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Abstract Spiking neural P systems with anti-spikes (ASN P systems, for short) are a class
of distributed parallel computing devices inspired from the way neurons communicate by
means of spikes and inhibitory spikes. ASN P systems working in the synchronous manner
with standard spiking rules have been proved to be Turing completeness, do what Turing
machine can do. In this work, we consider the computing power of ASN P systems working
in the asynchronous manner with standard rules. As expected, the non-synchronization will
decrease the computability of the systems. Specifically, asynchronous ASN P systems with
standard rules can only characterize the semilinear sets of natural numbers. But, by using
weighted synapses, asynchronous ASN P systems can achieve the equivalence with Turing
machine again. It implies that weighted synapses has some “programming capacity” in the
sense of achieving computing power. The obtained results have a nice interpretation: the loss
in power entailed by removing the synchronization fromASN P systems can be compensated
by using weighted synapses among connected neurons.
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1 Introduction

Membrane computing is a new and hot researching field recently emerged as a branch of nat-
ural computing. It was initiated in [18] and has developed rapidly. In 2003, it was considered
by Institute for Scientific Information (ISI) as a “fast emerging research area in computer
science” (for more information, one can refer to http://esi-topics.com). The aim is to find
efficient bio-inspired computing models/devices by abstracting ideas from the structure and
the functioning of single cell or from tissues and organs, such as brain. The obtained com-
puting models are a class of distributed and parallel bio-inspired computing models, usually
called P systems, which provide a group of theoretical computing systems for constructing
bio-computing machines with bio-nano-materials, as well as give various of potentially fea-
sible frameworks for designing artificial life systems in nano-scale. Spiking neural P systems
(shortly called SN P systems) are a class of neural-like P systems in membrane computing
introduced in [8], which are inspired from the way neurons communicate by means of spikes.
The aim is to define computing models based on ideas related to spiking neurons, which are
currently much investigated in neural computing [6,9].

Briefly, an SN P system consists of a set of neurons placed in the nodes of a directed
graph, where neurons send signals (which are called spikes, denoted by the symbol a in
what follows) along synapses (arcs of the graph). Spikes evolve by means of spiking rules,
which are of the form E/ac → a; d , where E is a regular expression over {a} and c, d
are natural numbers, c ≥ 1, d ≥ 0. In other words, if a neuron contains k spikes such that
ak ∈ L(E), k ≥ c, then it can consume c spikes and produce one spike after a delay of d
steps. This spike is sent to all neurons connected by an outgoing synapse from the neuron
where the rule was applied. There are also forgetting rules, of the form as → λ, with the
meaning that s ≥ 1 spikes are removed if the neuron contains exactly s spikes. In the SN
P system, a global clock is assumed to mark the time of the whole system. SN P systems
work in the synchronous manner, that is, in each time unit, one rule must be applied for each
neuron with applicable rules (if there are more than one applicable rules in the neuron, then
one of them is non-deterministically chosen). The work in each neuron is sequential: only
one rule is applied in each time unit, but for different neurons, their works are in a parallel
manner. One neuron is distinguished as the output neuron which also emits spikes out to the
environment. The time interval between the first two spikes sent out to the environment by
the output neuron contributes the result of the computation.

SNP systems have been proved to be Turing completeness, that is, they can dowhat Turing
machine does. In previous works, SN P systems were used as computing devices mainly in
three ways: generating/computing sets of numbers [8,13,21], generating string languages
[2,25] and computing functions [17]. SN P systems were also used to (theoretically) solve
computationally hard problems, for example SAT problem, in a feasible time (see, e.g.,
[14,26]). With different biological motivations, many variants of SN P systems have been
investigated, such as SN P systems with weighted synapses were considered in [16], where
each connected pair of neurons is endowed with an integer to denote the number of synapses
between them; SN P systems with astrocytes [15], where a set of astrocyte cells are used to
control the spikes passing along synapses; time-free SN P systems [24], where any rule in
the neurons can take any time to apply; asynchronous SN P systems [1], where the enabled
spiking or forgetting rule is not obligatorily used in each time unit.

The present work deals with a variant of SN P systems, called SN P systems with anti-
spikes (ASN P systems, for short), which are inspired from the way neurons communicate
by means of both “positive” spikes and inhibitory spikes [12,20]. In ASN P systems, besides
usual “positive” spikes a, anti-spikes denoted by ā are considered. Spiking rules are of the
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form E/bc → b′, where E is the regular expression over {a} or {ā} and b, b′ ∈ {a, ā}.
Rules of the form bs → λ are forgetting rules, by which s spikes or anti-spikes would be
removed out of the neuron. The spikes and anti-spikes can participate in the annihilating rule
aā → λ, by which spikes and anti-spikes in certain neuron will annihilate each other in a
maximal manner. The application of the annihilating rule happens immediately and takes
no time. Hence, at any moment, there are only spikes or anti-spikes in any neuron but not
both of them. ASN P systems working in the synchronous manner can achieve the Turing
completeness [12].

