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Abstract In this paper a new dynamic over-sampling method is proposed, it is a hybrid
method that combines a well known over-sampling technique (SMOTE) with the sequential
back-propagation algorithm. The method is based on the back-propagation mean square
error (MSE) for automatically identifying the over-sampling rate, i.e., it allows only the use
of necessary training samples for dealing with the class imbalance problem and avoiding to
increase excessively the (neural networks) NN training time. The main aim of the proposed
method is to obtain a trade-off between NN classification performance and NN training time
on scenarios where the training data set represents a multi-class classification problem, it
is high imbalanced and it might request a large NN training time. Experimental results on
fifteen multi-class imbalanced data sets show that the proposed method is promising.

Keywords High multi-class imbalance · Sequential back-propagation algorithm ·
Mean square error · Dynamic over-sampling technique · SMOTE

1 Introduction

Back-propagation is now the most widely used tool in the field of artificial neural networks
(NN). However, despite the general success of the back-propagation, several major deficien-
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cies are still needed to be solved. The major disadvantage of back-propagation is the slow
rate of convergence of net output error [27,38]. This is especially difficult in class imbalance
problems [3,35], and often it is the cause of the poor classifications performance of the NN.

The class imbalance problem occurs when, in a classification problem, there are many
more samples of some classes than others [13]. This problem exists in many real-world
domains, such as spotting unreliable telecommunications customer, detection of oil spills
in satellite radar images, detection of fraudulent telephone calls, information retrieval and
filtering task and so on [24].

Much research has been done in addressing the class imbalance problem [21,39]. In the
back-propagation in “batch mode” [19], it is very popular the use of cost function to deal
with class imbalance problem (e.g. see Ref. [2,6,25,26,31,35]). In these approaches, the
basic idea is modify the error function of the back-propagation by introducing different costs
associated with making errors in different classes, for dealing class imbalance.

In the “sequential” back-propagation (which estimates the error based on individual error
training sample [19]), a common practice is to apply re-sampling techniques on the original
training dataset, either by over-sampling or under-sampling or both. The re-samplingmethods
are the most researched because they are independent of the underlying classifier and can be
easily implemented for any problem [32].

The simplest method to increase the size of theminority class corresponds to random over-
sampling, which is a non-heuristic method that balances the class distribution through the
random replication of positive examples [21,23]. Nevertheless, since this method replicates
existing examples in the minority class, overfitting is more likely to occur.

Others over-sampling methods with some heuristic techniques have been proposed.
Chawla et al. [7] proposes the synthetic minority over-sampling technique (SMOTE), which
generates new synthetic minority samples by interpolating between several preexisting pos-
itive examples that lie close together. In Ref. [17] the Borderline-SMOTE was presented,
which, it only over-samples the borderline samples of the minority class. Adaptive synthetic
sampling (ADASYN) was proposed as a technique that uses a systematic method for adap-
tively creating different amounts of synthetic data according to their distributions [20]. García
et al. [16] uses surrounding neighborhood approaches with the aim of generating artificial
minority examples, but taking both the proximity and the spatial distribution of the examples
into account.

On the other hand, random under-sampling is the most popular technique among this
nature, whose aim is at balancing the dataset through the random removal of negative exam-
ples. Despite its simplicity, it has empirically been shown to be one of the most effective
re-sampling methods [23]. However, some works agree [9,21,36] in that the random under-
sampling is weakened in multi-class scenarios and it can cause great performance reduction
to those majority classes. Many other under-sampling proposals are based on a more intelli-
gent selection of the negative examples to be eliminated [21], for example the Tomek link,
the nearest neighbor rule (NNR), the condensed NNR [4], the Gabriel Graphs [2] genetic
algorithms [15], so on. It is also common to blend the over and under samplings methods
[2,4,8,10]

As been stated by several authors, the re-sampling methods may entail important criticism
and limitations:

1. How to automatically discover the proper amount of sampling (sampling rate)? [8].
2. In severe class imbalance problems, over-sampling methods modifies the data set prob-

ability distribution, cause longer training time and suffers from high computational cost
in terms of memory [9,13].
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3. The under-sampling techniques involves a lost of information which can be detrimental
for the classifier performance [9,21,36].

