θ is obtained from Eq. (1), one can achieve an optimal combined kernel
in terms of θ and each kernel in RKHSs. In such a case, we refer to the optimal combined
kernel from Eq. (1) as the best combined kernel in an uncertainty set. From the theory of
UCPs, the best combined kernel from Eq. (1) may yield too optimistic results on the training
set. Since the projected data can be regarded as data uncertainty in the feature space, we also
give the following robust counterpart of f (w̃, b, θ) in the framework of UCPs.

minmax
w̃,b θ

f (w̃, b, θ) := 1

2

d∑

k=1

‖w̃k‖2 + C
n∑

i=1

∣∣∣∣∣1 − yi

(
d∑

k=1

〈
w̃k,

√
θkψk(xi )

〉
+ b

)∣∣∣∣∣
+

s.t.
d∑

k=1

θk = 1, θk ≥ 0. (7)

A solution (w̃, b) is robust feasible if it satisfies Eq. (7) for every possible realization of
uncertain parameters. From Eq. (7), one obtains an optimal combined kernel in terms of θ

and each kernel in RKHSs. In contrast to the optimal combined kernel in Eq. (1), we refer
to the optimal combined kernel from Eq. (7) as the robust combined kernel. Thus Eq. (7)
explores the performance of a novel MKL model in the case of the robust combined kernel.
Substituting w̃k = wk

√
θk into Eq. (7), one can obtain

minmax
w,b θ

f (w, b, θ) := 1

2

d∑

k=1

θk ‖wk‖2 + C
n∑

i=1

∣∣∣∣∣1 − yi

(
d∑

k=1

〈
θkwk,ψk(xi )

〉 + b

)∣∣∣∣∣
+

s.t.
d∑

k=1

θk = 1, θk ≥ 0. (8)

The model of Eq. (8) is different from that of Eq. (2) since the latter is to search for the
best combined kernel in an uncertainty set and the former is to explore the robust combined
kernel in an uncertainty set. Thus from the viewpoint of data perturbation, Eq. (8) may be
much more suitable for dealing with the data that belong to an uncertainty set than Eq. (2).
Note that f (w, b, θ) in Eq. (8) is a convex function with respect to the variable θ for fixed w
and b. However, it is a maximization problem with respect to the variable θ . Specifically, the
inner layer optimization in Eq. (8) is a concave optimization problem which is generally NP-
hard [24]. Due to this concave optimization problem, one may obtain the optimal solution
θ from extreme points [24]. That is, the optimal solution θ may be obtained from one of
extreme points of a simplex. Assume that the kth element of θ , i.e. θk , takes one and other
elements of θ are zeros, which gives a very sparse solution of θ . What’s worse, if the kernel
matrix corresponding to the kth kernel is also positive semi-definite, not positive definite,
e.g. a kernel matrix whose elements are 1, one may obtain ‖wk‖2 = 0. In such a case, the
combined kernel is the kth kernel and the margin that equals 2

‖wk‖ becomes the infinity. This
causes all the training samples to be classified as one class and yields too pessimistic results,
which shows that severe underfitting occurs. In order to avoid this case, one possible strategy
is to adopt d strictly positive definite kernel matrices with good class separability. However,
selecting the kernels with good class separability is not straightforward. To this end, we
provide a strategy to handle this case. Assume that d ideal kernel weights qk(k = 1, . . . , d)

are given. Considering that the KL divergence measures data uncertainty in an uncertainty
set and also measures the difference between θk(k = 1, . . . , d) and qk(k = 1, . . . , d), we
add the KL divergence to Eq. (8) and propose the following optimization model.
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minmax
w,b,ζ θ

f (w, b, θ , ζ ,α, v) := 1

2

d∑

k=1

θk ‖wk‖2 + C
n∑

i=1

ξi − γ
∑d

k=1
θk log

θk

qk

s.t. yi

(
d∑

k=1

〈
θkwk,ψk(xi )

〉 + b

)
≥ 1 − ζi , ζi ≥ 0, i = 1, . . . , n,

d∑

k=1

θk = 1, θk ≥ 0, (9)

where qk(k = 1, . . . , d) are the ideal kernel weights reflecting the importance of kernel
functions,