In thiswork,we consider the computing power ofASNP systemsworking in the asynchro-
nous manner. In asynchronous ASN P systems, in each time unit if a neuron has a spiking or
forgetting rule enabled to apply, then this rule is not obligatorily used, that is, the neuron can
choose to remain unfired and receive spikes or anti-spikes (maybe both) from its neighboring
neurons. In any neuron, if the unused spiking or forgetting rule is enable to used later, then
it would be chosen to use without any restriction on the interval of time. If the new coming
spikes or anti-spikes (maybe both) make the spiking or forgetting rule unable to use, the
computation continues in the new circumstances (maybe other rules are enable now). Note
that when spikes and anti-spikes meet in a neuron, the application of the annihilating rule
happens immediately and takes no time. At any moment, there are only spikes or anti-spikes
in each neuron of asynchronous ASN P systems. The way of non-synchronized use of spiking
and forgetting rules also works in the output neuron, thus the distance in time between the
spikes sent to the environment by the output neuron can be any long, and it is no longer the
result of the computation. For asynchronous ASN P systems, the result of the computation
is the total number of spikes sent to the environment by the output neuron.

As expected, non-synchronization will decrease the computing power of the ASN P sys-
tems. Specifically, it is proved that ASN P systems working in the asynchronous manner
(without using weighted synapses) can only characterize the semilinear sets of natural num-
bers. Ifwe useweighted synapses (withweights notmore than three), the equivalence between
asynchronous ASN P systems and Turing machine can be achieved again: the sets of Tur-
ing computable numbers can be generated by asynchronous ASN P systems with weighted
synapses. It indicates that weighted synapses have some “programming capacity” in the
sense of achieving some computing power. The obtained results have a nice interpretation
that the loss in power entailed by removing the synchronization from ASN P systems can be
compensated by using weighted synapses among connected neurons.

2 Preliminaries

Readers can refer to [19] for very basic notions of formal languages and automata theory. In
the following, wemainly recall the structure of register machine [10] and k-output monotonic
counter machine [7], which are used in the following theories.

By SLIN and NRE, we denote the families of semilinear and Turing computable sets of
numbers. (SLIN is the family of length sets of regular languages – languages characterized by
regular expressions; andNRE is the family of length sets of recursively enumerable languages
– those recognized by Turing machines.)

In universality proofs, the notion of register machine from [10] is used. A register machine
is a construct M = (m, H, l0, lh, R), where m is the number of registers, H is the set of
instruction labels, l0 is the start label, lh is the halt label (assigned to instruction HALT),
and R is the set of instructions; each label from H labels only one instruction from R, thus
precisely identifying it. The instructions are of the following forms:
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– li : (ADD(r), l j , lk) (add 1 to register r and then go to one of the instructions with labels
l j , lk),

– li : (SUB(r), l j , lk) (if register r is non-zero, then subtract 1 from it, and go to the
instruction with label l j ; otherwise, go to the instruction with label lk),

– lh : HALT (the halt instruction).

A register machine M generates (computes) a number n in the following way. The register
machine starts with all registers empty (i.e., storing the number zero). It applies the instruction
with label l0 and proceeds to apply instructions as indicated by labels (and, in the case of SUB
instructions, by the content of registers). If the register machine reaches the halt instruction,
then the number n stored at that time in the first register (the output register) is said to be
generated (computed) by M . The set of all numbers computed by M is denoted by N (M). It
is known that register machines compute all sets of numbers which are Turing computable,
hence they characterize NRE.

Without loss of generality, it can be assumed that l0 labels an ADD instruction, that in the
halting configuration, all registers different from the first one are empty, and that the output
register is never decremented during the computation (its content is only added to).

A k-output monotonic counter machine is a specific register machine with k counters, all
of which are output counters. All counters are initially zero and can be only incremented by
1 or 0. Hence, the number stored in the k output counters can not be decremented during the
computation. Starting with all the k counters zero if the counter machine reaches the halting
instruction, the k-tuple of values in the k counters is said to be computed/generated by the
k-output monotonic counter machine. The set of vectors (associated with k tuple values)
generated by k-output monotonic counter machines is denoted by N (CkM). It is known that
a set Q ⊆ Nk with k ≥ 1 is semilinear if and only if it can be generated by a k-output
monotonic counter machine [7]. Specifically, when k = 1, a set of numbers can be generated
by the 1-output monotonic counter machine, which is denoted by N (CM). A set of numbers
is semilinear if and only if it can be generated by a 1-output monotonic counter machine.

Convention: When evaluating or comparing the power of two number generating/accpe-
ting devices, number zero is ignored (this corresponds to the usual practice of ignoring the
empty string in language and automata theory).

3 Asynchronous ASN P Systems

In this section, we introduce the asynchronous ASN P systems, as well as the family of sets
of numbers generated (computed) by the systems. The feature of delay is not used in our
research. The definition is complete, but familiarity with the basic elements of classic SN P
systems (e.g. from [8]) is helpful.