The present paper focus in the first and second point with the aim to determine a proper
over-sampling rate without sacrificing the performance on the minority classes, while also
reducing the training time and the computational cost. In brief, we propose a dynamicmethod
that allows the efficient use of an over-sampling strategy on severe multi-class imbalanced
problems. The method is based on the back-propagation mean square error (MSE) for auto-
matically identifying the over-sampling rate. More specifically, the main contributions of this
paper/method/technique are :

1. To deal with severe multi-class imbalance problems, which have been less investigated
[36].

2. To provide an efficient way of over-sampling minority classes on highly multi-class
imbalance problems.

3. A simple method for automatically finding the over-sampling rate which does not need
the free parameters and it is very easy to implement.

The rest of this paper is organized as follows. Related works are briefly reviewed in Sect. 2.
In Sect. 3 we introduce the proposed method for tackling the multi-class imbalance problem,
and the Sects. 4 and 5 show the experimental set up and results, respectively. Finally, Sect. 6
is for concluding remarks.

2 Related Works

A common practice for dealing with class imbalanced data sets is to re-balance them artifi-
cially through the re-sampling techniques [21]. However, a supported concern in researches
in data mining and machine learning has been to deal with improving the re-sampling meth-
ods [8,34]. Some efforts have been addressed to overcome one of its main criticisms: to find
the proper over or under sampling rate.

Fernández Navarro et al. [13,14] present a dynamic over-sampling algorithm to deal
with multi-class imbalance problems on Radial Basis Function and Multilayer Perceptron,
respectively. In that approach, the data set is modified into two stages. In the first stage, the
data set is preprocessed with SMOTE to reduce the class imbalance ratio. The number of
samples created by SMOTE in this stage is less than 1/2∗ J where J is the number of classes.
In the second stage, a memetic Algorithm [29] is proposed to obtain the best parameters for
NN. Next, the SMOTE algorithm is applied to the minimum sensitivity class to decrease
the imbalance problem. This stage is in order to run while stop condition is not succeed.
However, the authors do not present the class imbalance ratio resulting from finishing this
proccess or its computational efficiency.

Chawla et al. [8] propose a wrapper paradigm that discovers the amount of re-sampling
for a data set based on optimizing evaluation functions like the f-measure, area under the
ROC curve (AUROC), cost, cost-curves, and the cost dependent f-measure. The classifiers
base were C4.5 and RIPPER. To discover the re-sampling amounts, the five-cross validation
method is applied at the training set, and the next two stages are to run. First, the wrapper
finds the under-sampling percentages for the dataset. The process consists in decreasing
the majority class to improve the minority classification performance without sacrificing
performance on themajority class. In the second stage, the amount of SMOTE is incremented,
and it is evaluated whether the performance is increased with the new SMOTE amount.
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This process repeats, greedily, until not performance gains are observed. Once that the re-
sampling amounts are obtained, they are used for re-sampling the original training dataset
and the classifier is trained again. The result presented by the authors demonstrated the
effectiveness of the generalization performance of the proposed method. However, the over-
sampling amounts showed in some datasets are much higher than to balance at 100 % the
dataset, therefore, we considered that the wrapper paradigm might be not efficient in NN. In
this respect, a very similar work is presented by Debowski et al. [10], but at difference of
Chawla et al. [8], it shows important weaknesses. For example, the stopping condition is not
clear and we consider that the experimental framework is limited.

Ref. [30,33] present the snowball method to deal with the class imbalance problem. It is
a dynamic over-sampling training method for NN. The basic idea is to first train the NN only
with the examples of the minority class. Next, they use a dynamic training which includes all
examples of minority class and a gradual increasing of number of examples of the majority
class in the training. In this way, the effect of undoing the presentation of minority class
examples can be greatly reduced. However the authors contradict their owns results, in Ref.
[30] Murphey says, that on Back-propagation, the classification accuracy increased over
the minority class with the price of dramatically decreasing classification accuracy over the
majority class, and Ou et al. [33] show that Snowball method gives the best performance
without any loss on the majority classes.

A similar work is presented by Bo-Yu Li [28]. The basic idea is for training the NN
with a dynamic threshold learning algorithm. This method uses multiple dynamic threshold
parameter to gradually remove some training samples that can be classified correctly by the
NN, and, in this way to get a class balance and to improve the classification performance over
the minority classes. But in the same way that in others works [2,30], the cost of improving
the minority classes performance is to sacrifice the effectiveness of the NN on the majority
classes.