∑d
k=1 qk = 1, and γ is a nonnegative parameter which controls the trade-off

between the robust combined kernel and some combined kernel. It is observed that the inner
layer optimization in Eq. (9) is not a concave optimization problem due to the introduction of
theKLdivergence. Based on the theory ofUCPs,we give the following optimistic counterpart
of the uncertain Lagrange dual in terms of Eq. (9) [20].

max
θ ,α,v

min
w,b,ζ

f (w, b, θ , ζ ,α, v) := 1

2

d∑

k=1

θk ‖wk‖2 + C
n∑

i=1

ξi − γ

d∑

k=1

θk log
θk

qk

+
n∑

i=1

αi

(
1 − ζi − yi

(
d∑

k=1

〈
θkwk,ψk(xi )

〉 + b

))
−

n∑

i=1

ζivi

s.t.
d∑

k=1

θk = 1, θk ≥ 0, αi ≥ 0, vi ≥ 0, ζi ≥ 0, i = 1, . . . , n. (10)

Since θk(k = 1, . . . , d) are in a compact setwhich is finitely generated fromd kernelmatrices,
Eq. (9) belongs to the robust counterpart of partially finite convex programs [20,21]. By
introducing an extra variable in the objective function in Eq. (9), one can resort to Corollary
3.3 in [20] to show that the constraint qualification in UCPs for Eq. (9) is satisfied and that
the strong duality between Eq. (9) and Eq. (10) holds. To be specific, the optimal value of the
objective function of Eq. (9) equals that of the objective function of Eq. (10). In such a case,
one can solve Eq. (10) since directly solving Eq. (9) is not easy. In the following subsection,
we will continue to discuss how to solve Eq. (10).

3.2 Optimization Strategy

It is not difficult to verify that Eq. (10) is equivalent to the following optimization problem.

max
α,θ

f (α, θ) := −1

2

d∑

k=1

θkα
T diag(y)Kkdiag(y)α + αT e − γ

d∑

k=1

θk log
θk

qk

s.t.
n∑

i=1

αi yi = 0, C ≥ αi ≥ 0, i = 1, . . . , n,

d∑

k=1

θk = 1, θk ≥ 0, (11)

where y = (y1, . . . , yn)T and e = (1, . . . , 1)T . Without loss of generality, we assume that
the first l samples in the training set belong to the positive class. Let βk = diag(y)θkα(k =
1, . . . , d). Applying some operations to Eq. (11), one can obtain
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max
β1,...,βd ,θ

f (β1, . . . ,βd , θ) := −1

2

d∑

k=1

1

θk
(βk)T Kkβ

(k) +
d∑

k=1

yTβk − γ

d∑

k=1

θk log
θk

qk

s.t.
d∑

k=1

eTβk = 0, C ≥
d∑

k=1

βk
s ≥ 0 (s = 1, . . . , l)

−C ≤
d∑

k=1

βk
t ≤ 0, (t = l + 1, . . . , n),

d∑

k=1

θk = 1, θk ≥ 0. (12)

It is not hard to find that the objective function in Eq. (12) with respect to (β1, . . . ,βd , θ)

is concave, so Eq. (12) is a convex optimization problem. But we find that directly solving Eq.
(12) may meet some computational problems. On the one hand, if kernel weights approach
zeros, computing the weighted kernels may cause the computational problem since they lie
in the denominator in Eq. (12). On the other hand, the number of unknown variables in Eq.
(12) is dn + d , which is greater than that of unknown variables in Eq. (11). Thus solving Eq.
(12) may be computationally expensive if there are too many kernels or training samples.
Due to these disadvantages in solving Eq. (12), in this paper we will focus on solving Eq.
(11) instead. It is of interest to note that Eq. (11) is a bi-convex optimization problem. That
is, for fixed α, optimizing θ is a convex optimization problem; for fixed θ , optimizing α is
a convex optimization problem. It is found from Eq. (11) that optimizing α involves solving
an SVM problem for fixed θ . Thus any existing SVM software can be used to obtain α. For
fixed α, one can obtain the solution θ in terms of the method in [25]. However, it is of interest
to note that θ has the following closed-form solution from Eq. (11) (Appendix).

θk = qke
−∑

i, j αi α j yi y j Kk (xi ,xj )
2γ

∑d
s=1 qse

−∑
i, j αi α j yi y j Ks (xi ,x j )

2γ

, (k = 1, . . . , d). (13)

For the sake of completeness, we briefly summarize the algorithm for solving Eq. (11) in the
following, which is an alternative to Eq. (9).