An asynchronous spiking neural P system (without delay) with anti-spikes of degreem ≥ 1
is a construct of the form:

� = (O, σ1, σ2, . . . , σm, syn, out),

where

– O = {a, ā} is the alphabet, where a is called spike and ā is called anti-spike;
– σ1, σ2, . . . , σm are neurons of the form σi = (ni , Ri ) with 1 ≤ i ≤ m, where

1. ni ∈ Z is the initial number of spikes contained in neuron σi ;
2. Ri is a finite set of rules of following two forms:
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(a) E/bc → b′, where E is the regular expression over {a} or {ā},b, b′ ∈ {a, ā} and
c ≥ 1;

(b) bs → λ for some s ≥ 1 with the restriction that bs /∈ L(E) for any rule
E/bc → b′ from Ri and b ∈ {a, ā};

– syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn is the set of synapses between
neurons;

– out ∈ {1, 2, . . . ,m} indicates the output neuron.
The rules of the form E/bc → b′ are spiking rules. They are applied as follows: if neuron
σi contains k spikes/anti-spikes b with bk ∈ L(E) and k ≥ c, then the rule E/bc → b′
is enabled to apply. The application of the rule means c spikes/anti-spikes b are consumed
(thus k − c spikes/anti-spikes b remain in neuron σi ) and one spike/antispike b′ is sent out
to all neurons σ j such that (i, j) ∈ syn. For any spiking rule E/bc → b′, if L(E) = bc,
then it is simply written as bc → b′. Every neuron can contain several spiking rules. Because
two spiking rules, E1/bk1 → b′ and E2/bk2 → b′, can have L(E1) ∩ L(E2) 	= ∅, it is
possible that two or more spiking rules can be used in a neuron at some moment, while only
one of them is chosen non-deterministically. It is important to notice that the applicability
of a spiking rule is controlled by checking the number of spikes/anti-spikes contained in the
neuron against a regular expression over {a} or {ā} associated with the rule.

Rules of the form bs → λwith b ∈ {a, ā} and s ≥ 1 are forgetting rules, by which certain
number of spikes or anti-spikes can be removed out of the neuron. Specifically, if neuron
σi contains exactly s spikes/anti-spikes, then the forgetting rule bs → λ, b ∈ {a, ā} from
Ri can be applied. For any regular expression E associated with a spiking rule from Ri , it
satisfies that bs /∈ L(E). It means if a spiking rule is applicable, then no forgetting rule is
applicable, and vice versa.

A global clock is assumed, marking the time for all neurons. The systems work in the
asynchronousmanner, that is, in each time unit, if a neuron has a applicable spiking/forgetting
rule, this rule is not obligatorily used, which means the neuron is free to choose to use the
spiking/forgetting rule or not. In other words, the neuron can remain still in spite of the fact
that it contains spiking/forgetting rules which are enabled by its contents. If the contents of
the neuron are not changed, the spiking/forgetting rule that are enabled at a certain step can
be applied later. If the new coming spikes or anti-spikes (maybe both) make the spiking or
forgetting rule unable to use, the computation continues in the new circumstances (maybe
other rules are enable now).

In asynchronous ASN P systems, any neuron can have either spikes or anti-spikes, but not
both of them.When spikes and anti-spikes meet in a neuron, they will immediately annihilate
each other, that is, if a neuron contains both spikes and anti-spikes, then the annihilating
rule must be applied in a maximal manner without taking any time. Specifically, if a neuron
contains ar spikes and ās anti-spikes inside, then the annihilating rule aā → λ is immediately
applied in a maximal manner, ending with r − s spikes or s − r anti-spikes in the neuron. It
is the reason why the regular expression E from any spiking rule E/bc → b′ is over {a} or
{ā}, but not over {a, ā}.

The set of synapses between neurons is denoted by syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}
with (i, i) /∈ syn. If (i, j) ∈ syn, then there is a synapses from neuron σi to neuron σ j ,
along which the spike or anti-spike produced by neuron σi can be sent to neuron σ j . We can
also use weighted synapses in asynchronous ASN P systems, where each connected pair of
neurons is endowed with an integer number, which is called the weight of the synapse, to
denote the number of synapses between them. The set of weighted synapses between each
pair of neurons is of the form syn′ ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} ×N. For any r ∈ N and
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i ∈ {1, 2, . . . ,m}, it holds (i, i, r) /∈ syn, which means there is no synapse for any neuron to
emit spikes or anti-spikes to itself. The function of weighted synapses is as follows: at any
moment, if neuron σi fires and sends one spike/anti-spike along synapse (i, j, r) ∈ syn, then
r spikes/anti-spikes will be received by neuron σ j .

The configuration of the systems is of the form 〈c1, c2, . . . , cm〉 with ci ∈ Z. At any
moment, if ci ≥ 0, it means that there are ci “positive” spikes in neuron σi ; if ci < 0, it
indicates that neuron σi contains ci anti-spikes. By using spiking and forgetting rules, one
can define transitions among configurations. A series of transitions starting from the initial
configuration is called a computation. A computation is successful if it reaches a halting
configuration,where no rule can be applied in anyneuron (i.e., the systemhas halted).Because
of working in the asynchronous mode, the output neuron can remain still for any long time
between two consecutive spikes. Hence, the result of a computation can no longer be defined
in terms of the steps between two consecutive spikes. The result of a computation in the
asynchronousASNP system is defined as the total number of spikes sent into the environment
by the output neuron. We impose the restriction that the output neuron produces only spikes,
not also anti-spikes; this restriction is only natural/elegant, but not essential. Specifically, a
number x is generated by an asynchronous SNP system if there is a successful computation of
the system where the output neuron emits exactly x spikes out to the environment. Because
of the non-determinism in using the rules, a given system computes in this way a set of
numbers. The set of all numbers computed in this way by an asynchronous ASN P system
� is denoted by N (�).