We proposed a method which is different to the other works in the “approach”, i.e., it deals
to reduce as much as is possible the NN training time, when it is trained with multi-class
imbalanced datasets, without significantly loss of the classification performance, and in this
way to deal with one of the major disadvantages of back-propagation (the NN training time).
This is very important on scenarios where the NN is trained from datasets of considerable size
with highly imbalanced classes. For example in the classification of hyperspectral remote
sensing images, where the over-sampling strategies may increase too much the training time
or the under-sampling might seem inapplicable due to the important loss of information.

3 Proposed Method for Dealing with Multi-class Imbalance Problems

It is well known that in the back-propagation algorithm the class imbalance problemgenerates
unequal contributions to the mean square error (MSE) in the training phase [2,3]. So the
training process also becomes slow and it takes long time to converge to the expected solution.

The main problem consists in that the majority classes produce the major contribution to
the MSE. Let us consider the next: Given a training dataset (TDS) with two classes (J = 2)
such that Q = ∑J

j Q j and Q j is the number of samples from class j , and supposing that
the MSE by class can be expressed as

E j (U ) = 1

Q

Q j∑

i=1

J∑

p=1

(t ip − zip)
2 , (1)
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where t ip is the desired output and zip is the actual output of the network for the sample i .
Then the overall MSE can be expressed as

E(U ) =
J∑

j=1

E j (U ) = E1(U ) + E2(U ) . (2)

If Q1 << Q2 then E1(U ) << E2(U ) and ‖∇E1(U )‖ << ‖∇E2(U )‖, where the
operator ∇ denotes the gradient of the error function. Consequently, ∇E(U ) ≈ ∇E2(U ).
So, −∇E(U ) is not always the best direction to minimize the MSE in both classes [3].

In the batch mode back-propagation is a common practice to balance the MSE including
a cost function γ ( j) for balancing the MSE, i.e, γ (1)‖∇E1(U )‖ ≈ γ (2)‖∇E2(U )‖ [2,6,
25,26,31,35]. Nevertheless, in the sequential mode of back-propagation it is not trivial task.
For this reason is normal the use of the re-sampling techniques to deal with balancing the
MSE on the training process.

In this work we propose a dynamic over-sampling technique to balance the MSE on the
training stage when a multi-class imbalanced dataset is used. The propose method consists
in two steps:

1. Before training: The TDS is balanced at 100 % through of an effective over-sampling
technique. In this work we use SMOTE [7].

2. During training: The MSE by class (E j ) is used to determinate the number of samples
by class (or ratio of class) in order to forward it to the NN. The equation employed to
obtain the ratio of class is defined as

ratio j = Emax

E j
∗ Q j

Qmax
; for j = 1, 2, ..., J , (3)

where J is the number of classes in the dataset and max identifies at the largest majority
class. The Eq. 3 allows to balance the MSE by class reducing the impact of the class
imbalance problem on the NN. The Algorithm 1 shows the implementation of this step.

The main peculiarity of our proposed method is that in the training stage only uses the
necessary samples for dealing with the class imbalance problem and in this way to avoid a
poor performance of classifications resulting from the NN over the minority classes and the
NN training time is not increased excessively.

The proposed method (detailed in Algorithm 1) shows the next advantages:

1. It is a simple method with a single classifier.
2. It does not need more free parameters than the standard back-propagation.
3. It only uses the necessary samples in the training stage to get a MSE by class relatively

balanced.

4 Experimental Setup

In order to evaluate the validity and performance of the technique just proposed, we have
accomplished thorough experiments on several multi-class imbalanced data sets. In this
section, we will describe the techniques, data sets and experimental framework used in the
paper.
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Algorithm 1MSE back-propagation over-sampling technique (MSEBPOS).
Input: N (number of input nodes), M (number of middle neurodes), J (classes), x(q) (the exemplar vectors), tk(q) (the paired
identifier vectors), I number of epochs; and learning rate η.
Output: the weights w = (w11, w21, ..., wNM ) u = (u11, u21, ..., wMJ ), the total and partial MSE (E, E j ) respectively.
INIT( ):
1: Read MLP file (N , M, J, Q, I and η);
2: Generate initial weights randomly between −0.5 and 0.5;
3: Initial ratio j = Q j /Qmax ; for j = 1, 2, ..., J