Algorithm 1: The solution to Eq. (11)

1: given qk (k = 1, · · · , d), C , and γ ,
2: for t = 1, 2, · · · do
2.1: Solve the dual SVM problem based on Eq. (11) in fixed θ ;
2.2: Update the kernel weights based on Eq. (13);
2.3: if the stopping criterion is met, then break;

3: end for

3.3 Analysis and Discussion

From Algorithm 1, one can observe that it involves alternately solving the SVM problem and
updating kernel weights until a stopping criterion is met. The stopping criterion in Algorithm
1 may be based on the maximal number of iterations or the relative change of the two
consecutive objective function values in Eq. (11). Hence our algorithm for solving Eq. (11) is
relatively easy to implement but effective. It is also noted that the overall complexity of our
algorithm strongly depends on that of SVMs since updating kernel weights needs a relatively
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low computational cost. In general, the faster the SVM algorithm one uses, the more efficient
our method. Note that we use the alternating optimization method to solve Eq. (11). Since
Eq. (11) is not a convex optimization problem, one generally obtains locally optimal solutions
of Eq. (11). However, in the experiments, we find that our algorithm gives better performance
than other MKL algorithms in some cases.

FromEq. (13), one sees that the smaller that
∑

i, j αiα j yi y jKk(xi , x j ), the larger the kernel

weight θk . If one regards 2
‖wk‖ as the margin of the kth kernel,

√∑
i, j αiα j yi y jKk(xi , x j )

is inversely proportional to the margin of the kth kernel. From this point, one knows that
the larger the margin of the kth kernel, the bigger the kernel weight θk . Thus our model
prefers to take the large weight for the kernel with the large margin. However, it should be
pointed out that this strategy is reasonable only for the case that data is linearly separable
in each feature space. In practice, it turns out that the data is linearly separable in each
implicitly high-dimensional space if one adopts Gaussian kernels and each sample in the
training set is different. If data is not linearly separable in each feature space, the large
margin corresponding to a single kernel does not mean the large margin for the combined
kernel. Moreover,

∑n
i=1 ξi in Eq. (10) also affects the number of misclassified samples. Thus

the large margin for some kernel which has low class separability, e.g. the infinite margin,
may result in too many misclassified training samples. By introducing ideal weights, we
expect to alleviate the effect of this kind of kernels. From Eq. (13), one can see that θk will
take a small value or zero if the initially ideal kernel weight qk is relatively small or zero.
That is, if some kernel with low class separability or poor classification performance has a
small weight, then its updating weight also takes a small value from Eq. (13).

In addition, one can observe from Algorithm 1 that the parameter γ should be set in
advance and it will directly affect the optimal value of the objective function in Eq. (11). In
the following, we give several remarks on the parameter γ .

Remark 1 Let I (α∗) = {i = argmax j f (α∗, θ∗
j )},where α∗ and θ∗

j are the optimal solution
of Eq. (11) in given C and γ = 0. If γ → 0+ and qk (k = 1, . . . , d) are equal, it is not
difficult to derive that the limit of θk in Eq. (13) is zero if k /∈ I (α∗) and is a nonzero constant
if k ∈ I (α∗). This also shows that θk(k = 1, . . . , d) may be sparse if γ takes sufficiently
small values. From Eq. (7), one can see that this corresponds to the robust combined kernel.
Specifically, the robust combined kernel is selected from an uncertainty set in such a case.

Remark 2 If γ → +∞ and q j ( j = 1, . . . , d) are not equal to zero, one obtains θ j =
q j from Eq. (13). Substituting θ j of Eq. (13) into γ

∑d
j=1 θ j log

θ j
q j
, one can verify that

γ
∑d

j=1 θ j log
θ j
q j

approaches zero if γ → +∞, i.e., lim
γ→∞ γ

∑d
j=1 θ j log

θ j
q j

= 0. It is

also noted that one obtains θ j = 1/d ( j = 1, . . . , d) if the kernel weights q j = 1/d
( j = 1, . . . , d) and γ → +∞. This shows that in such a case Eq. (11) degenerates into
SVMs with the uniform kernel weights. In other words, SVMs with uniform kernel weights
are an extreme case of Eq. (11).