By NSpiktotASNP
asyn
m (rulek, f orgl , weih), we denote the family of sets of numbers

generated by asynchronousASNP systemswith atmostm neurons,where in any neuron there
are at most k rules, any forgetting rule removes at most l spikes/anti-spikes each time and the
weight of the synapses is at most h. If one of the parametersm, k, l and h is not bounded, then
it is replaced with ∗. For any m, k, l and h, it holds NSpiktotASNP

asyn
m (rulek, f orgl , weih)

⊆ NSpiktotASNP
asyn∗ (rule∗, f org∗, wei∗). If the forgetting rules or weighted synapses are

not used, the indication of f org or wei will be removed from the notation. The subscript
tot reminds us of the fact that we count all spikes sent into the environment as computation
results.

4 Computing Power of Asynchronous ASN P Systems

In this section, we consider the computing power of ASN P systems working in the asynchro-
nousmanner.We prove that asynchronousASNP systems can characterize SLIN by achieving
the equivalence with 1-output monotonic counter machines. Moreover, asynchronous ASN P
systems with weighted synapses are proved to be Turing completeness by simulating register
machines. Hence, the weighted synapses shows some “programming capacity” in the sense
of achieving computing power.

Asynchronous ASN P systems are represented graphically, which maybe easier to under-
stand than in a symbolic way. We use an oval with rules and initial spikes inside to represent
a neuron, and a directed graph to represent the structure of the system: the neurons are placed
in the nodes of the graph and the edges represent the synapses; the output neuron has an
outgoing arrow, suggesting their communication with the environment.

4.1 Computing Power of ASN P systems using General Synapses

Lemma 1 NSpiktotASNP
asyn∗ (rule∗, f org∗) ⊆ N (C M).
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Let � be an asynchronous ASN P system. In the following, we will prove that there exists a
1-outputmonotonic counter machine M , which can simulate the computations of�. Without
losing generality, it is assumed that the number in the counter of M never decreases before
the computation halting. In the simulation, the function of the output neuron σout in � can
be simulated by the unique counter of M , and the transitions among configurations of � is
simulated by the configuration transitions of M .

In the proof, besides using the configurations of �, the number of spikes emitting to the
environment by the output neuron is also considered to describe the instantaneous state of
the asynchronous ASN P system � in each time unit. Specifically, at certain step t , if the
configuration of � is Ci and the output neuron emits one spike out, then the instantaneous
state of � is 〈Ci , 1〉; if no spike is emitted out to the environment at that moment, then
the instantaneous state of � is 〈Ci , 0〉. Note that in each time unit, at most one spike can
be emitted out by the output neuron of �. At certain moment, suppose that system � is
in configuration Ci , and according to the transitions among configurations of asynchronous
ASN P systems, � can do only one of the following five operations in each time unit.

Proof 1. Ci ⇒ 〈Ci , 0〉:system � keeps in configuration Ci with output neuron emitting no
spike out to the environment. This is possible due to the asynchronous working manner
of �.

2. Ci ⇒ 〈C j , 0〉:system � proceeds to configuration C j from configuration Ci with output
neuron emitting no spike out to the environment. It means that some rules are applied in
certain neurons, but no spiking rule is applied in the output neuron σout .

3. Ci ⇒ 〈C j , 1〉:system � proceeds to configuration C j from configuration Ci with output
neuron emitting one spike out to the environment.It means that some rules are used in
certain neurons, where neuron σout uses a spiking rule and sends one spike out to the
environment.

4. Ci ⇒ 〈Ch, 0〉:system� proceeds to the halt configurationCh from configurationCi with
output neuron emitting no spike out to the environment.The total number of spikes emitted
out to the environment by the output neuron contributes the result of the computation of
�.

5. Ci ⇒ 〈Ch, 1〉:system � proceeds to the halt configuration Ch from configuration Ci

with output neuron emitting one spike out to the environment. The total number of
spikes emitted out to the environment by the output neuron contributes the result of the
computation �.

The state of the 1-output monotonic counter machine M in each time unit is composed of
its configuration and the numbers stored in the counter. Specifically, at any moment, if the
configuration of M is qi and the number in the output counter is ni , then state of M is of the
form qi [ni ]. In each time unit, the above five possible operations of asynchronous ASN P
system � can be simulated by M as follows.

Operation 1 can be simulated by the transition of M : qi [ni ] ⇒ qi [ni ], which means that
M keeps in configuration qi without using any instruction.

Operation 2 can be simulated by the transition of M : qi [ni ] ⇒ q j [ni ], which means that
M proceeds to configuration q j from qi by using an instruction of adding 0 to the output
counter.

Operation 3 can be simulated by the transition of M : qi [ni ] ⇒ q j [ni + 1], which means
that M proceeds to configuration q j from qi by using an ADD instruction of adding 1 to the
output counter.

Operation 4 is simulated by the transition of M : qi [ni ] ⇒ q f [ni ], which means that M
reaches the halting configuration q f from configuration qi by using an instruction of adding
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0 to the output counter. The number stored in the output counter contributes the result of the
computation of M .

Operation 5 is simulated by the transition of M : qi [ni ] ⇒ q f [ni + 1], which means that
M reaches the halting configuration q f from configuration qi by using an ADD instruction
of adding 1 to the output counter. The number stored in the output counter contributes the
result of the computation of M .

From the previous simulation, it is obtained that any number generated by the asynchro-
nous ASN P system� can also be generated by the 1-output monotonic counter machine M .
In the asynchronous ASN P system, We don’t use any restriction on the number of neurons,
the number of rules in any neuron and the most number of spikes/anti-spikes removed each
time by a forgetting rule. Therefore, it is obtained that NSpiktotASNP

asyn∗ (rule∗, f org∗) ⊆
N (CM). ��
Lemma 2 N (CM) ⊆ NSpiktotASNP

asyn∗ (rule2).