LEARNING( ):
4: while i < I or E > 0.001 do
5: for q = 0 to Q do
6: if Random( ) <= ratioclass(xq ) then
7: Forward(xq );
8: Update(xq );
9: end if
10: end for
11: ratio j = (Emax /E j ) ∗ Q j /Qmax ; for j = 1, 2, ..., J
12: end while

FORWARD(xq ):
13: for m = 0 to m < M do
14: for n = 0 to n < N do
15: ym ← ym + xqn ∗ wnm ;
16: end for
17: ym = net (ym );
18: end for
19: for j = 0 to j < J do
20: for m = 0 to m < M do
21: z j ← z j + umj ∗ ym ;
22: end for
23: z j ← net (z j );
24: end for

UPDATE(xq ):
25: for m = 1 to M do
26: for j = 1 to J do

27: ur+1
mj ← urmj + η{(t(q)

j − z(q)
j )[z(q)

j (1 − z(q)
j )]y(q)

m };
28: end for
29: for n = 1 to N do
30: wr+1

nm ← wr
nm + η{∑ j=1,J (t(q)

j − z(q)
j )[z(q)

j (1 − z(q)
j )]u(r)

mj }xn [y(q)
m (1 − y(q)

m )][x(q)
n ];

31: end for
32: end for

4.1 Re-sampling Methods

The class imbalance problemhas been addressedby re-sampling techniques,which artificially
balance the original data set, either by over-sampling of the minority class or under-sampling
of the majority class or both. In this work, we have used a renowned over-sampling technique
called SMOTE proposed by Chawla et al. [7]. This method generates artificial examples of
theminority class by interpolating existing instances that lie close together. For eachminority
sample, it finds the k intra-class nearest neighbors, and then synthetic samples are generated
in the direction of some or all of those nearest neighbors. As reported in paper by Chawla et
al. [7], in our experiments the k value has been restricted to five nearest neighbors, bearing
in mind that the aim of the present study is not at finding the optimal k value. Besides, a
constant k value allows to make easier the interpretation of results focused on our proposal.

In addition, we decided to add examples until a balanced distribution was reached. This
decision was intentioned by two aims: (a) simplicity (to avoid use of many free parameters)
and (b) effectiveness. Results obtained with the other classifiers [37], have shown that when
AUC is used as a performance measure, the best class distribution for learning tends to be
near the balanced class distribution.
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Although the class imbalance problem has been claimed as the main factor that significant
degrades the performance of classifiers. Several studies have pointed out that the degradation
is also related to other factors such as small disjuncts, high dimensionality and class overlap-
ping [5]. In order to handle both class imbalance and class overlapping, we have jointly used
an over-sampling and a data cleaning method with the double aim of balancing the skewed
classes and removing any erroneous and harmful majority example. Specifically, in this work
we have chosen the aforementioned SMOTEand theGabriel graph editing (GGE) techniques,
which have been shown to be suitable to deal with the two issues for the back-propagation
learning procedure [2].

4.2 Description of the Experimental Data Sets

Five real-world remote sensing data sets were selected to test our proposal: MSE back-
propagation over-sampling (MSEBPOS) technique. The Cayo data set comes from a partic-
ular region in the gulf of Mexico [2]. The Feltwell data set represents an agricultural area
near the village of Fetwell (UK) [6]. The Satimage and Segment data sets are from the UCI
Machine Learning Database Repository [1]. The 92AV3C dataset1 corresponds to a hyper-
spectral image (145 × 145 pixels, 220 bands, 17 classes) taken over Northwestern Indianas
Indian Pines by the AVIRIS sensor. In this work, we employed a reduced version of this data
set with six classes (2, 3, 4, 6, 7 and 8) and 38 attributes as in [2].