Remark 3 It is clear that if the parameter γ varies from zero to infinity, one can obtain the
solution path from the robust combined kernel to some combined kernel from ideal kernel
weights. For example, if one can take ideal kernel weights by solving Eq. (2), one can obtain
the solution path from the robust combined kernel to the best combined kernel, which builds
a bridge between Eqs.(11) and (2) by the parameter γ .

123



MKL Method Based on KL Divergence 753

3.4 The Setting of Initially Ideal Kernel Weights

In this subsection, we will show how to set the initially ideal kernel weights in the proposed
model in order to obtain good classification performance. The parameters q j ( j = 1, . . . , d)

in the proposed model generally provide prior information (distribution) of kernel weights
and should approach ideal kernel weights. In general, ideal weights should be that they take
small values for the kernels with poor classification performance or low class separability
and vise versa. Indeed, ideal kernel weights may be obtained by solving Eq. (1). However,
in real applications, we expect to obtain ideal kernel weights in advance. To this end, in what
follows we will provide a kind of ideal kernel weights based on class separability, which is
independent of known MKL methods. Assume that Kj( j = 1, . . . , d) are d kernel matrices
obtained from the training samples. We regard the i th column of Kj as the projection of xi
in the j th kernel space. Based on this idea, we can obtain the within-class scatter matrix and
the between-class scatter matrix in each kernel space as follows.

S j
b =

c∑

i=1

ni (μ
j
i − μ̄ j )(μ

j
i − μ̄ j )T , (14)

S j
w =

c∑

i=1

∑

xs∈class i
(K j (:, s) − μs

i )(K j (:, s) − μs
i )

T , (15)

where c is the number of classes of the training samples, K j (:, s) denotes the sth column

of K j , ni is the number of samples in class i , μ
j
i = 1

ni

∑
xs∈class i K j (:, s), and μ̄ j =

1
n

∑n
s=1 K j (:, s). From Eqs.(14) and (15), we define the discriminant power of the j th kernel

as follows.

dp j = tr(S j
b)

tr(S j
w)

, j = 1, . . . , d. (16)

From Eq. (16), we find that dp j ( j = 1, . . . , d) take nonnegative values. According to the
discriminant power of each kernel fromEq. (16), we set the relative discirmniant power(RDP)
of kernels as initial kernel weights q j ( j = 1, . . . , d),denoted by

q j = dp j∑d
i=1 dpi

j = 1, . . . , d. (17)

It is observed from Eq. (17) that the stronger the discriminant power of some kernel, the
larger the corresponding kernel weight. Thus in our implementation we prefer to set large
weights to the kernel with strong discriminant power. Note that if q j is zero, then θ j will
always be zero from Eq. (13). In other words, if the discriminant power of some kernel is
zero, we will not consider this kernel in our scheme. In addition, one can find from Eq. (17)
that setting kernel weights by Eq. (17) can also reduce the scaling problem of kernel matrices.
That is, if one kernel is proportional to another kernel, both kernels obtain the same ideal
weights.

4 Experimental Results

In this section,we conduct a series of experiments to evaluate the performance of the proposed
model. For comparison purposes, we evaluate the following MKL methods.
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(1) Uniform MKL (UMKL): We use the average kernel combination of predefined kernels.
The parameter C ∈{0.001, 0.01,0.1, 1,10, 100,1000}and we implement UMKL by using
LibSVM [26] in Matlab version.

(2) L1-norm MKL(L1-MKL): The parameter C is set as done in UMKL and we implement
L1-MKL(Algorithm 1 in [8])in terms of Matlab.

(3) L p-normMKL(L p-MKL)[4]: The parameter p ∈{32/31, 16/15, 8/7, 4/3, 2, 4, 8,16,1024,
10240}and C is set as done in UMKL. We implement L p-MKL (Algorithm 1 in [4]) in
terms of Matlab.

(4) Nesterov’s method for smoothMKL (NMKL): The parameter λ ∈{1/16, 1/4, 1, 4, 16, 64,
256, 1024, 10240,108} andC is set as done in UMKL.We implement NMKL (Algorithm
2 in [17]) in terms of Matlab.