Let M be a 1-output monotonic counter machine with properties specified in Section 2.
In the following proofs, an asynchronous ASN P system �′ is constructed to simulate the
computation of M . The system �′ consists of two types of modules – ADD modules and
a FIN module. These modules will be given in graphical forms indicating neurons, initial
number of spikes and the set of rules present in each neuron. The annihilating rule will not
be indicted, since it is applicable in any neuron. The ADD modules are used to simulate the
ADD instructions of M , and the FINmodule is used to halt the computation of�′. In general,
a neuron σout is associated with the output counter of M . The number stored in the output
counter is represented by the number of spikes emitted by the neuronσout . Specifically, during
the simulation, if the number in the output counter of M increases one, then the number of
spikes emitted out to the environment by the neuron σout is increased by one.

With each instruction li in M , a neuron σli of �′ is associated. In the initial configuration,
all neurons are empty, with the exception of neuron σl0 associated with the initial instruction
l0 of M and neuron σ

l(1)h
, which contain one spike, respectively. During a computation, a

neuron σli having one spike inside will become active and starts to simulate an instruction
li : (ADD(r), li , l j ) of M : starting with neuron σli activation, neuron σout emits one spike to
the environment to simulate that the number in the output counter is increased by one, then
one spike is non-deterministically sent to neuron σl j or neuron σlk , which becomes active in
this way. When neuron σlh (associated with the halting instruction lh of M) is activated, a
computation in M is completely simulated in �′; the FIN module will halt the computation
of �′. (If neuron σlh is not activated, the computation of �′ can never halt, thus with no
computing results.)

Module ADD (shown in Fig. 1) – simulating an ADD instruction li : (ADD (r), l j , lk).
The initial instruction of M , the one with label l0, is an ADD instruction. Let us assume

that at step t , an instruction li : (ADD(r), l j , lk) has to be simulated, with one spike present in
neuron σli (like neuron σl0 in the initial configuration). Having one spike inside, neuron σli
can fire at some time and send a spike to neuron σ

l(1)i
. By using the rule a → ā at certain step,

neuron σ
l(1)i

fires sending an anti-spike to neurons σ
l(2)i

and σ
l(4)i

. With the anti-spike, neuron

σ
l(2)i

can fire by using the rule ā → a, and one spike is sent to neurons σ
l(3)i

, σ
l(5)i

and σout ,

respectively. Neuron σout can fire at some moment by the rule a → a, sending one spike
to the environment, which simulates the number in the output counter of M is increased by
one. Neuron σout also sends one spike to neuron σ

l(3)i
, which can fire by using one of its two

spiking rules. There are the following two cases in neuron σ
l(3)i

.
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Fig. 1 Module ADD of �′
(simulating li : (ADD(r), l j , lk )) a → a

li
a → −a

l(1)i

−a → a
l(2)i

a → a

out

a2 → a
a2 → −a

l(3)i

−a2 → a
l(4)ia2 → a

l(5)i

a → a
lk

a → a
l j

Fig. 2 Module FIN of �′
a a

lh

a
a a

l(1)h
a a

l(2)h

Proof (1) In neuron σ
l(3)i

, if rule a2 → a is chosen to be applied, then neuron σ
l(3)i

emits one

spike to neurons σ
l(4)i

and σ
l(5)i

, respectively. Having two spikes, neuron σ
l(5)i

will become

active at some time and emits a spike to neuron σl j . Hence, neuron σl j will be eventually
activated, which simulates that M reaches instruction l j . Moreover, in neuron σ

l(4)i
, the

anti-spike will be annihilated as soon as the spike from neuron σ
l(3)i

arrives. When neuron

σl j fires, all the neurons neurons are in the initial configuration. The system �′ proceeds
to a new configuration of the computation.

(2) In neuron σ
l(3)i

, if rule a2 → ā is chosen to be applied, then neuron σ
l(3)i

sends an anti-

spike to neurons σ
l(4)i

and σ
l(5)i

. With two anti-spikes, neuron σ
l(4)i

can fire by the rule

ā2 → a sending a spike to neuron σlk at certain step. Neuron σlk will eventually become
active to simulate that M reaches instruction lk . The spike in neuron σ

l(5)i
is annihilated

by the anti-spike from neuron σ
l(3)i

. When neuron σk fires, all the neurons neurons are

in the initial configuration, hence system �′ continues the simulation and proceeds to a
new configuration of the computation.
Therefore, from firing neuron σli , the system sends one spike to the environment and

non-deterministically fires one of neurons σl j and σlk , which correctly simulates the ADD
instruction li : (ADD(r), l j , lk).