As we are interested in analyzing the technique proposed on highly imbalanced multi-
class data sets, each original data set was altered by combining and/or reducing the size of
some classes in order to construct fifteen multi-class data sets with a diverse number of class
distributions. Table 1 reports a summary of the original classes that were joined to shape
the majority and minority classes. The third and fourth columns indicate the original and
final classes, respectively. The number between parentheses represents the classes that were
joined to shape the majorities classes. For example for the MCAA subset the classes 1, 3, 6,
7 and 10 from original database (Cayo) were joined to integrate its first majority class and
the classes 8, 9 and 11 to ingrate its second majority class. So the result of this process is
a subset (MCAA) from Cayo with five classes: two majorities and three minorities classes.
The main difference between the subsets obtained from the original database is the classes
that were integrated to shape their majorities classes, for example, the difference between
MCAB and MCAC is that for MCAB the class 4 is part of the one of its majorities classes
meanwhile that in MCAC the class 4 is a minority class.

The above described process was performed in all datasets used in this work (Cayo,
Fetwell, Satimage, Segment and 92AV3C) and to further reduce the minorities classes ran-
dom size under sampling was employed. The main characteristics of the new produced
benchmarking data sets are showed in Table 2.

4.3 Experimental Framework

An empirical comparison between the MSE back-propagation over-sampling (MSEBPOS)
technique here proposed and other re-sampling strategies were performed over a total of
fifteen data sets by using the multi-layer perceptron (MLP) neural network trained with
the sequential back-propagation (SBP) algorithm. A stratified ten-fold cross validations was
adopted for the present study. For each fold, nine parts were pooled as the training data, and
the remaining block was employed as an independent test set. All the training sets were pre-
processed by the MSEBPOS technique and the original SMOTE. Apart from these methods,

1 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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Table 1 Detail of the classes merge process to get highly imbalances data sets

Original
data set

Final
data set

Original
classes

Final
classes

Classes joined

1 2 3 4 5 6 7

Cayo MCAA 11 5 (1, 3, 6, 7, 10) 2 (8, 9, 11) 4 5 – –

MCAB 4 (1, 3, 4, 6, 7, 10) 2 (8, 9, 11) 5 – – –

MCAC 4 (1, 3, 5, 6, 7, 10) 2 (8, 9, 11) 4 – – –

Feltwell MFEA 5 5 1 2 3 4 5 – –

MFEB 4 (1, 2) 3 4 5 – – –

MFEC 4 (1, 4) 2 3 5 – – –

Satimage MSAA 6 6 1 2 3 4 5 6 –

MSAB 5 (1, 2) 3 4 5 6 – –

MSAC 5 (1, 4) 2 3 5 6 – –

Segment MSEA 7 7 1 2 3 4 5 6 7

MSEB 6 (1,3) 2 4 5 6 7 –

MSEC 6 (1,7) 2 3 4 5 6 –

92AV3C M92A 16 6 1 2 3 4 5 6 –

M92B 5 1 2 3 (4, 5) 6 – –

M92C 5 1 2 (3, 4) 5 6 – –

Table 2 A brief summary of some characteristics of the data sets used in the experimental stage

Data set #Ex. #Attr. #Examples per class

1 2 3 4 5 6 7

MCAA 6019 4 2941 293 2283 369 133 – –

MCAB 3310 293 2283 133 – – –

MCAC 3074 293 2283 369 – – –

MFEA 8536 15 3531 2441 91 2295 178 – –

MFEB 5972 178 91 2295 – – –

MFEC 5826 2441 91 178 – – –

MSAA 4697 36 1508 1533 104 1358 93 101 –

MSAB 3041 101 104 1358 93 – –

MSAC 2866 1533 104 101 93 – –

MSEA 1470 19 330 50 330 330 50 50 330

MSEB 660 50 330 330 50 50 –

MSEC 660 50 330 330 50 50 –

M92A 5063 38 190 117 1434 2468 747 106 –

M92B 190 117 1434 3215 106 – –

M92C 190 117 3902 106 747 – –

other two variants in combinationwith theGGEwere included in the study:MSEBPOS+GGE
and SMOTE+GGE. Here, it is worth mentioning that all the original and resampled data sets
by SMOTE and SMOTE+GEEwere used to build the predictionmodelwith the non-modified
SBP algorithm.

In the training process, for both the SBP and MSEBPOS, the weights were randomly
initialized ten times. Therefore, the results from classifying the test samples were averaged
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between the ten runs and the ten different initialization weights. The learning rate (η) was set
to 0.1 and the stopping criterion was established at 5,000 epoch or the MSE value is lower
than 0.001. A single hidden layer was used, where for each data set the number of neurons
was obtained by a trial and error strategy: Cayo = 7, Feltwell = 6, Satimage = 12, Segment
= 10 and 92AV3C = 10.