(5) Variable sparsity kernel learning (VSKL) [1]: The parameter q in [1] is set as p in L p-
MKL and C is set as done in UMKL. Considering the fact that parameter γ in VSKL
seems to be similar to the parameter θ in our paper due to the maximum problem, we only
consider kernels in different groups and do not consider kernels within a group due to
the minimization problem in our implementation of VSKL (Algorithm 1 in [1]) in terms
of Matlab. This makes the kernels in different groups not be sparse, which is pointed out
in VSKL and is also observed in our experiments.

(6) Uncertainty-Set SVM (USSVM) [22]: The parameter C is set as done in UMKL and the
parameter κ in [22] is set to 1. We use all the predefined kernels in our paper as the base
kernels and do not consider the nominal kernel. We implement USSVM (SOCP) based
on Mosek optimization software [27] in Matlab version.

(7) Ours(U): Initial kernel weights in our model are equal. The parameters C and γ in
Eq. (11) are taken from {0.001, 0.01,0.1, 1,10, 100,1000}. We implement Eq. (11) by
using LibSVM [26] in Matlab version. The stopping criterion in our algorithm is that
the maximal number of iterations is 100 or the relative change of the two consecutive
objective function values is smaller than 0.001.

(8) Ours(D):Initial kernel weights in our model are obtained from Eq. (17) and other settings
are similar to those of Ours(U):

We use the following predefined kernels in all the methods we implement, and also deal
with each kernelwith sphere normalization as done in [4] in order to obtain good classification
performance.

(a) Gaussian kernels with different widths {0.001, 0.01, 0.1, 1, 10, 100, 1000} on all features.
(b) Polynomial kernels of degree 2–7 on all features.

4.1 The Experiments on the Artificial Data

In this set of experiments, we design a two-class problem in 
20. For this data set, each
feature of the first 10 dimensions of data points from the first class is sampled from the
Gaussian distribution with mean 0.5 and variance 2, each feature of the first 10 dimensions
of data points from the second class is sampled from the Gaussian distribution with mean
−0.5 and variance 2, and the other 10 dimensions of data points for two classes are sampled
from the Gaussian distribution with mean 0 and the identity covariance matrix. Obviously
this is not a linearly separable problem. In order to reduce the randomness of the choice of
data points, we report the experimental results over 30 trials. For each trial, we sample 100
data points from each class and thus there are 200 samples. We randomly select 50 % of
the data points we use for training and use the rest for testing. Note that the parameters of
each method are determined by the five-fold cross-validation on the training set. Figure 1
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Fig. 1 Experimental results on
simulated data. a1 The values of
kernel weights of each method.
a2 The average classification
accuracy of each method. a3 The
average number of support
vectors of each method. a4 The
average number of active kernels
of each method

(a1)  

(a2)  

(a3)   

(a4) 

(a1) shows the boxplot of the value of kernel weights of different algorithms, (a2) shows
the average classification accuracy of different algorithms on the testing set, (a3) shows that
the average number of support vectors of different algorithms, and (a4) shows the average
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number of active kernels of different algorithms. Considering the fact that the kernel weights
of MKL may take relatively small values, we set the kernel weights whose values are greater
than 10−10 as active kernels.

(1) From Fig. 1(a1), one can observe from RDP computed by Eq. (17) that the 7th kernel has
the strongest discriminant power. Note that the 7th optimal kernel weight of Ours(D) is
slightly greater than that of Ours(U). It is clear that the 7th optimal kernel weight obtained
by our model takes the largest value even if we set the initial kernel weights to be equal.
This shows that the assumption that a large weight is assigned to the kernel with strong
discriminant power is reasonable. However, for other MKLmethods, we find that the 7th
optimal kernel weight does not take the largest value, which shows that the mechanism of
selecting the optimal kernels in our model is different from that of selecting the optimal
kernels in previous MKL methods.

(2) From Fig. 1(a2), one can see that Ours(D) is slightly better than Ours(U) and the perfor-
mance of our method is superior to that of other MKL methods.

(3) From Fig. 1(a3), it is found that the number of support vectors of our model is smaller
than that of support vectors of other MKL methods. This is possibly because our models
assign large weights to those kernels with good separability. It is also noted that the
number of support vectors of L2-MKL, USSVM, VSKL, and UMKL is almost the same.

(4) From Fig. 1(a4), one can see that L1-MKL has the least number of active kernels among
all the methods and our model obtains sparse kernel weights in some trials.