The FIN module, shown in Fig. 2, simulate the halting instruction lh = (HALT). Note that
if the neuron σlh is not activated, system �′ will never proceed to a halting configuration,
because at any moment one of the two neurons σ

l(1)h
and σ

l(2)h
in the FIN module will contain

one spike and keep fireable. To simulate M proceeding to the halt instruction, neuron σlh
receives one spike and becomes active at some time. By using the rule a → ā, neuron σlh
sends an anti-spike to neurons σ

l(1)h
and σ

l(2)h
. The spike either in neuron σ

l(1)h
or σ

l(2)h
will be

annihilated by the coming anti-spike. This will halt the computation of �′.
From the above description of the modules and their works, it is clear that the 1-output

monotonic counter machine M is correctly simulated by the asynchronous ASN P system
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�′. We can check that neurons in system �′ have at most two rules. Therefore, it is obtained
N (CM) ⊆ NSpiktot ASN Pasyn

m (rule2).
From Lemma 2, we can obtain that
N (CM) ⊆ NSpiktot ASN Pasyn

m (rule2) ⊆ NSpiktot ASN Pasyn∗ (rule∗).
Combining with Lemma 1, the following theorem can be achieved. ��

Theorem 1 NCM = NSpiktot ASN Pasyn
m (rule∗, f org∗).

Therefore, asynchronous ASN P systems can characterize SL I N .
From the previous explanation, we can obtain the equivalence between asynchronousASN

P systems without weighted synapses and 1-output monotonic counter machines. Hence,
asynchronous ASN P systems hold those closure properties and decision problems that are
associated with 1-output monotonic counter machines [7].

1. (Union, intersection, complementation) The sets of numbers generated by asynchronous
ASN P systems are closed under union and intersection, but not closed under comple-
mentation.

2. (Membership) For a given asynchronous ASN P system� and a number n, it is decidable
to determine if � generates n.

3. (Emptiness) For a given asynchronousASNP system�, it is decidable that if� generates
an empty set of numbers.

4. (Infiniteness) For a given asynchronous ASN P system �, it is decidable that if � gen-
erates an infinite set of numbers.

5. (Disjointness) For two given asynchronous ASN P systems� and�′, it is decidable that
if � and �′ generate a common number.

6. (Containment) For two given asynchronous ASN P systems, it is decidable if the set of
numbers generated by one is contained in the set of numbers generated by the other one.

7. (Equivalence) For two given asynchronousASNP systems, it is decidable if they generate
the same set of numbers.

4.2 Computing Power of ASN P Systems Using Weighted Synapses

Theorem 2 NSpiktot ASN Pasyn
m (rule2, wei3) = NRE.

Weonly have to prove thatNRE ⊆ NSpiktot ASN Pasyn
m (rule2, wei3), since the converse

inclusion is straightforward (or we can invoke for it from the Turing-Church thesis). To this
aim, we use the characterization of N RE by means of register machines in the generative
mode. Let us consider a register machine M = (m, H, l0, lh, I ). As introduced in Section 2,
without any loss of generality, we may assume that in the halting configuration, all registers
different from register 1 are empty, and that output register is never decremented during
a computation. For each register r of M , let sr be the number of instructions of the form
li : (SUB(r), l j , lk), i.e., all SUB instructions acting on register r . If there is no such SUB
instruction, then sr = 0, which is the case for the first register r = 1. In what follows, a
specific asynchronous ASN P system �′′ will be constructed to simulate the computation of
register machine M .

The system �′′ consists of three types of modules – ADD modules, SUB modules, and
a FIN module shown in Figs. 3, 4, 5, respectively. The ADD and SUB modules are used
to simulate the ADD and SUB instructions of M , and the FIN module is used to output
a computation result. These modules will be given in graphical forms indicating neurons,
weighted synapses, initial number of spikes and the set of rules present in each neuron. Each
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Fig. 3 Module ADD of �′′
(simulating li : (ADD(r), l j , lk )) a a

li r

a a
l(1)i

a a
l(2)i

a a
a a

l(3)i
a2 a

l(4)i
a2 a

l(5)i

a a
l j

a a
lk

2

a a
li a(aa) / a3 a

a a

r

a2 a

l(1)i
a a

l(2)i

a a
l(3)i

a a
l(4)i

a a
l(5)i

a a
l j

a a
lk

2

3

l(1)s1

l(1)s2

l(1)sr

l(2)s1

l(2)s2

l(2)sr

...

...

2

2

2

l(1)s1

l(1)s2

l(1)sr

l(2)s1

l(2)s2

l(2)sr

...

...

2

2

2

Fig. 4 Module SUB of �′′ (simulating li : (SUB(r), l j , lk ))

Fig. 5 The FIN module of �′′
a a

lh
a(aa) / a2 a

1

weighted synapse is associated with an internal number denoting the number of synapses
between each pair of connected neurons, and there is no confliction that synapses with weight
1 were not associated with any numbers. The annihilating rule can be used immediately if it
is applicable in any neuron. Here, this rule will not be indicted in the set of rules in graphical
neurons for simplification.

In general, for each register r ofM , a neuron σr is associated; the number stored in register
r is encoded by the number of spikes in neuron σr . Specifically, if register r holds the number
n ≥ 0, then neuron σr contains 2n spikes. For each label li of an instruction in M , a neuron
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σli is associated. In the initial configuration, all neurons are empty, with the exception of
neuron σl0 associated with the initial instruction l0 of M , which contains one spike.

During a computation, a neuron σli having one spike inside will become active and start to
simulate an instruction li : (OP(r), l j , lk) of M : starting with neuron σli activated, operating
neuron σr as requested by OP, then introducing one spike into neuron σl j or neuron σlk ,
which becomes active in this way. When neuron σlh (associated with the label lh of the
halting instruction of M) is activated, a computation in M is completely simulated in �′′;
the FIN module starts to output the computation result (the number of spikes sent into the
environment by the output neuron corresponds to the number stored in register 1 of M).