Overall, the experimental results show that our model can obtain good performance in
terms of classification errors and the number of support vectors although it cannot obtain the
sparsest kernels on this data set.

4.2 The Experiments on the Benchmark Data Sets

In this subsection, we continue to perform some experiments on some benchmark data sets
such as Australian(690 samples/14 attributes/2 classes), Breast(683/9/2), Diabetes(768/8/2),
German(1000/24/2), Ionosphere(351/34/2), Heat(270/13/2), and Sonar(178/60/2) from the
UCI repository [28] to evaluate the performance of different MKL methods. These data sets
have been widely used in testing and evaluating the performance of some machine learning
algorithms.

In order to measure the performance of each method, the five-fold cross-validation is
performed and the average classification accuracy of the five-fold cross-validation is reported.
For each train-test pair, another five-fold cross-validation is performed on the training set to
choose the parameters of each method. Table 1 shows the average classification accuracy of
eachmethod and its standard deviation in the parenthesis on the testing set. The bold numbers
denote the best performance of MKL methods on each data set. Table 2 shows the average
number of support vectors of each method and its standard deviation in the parenthesis. The
bold numbers denote the fewest support vectors of MKL methods on each data set. Table 3
shows the average number of active kernels of each method and its standard deviation in the
parenthesis. The bold numbers denote the fewest active kernels of MKL methods on each
data set. Note that the average ranks (AR) from the Friedman test [29] provide a relatively
fair comparison of different algorithms on multiple data sets. So we compute the average
ranks of all the algorithms in Tables 1 and 2, which are shown in the last line of each table.

(1) From Table 1, one can see that L p-MKL obtains the best performance on the Diabetes
and Ionosphere data sets and VSKL is superior to other methods on the Breast data set.
Note that USSVM does not perform well on these data sets. This may be because we
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Table 3 The average number of active kernels of each method and its standard deviation in the parenthesis
on seven UCI data sets

Methods L1-MKL L p-MKL NMKL UMKL USSVM VSKL Ours(U) Ours(D)

Australian 3.8(3.56) 13(0) 6(6.40) 13(0) 13(0) 13(0) 13(0) 8.4(4.66)

Breast 5.8(4.96) 13(0) 13(0) 13(0) 13(0) 13(0) 8.2(6.57) 5.8(6.57)

Diabetes 4.0(0.70) 13(0) 13(0) 13(0) 13(0) 13(0) 8.8(5.84) 7.0(5.65)

German 3.80(0.83) 13(0) 13(0) 13(0) 13(0) 13(0) 1.0(0) 1.4(0.54)

Ionosphere 5.8(2.94) 13(0) 13(0) 13(0) 13(0) 13(0) 13(0) 13(0)

Heart 4.4(3.71) 13(0) 13(0) 13(0) 13(0) 13(0) 1.0(0) 1.4(0.89)

Sonar 2.8(0.44) 13(0) 13(0) 13(0) 13(0) 13(0) 13(0) 13(0)

only use L2-norm constraints in USSVM. It is also found from Table 1 that Ours(D)
is not worse than Ours(U), which shows that introducing prior knowledge for kernels
is beneficial. In addition, from the average ranks of all the algorithms, it is found that
Ours(D) has the smallest average rank. Thus from the viewpoint of the classification
accuracy, our method can obtain better performance than other MKL methods in most
cases.

(2) From Table 2, it is interesting to note that the number of support vectors of our model is
generally smaller than that of support vectors of other MKLmethods, which is consistent
with the conclusion on the artificial data. This further shows that our model is different
from previous MKL models. In general, the number of active kernels or support vectors
affects the classification speed of the learning algorithms. The fewer they are, the faster
the classification speed of the learning algorithms. It is found that Ours(D) gives the least
number of support vectors in 5 out of 7 data sets and Ours(U) gives the least number
of support vectors in 2 out of 7 data sets. It is observed that USSVM needs to store
more support vectors than other MKL methods. One also observes that on the German
and Heart data sets, the number of support vectors obtained by Ours(U) and Ours(D) is
almost equal. From average ranks of all algorithms, we find that our model performs the
best in terms of the number of support vectors.

(3) From Table 3, in terms of the number of active kernels, we find that L1-MKL selects
fewer kernels than otherMKLmethods onmost data sets. ForUMKL, L p-MKL,USSVM
and VSKL, the number of active kernels is completely equal to that of the kernels we
uses. Note that NMKL does not yield sparse kernel weights since we select the best
performance by tuning its parameters. Since we only consider non-sparse combinations
of different groups and does not impose L1-norm regularization on each group, VSKL
does not yield sparse kernel weights. One can also see from Table 3 that our model gives
sparse kernel weights on Breast, Diabetes, German, and Heart data sets. It is noted that
introducing prior knowledge of kernels also affects the number of active kernels since
the number of support vectors in Ours(D) and Ours(U) is not the same. In addition, it is
interesting to note that our model even obtains the fewest active kernels on the Heart and
German data sets, i.e., it is much sparser than L1-MKL in obtaining kernel weights. It
shows that our model can give sparse or non-sparse kernel weights for different types of
data sets. Note that sparse kernel weights are obtained by setting kernel weights whose
values are not greater than 10−10 to be zero. In fact, from theoretical analysis, kernel
weights are not truly sparse and some kernel weights may take very small values due to
the application to the KL divergence.
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Overall, in terms of the classification accuracies, the number of active kernels, and the
number of support vectors, the experimental results fromTables 1, 2, 3 show that our model is
a good trade-off among these performance indexes. In addition, if the prior knowledge of each
kernel is provided or one wants to use MKL with relatively fewer support vectors, ours(D)
is more preferable than other MKL methods since ours(D) can obtain good performance in
the general case. If one wants to use MKL with relatively fewer kernels, L1-norm MKL is
more preferable than other MKL methods.

5 Conclusions

This paper proposes a novel MKL model for data classification, which utilizes the idea of
UCPs. As a trade-off between a robust combined kernel and some combined kernel from
ideal kernel weights, we adopt the KL divergence in the model and solve the optimistic
counterpart of its Langrage dual of the proposed model instead of the robust counterpart. It
is noted that our model generally obtains the close-form solution of kernel weights. It is also
found that we can obtain the solution path from a robust combined kernel to some combined
kernel from ideal kernel weights by tuning a parameter in the proposed model. Experimental
results on several data sets demonstrate that our model can obtain better performance than
other MKL models in some cases.

Acknowledgments This work is partially supported by the National Natural Science Foundation of
P.R.China (61003169, 61303182).

Appendix: The derivation of Eq. (13)

max
α,θ

f (α, θ) := −1

2

d∑

k=1

θkα
T diag(y)Kkdiag(y)α + αT e − γ

d∑

k=1

θk log
θk

qk

s.t.
n∑

i=1

αi yi = 0,C ≥ αi ≥ 0, i = 1, . . . , n,

d∑

k=1

θk = 1, θk ≥ 0, (18)

From Eq. (18), for fixed αi (i = 1, . . . , n), f (α, θ) is strict concave with respect to θ .
Thus maximizing f (α, θ) over the simplex yields a unique solution. We define the following
partial Lagrangian function.

L(θ) := −1

2

d∑

k=1

θkα
T diag(y)Kkdiag(y)α + αT e − γ

d∑

k=1

θk log
θk

qk
+ λ

(
1 −

d∑

k=1

θk

)

(19)

Setting the derivative of L(θ) with respect to θk to zero gives

∂L(θ)

∂θk
= −1

2
αT diag(y)Kkdiag(y)α − γ log θk + γ log qk − λ = 0. (20)
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From (20), one has

− 1

2
αT diag(y)Kkdiag(y)α − λ = γ log

θk

qk
(21)

From Eq. (21), one has

qke
− 1

2γ αT diag(y)Kkdiag(y)α− λ
γ = θk . (22)

Note that
∑d

k=1 θk = 1. We have

d∑

k=1

qke
− 1

2γ αT diag(y)Kkdiag(y)α− λ
γ =

d∑

k=1

θk = 1. (23)

e− λ
γ

d∑

k=1

qke
− 1

2γ αT diag(y)Kkdiag(y)α = 1. (24)

Substituting Eq. (24) into Eq. (22), one has

θk = qke
−∑

i, j αi α j yi y j Kk (xi ,xj)
2γ

∑d
s=1 qse

−∑
i, j αi α j yi y j Ks (xi ,x j )

2γ

, (k = 1, . . . , d). (25)

From Eq. (25), one can see that the non-negativity of θ can be automatically guaranteed.
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