In what follows, the work of modules ADD, SUB and FIN are described (that is, how they
simulate the instructions of M and output a computation result).

Module ADD (shown in Fig. 3) – simulating an ADD instruction li : (ADD (r), l j , lk).
The initial instruction of M , the one with label l0, is an ADD instruction. Let us assume

that at step t , an instruction li : (ADD(r), l j , lk) has to be simulated. Having one spike inside,
neuronσli fires at some time by using the rule a → a. Since theweight of the synapse between
neurons σli and σr is 2, neuron σr will receive two spikes, which simulates the number in
register r is increased by one. Meanwhile, neuron σli emits one spike to neuron σ

l(1)i
. With

one spike inside, neuron σ
l(1)i

can fire at some moment sending an anti-spike to neurons σ
l(2)i

and σ
l(5)i

, respectively. By receiving the anti-spike, neuron σ
l(2)i

becomes active at any time

sending one spike to neurons σ
l(3)i

and σ
l(4)i

. In neuron σ
l(3)i

, one of the two spiking rules a → a

and a → ā will be non-deterministically chosen to apply. The non-deterministic choice of
the two rules determines the non-deterministic choice of neuron σl j or σlk to activate.

In neuron σ
l(3)i

, if the rule a → a is applied, then it emits one spike to neurons σ
l(4)i

and σ
l(5)i

. The anti-spike in neuron σ
l(5)i

will be annihilated by the spike from neuron σ
l(3)i

,

so neuron σ
l(5)i

contains no spike or anti-spike and keeps inactive. With two spikes inside,

neuron σ
l(4)i

can fire at some time by the rule a2 → a sending one spike to neuron σl j , which

will become active at some time, starting to simulate the instruction l j of M .
In neuron σ

l(3)i
, if the rule a → ā is applied, then it emits an anti-spike to neurons σ

l(4)i
and

σ
l(5)i

. When the anti-spike arrives in neuron σ
l(4)i

, the spike in the neuron will be annihilated,

so neuron σ
l(4)i

can not fire. Having two anti-spikes, neuron σ
l(5)i

will fire at some time by the

rule ā2 → a sending one spike to neuron σlk . Neuron σlk will fire at any time, starting to
simulate the instruction lk of M .

Therefore, from firing neuron σli , the system adds two spikes to neuron σr and non-
deterministically fires one of the neurons σl j and σlk , which correctly simulates the ADD
instruction li : (ADD(r), l j , lk).

Module SUB (shown in Fig. 4) – simulating a SUB instruction li : (SUB(r), l j , lk).
A SUB instruction li is simulated in �′′ in the following way. Initially, neuron σli has one

spike, and other neurons are empty, except neurons associated with registers. With one spike
inside, the rule a → a in neuron σli is enabled, and neuron σli will fire at some step sending
one spike to neurons σ

l(1)i
, σ

l(2)i
and σr . At that moment, neuron σ

l(1)i
and σ

l(2)i
contain one

spike and keep inactive. For neuron σr , there are the following two cases.

Proof (1) Neuron σr has 2n (n > 0) spikes (corresponding to the fact that the number stored
in register r is n, and n > 0) before it receives one spike from neuron σli . In this case,
neuron σr contains 2n + 1 spikes after it receives one spike from neuron σli , and the
rule a(a2)+/a3 → a is enabled. When neurons σr fires at some step, one spike is sent
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to neuron σ
l(1)i

, as well as two spikes are sent to neuron σ
l(2)i

. In neuron σr , three spike

are consumed, ending with 2n + 1 − 3 = 2(n − 1) spikes, which simulates that the
number stored in register r is decreased by one. With two spikes inside, neuron σ

l(1)i
can

fire sending one spike to neuron σ
l(3)i

. When neuron σ
l(3)i

fires, neuron σ
l(2)i

can receive

three anti-spikes. which will immediately annihilate the three spikes in the neuron. By
receiving the anti-spike from neuron σ

l(3)i
, neuron σ

l(5)i
fires at some time sending a spike

to neuron σl j , hence neuron σl j will become active, and the system �′′ starts to simulate
instruction l j of M .

(2) Neuron σr has 0 spike (corresponding to the fact that the number stored in register r is
0) before it receives one spike from neuron σli . In this case, after neuron σr receives one
spike from neuron σli , the rule a → ā in neuron σr is enabled. When neuron σr fires at
some step, an anti-spike is emitted to neuron σ

l(1)i
, as well as two anti-spikes are emitted

to neuron σ
l(2)i

. The spike in neuron σ
l(1)i

can be annihilated by the anti-spike from neuron

σr , so the neuron will keep inactive. In neuron σr , one spike is consumed, ending with 0
spike, which means that the number stored in register r of M is still zero. In neuron σ

l(2)i
,

the spike is annihilated by one of the two anti-spikes from neuron σr , so the neuron ends
with an anti-spike and the rule ā → a is enabled. Neuron σ

l(2)i
fires at some time sending

one spike to neuron σlk , hence neuron σlk will become active, and the system �′′ starts
to simulate instruction lk of M .

The simulation of SUB instruction is correct: system �′′ starts from firing neuron σli and
ends in firing neuron σl j (if the number stored in register r is great than 0 and decreased by
one), or in firing neuron σlk (if the number stored in register r is 0).

Note that there is no interference between the ADDmodules and the SUB modules, other
than correctly firing the neurons σl j or σlk , which may label instructions of the other kind.
However, it is possible to have interference between two SUB modules. Specifically, there
are sr SUB instructions lv that act on register r , hence neuron σr has synapse connection to
all neurons σ

l(1)v
and σ

l(2)v
. When a SUB instruction li : (SUB(r), l j , lk) is simulated, in the

SUBmodule associated with lv (lv 	= li ) all neurons receive no spike except for neurons σ
l(1)v

and σ
l(2)v

.

If neuron σr fires by the rule a(aa)+/a3 → a, then it sends one spike to each of neurons
σ
l(1)v

, as well as two spikes to each of neurons σ
l(2)v

. In this case, neuron σ
l(3)i

will fire at

some time sending an anti-spike to each of neurons σ
l(1)v

, and two anti-spikes to each of
neurons σ

l(2)v
, with lv 	= li . The neurons σ

l(1)v
and σ

l(2)v
end with no spike/anti-spike inside.

Consequently, the interference among SUB modules will not cause undesired steps in �′′
(i.e., steps that do not correspond to correct simulations of instructions of M).

If neuron σr fires by the rule a → ā, then it sends anti-spike to each of neurons σ
l(1)v

, as
well as two anti-spikes to each of neurons σ

l(2)v
. In this case, neuron σ

l(4)i
will fire at some

time sending one spike to each of neurons σ
l(1)v

, and two spikes to each of neurons σ
l(2)v

with
lv 	= li . The neurons σ

l(1)v
and σ

l(2)v
end with no spike/anti-spike. The interference among

SUB modules will not cause undesired steps in �′′.
Module FIN (shown in Fig. 5) – outputting the result of computation.
Assume that the computation in M halts (that is, the halting instruction is reached), which

means that neuron σlh in �′′ has one spike. At that moment, neuron σ1 contains 2n spikes,
for the number n ≥ 1 stored in register 1 of M . With one spike inside, neuron σlh will fire at
some step sending one spike to neuron σ1. After neuron σ1 receives the spike from neuron

123



646 T. Song et al.

σlh , the number of spikes in neuron σ1 becomes 2n + 1 spikes, and the rule a(aa)+/a2 → a
is enabled. When neuron σ1 fires, it sends one spike into the environment consuming two
spikes. Note that the number of spikes in neuron σ1 is still odd. So, if the number of spikes
in neuron σ1 is not less than three, then neuron σ1 will fire again at some step sending one
spike into the environment. In this way, neuron σ1 can fire for n times (i.e., until the number
of spikes in neuron σ1 reaches one). For each time when neuron σ1 fires, it sends one spike
into the environment. So, in total, neuron σ1 sends n spikes into the environment, which is
exactly the number stored in register 1 of M at the moment when the computation of M
halts. Where neuron σ1 contains one spike, no rule is enabled in the neuron, thus system �′′
eventually halts.

From the above description of the modules and their works, it is clear that the register
machine M is correctly simulated by the system �′′, where any neuron contains at most 2
rules, no forgetting rule is used in any neuron, and the most weight of the weighted synapses
is 3. Therefore, N (M) = NSpiktot ASN Pasyn

m (rule2, wei3). This completes the proof. ��

5 Final Remarks

We have considered the computing power of asynchronous ASN P systems with and without
weighted synapses. In the asynchronous systems, in each timeunit, neuronswith enabled rules
is free to choose to use the rule. In otherword, the neurons can remain still and receive spikes or
anti-spikes (maybe both) from its neighboring neurons. The asynchronous working manner
will decrease the computing power of the ASN P systems. Specifically, ASN P systems
working in the asynchronous manner with no weighted synapses can only characterize the
SL I N . This result is obtained by achieving the equivalence between asynchronous ASN P
systems (with noweighted synapses) and 1-outputmonotonic countermachine.Whenwe use
weighted synapses, we prove that the asynchronous ASN P system with weighted synapses
(with weight not more than three) can do what Turing machine can do, i.e. achieving the
Turing completeness.

There are several open problems and research topics deserving further research. In ASN
P systems, spiking rules are of the form E/bc → b′, and there are four categories of spiking
rules identified by (b, b′) ∈ {(a, a), (a, ā), (ā, a), (ā, ā)}. In the proof of Theorem 2, three
categories of spiking rules (identified by (a, a), (a, ā) and (ā, a)) are used. It is worth
to investigate whether the universality can be obtained with using less types of spiking
rules.

Artificial Neural networks have been widely applied in optimization (see e.g. [3,4,23])
and control systems (see e.g. [5,22]). It is worthy to investigate the performance of RSSN P
systems on these fields. Another interesting problem is when the application of annihilating
rules is not obligatorily used in the neurons, how about of the computing power of such
systems? Following the “homogenous” idea from [20], can we decrease the number of types
of neurons in the universal asynchronous ASN P systems, in sense of having a less number
of sets of rules in each neuron. As usual, it is also worth to investigate computing power of
asynchronous ASN P systems under different computational modes.
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18. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143
19. Rozenberg G, Salomaa A (1997) Handbook of formal languages. Springer-Verlag, Berlin
20. Song T,Wang X (2014) Homogeneous spiking neural P systems with inhibitory synapses. Neural Process

Lett. doi:10.1007/s11063-014-9352-y
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