4.4 Performance Evaluation

Several empirical and theoretical studies have shown that the plain accuracy and/or error
rates are strongly biased with respect to data imbalance, which might produce misleading
conclusions [21,31]. In order to face this shortcoming, alternative performance evaluation
measures have been proposed. One of the most widely-used graphical evaluation methods is
the receiver operating characteristic (ROC) curve, which is a tool for visualizing, organizing
and selecting binary classifiers based on their trade-offs between true positive rates and false
positive rates [12]. A quantitative representation is the Area Under Curve (AUC) ROC, which
“summarizes” the quality of the classifier. In problems where the classes can be more than
two, the AUC can be defined as [18]:

AUC = 2

‖J‖(‖J‖ − 1)

∑

ji , jkε J

AUCR( ji , jk) , (4)

where AUCR( ji , jk) is the area under the curve for each pair of classes ji and jk .

4.5 Criteria for Evaluating Experimental Results

In this work, we have employed the Friedman test for evaluating the experimental results with
the aim of verifying the hypothesis of improved performance of the re-sampling techniques
here used. It is a non-parametric statistical test that performsmultiple comparisons among the
algorithms considered over a collection of data sets [11]. The procedure starts by computing
the ranks of the algorithms or strategies for each dataset separately, where the best performing
algorithm gets the rank of 1, the second best rank 2, and so on. In case of ties, average ranks
are computed. Let ri be the rank of the j−th of K algorithms on the i−th of N data sets. The
next step is in order to obtain the average ranking for each algorithm, R j = 1

N

∑
i r

j
i . Under

the null hypothesis which states that all algorithms behave similarly and therefore their ranks
R j should be equal, the Friedman statistic can be computed as follows:

χ2
F = 12N

K (K + 1)

⎛

⎝
∑

j

R2
j − K (K + 1)2

4

⎞

⎠ . (5)

The χ2
F is distributed according to the Chi-square distribution with K − 1 degrees of

freedom, when N and K are big enough. Owing to χ2
F presents an undesirable conservative

behavior, Iman and Davenport [22] have devised a better statistic distributed according to the
F−distribution with K − 1 and (K − 1)(N − 1) degrees of freedom,

FF = (N − 1)χ2
F

N (K − 1) − χ2
F

. (6)

If the null-hypothesis is rejected, we can use a Bonferroni-Dun post-hoc test, which
compares a control algorithm with the K −1 algorithms. The performance of two algorithms
is significantly different if the corresponding average ranks is at least as great as its critical
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Table 3 Classification performance on fifteen data sets measured using AUC and average rank (AR)

Dataset MSEBPOS+GGE SMOTE+GGE1 MSEBPOS Imbalanced1 SMOTE1

MCAA 0.897 0.906 0.847 0.739 0.904

MCAB 0.927 0.932 0.893 0.763 0.933

MCAC 0.907 0.911 0.863 0.754 0.910

MFEA 0.909 0.907 0.913 0.802 0.930

MFEB 0.916 0.926 0.899 0.766 0.941

MFEC 0.835 0.851 0.906 0.807 0.931

MSAA 0.764 0.765 0.832 0.751 0.834

MSAB 0.788 0.790 0.806 0.698 0.837

MSAC 0.816 0.821 0.811 0.716 0.847

MSEA 0.912 0.913 0.945 0.930 0.944

MSEB 0.931 0.926 0.945 0.916 0.947

MSEC 0.905 0.897 0.937 0.921 0.934

M92A 0.758 0.775 0.802 0.793 0.833

M92B 0.736 0.750 0.785 0.772 0.849

M92C 0.844 0.874 0.845 0.853 0.887

Average 0.856 0.863 0.869 0.799 0.897

Average Rank 3.8 2.93 2.67 4.33 1.27

1 Classification using SBP

difference,

CD = qα

√
K (K + 1)

6N
, (7)

where the qα values is based on the studentized range statistic divided by
√
2 (Table 5(b) in

[11]).

5 Results and Discussion

Table 3 reports the detailed AUC results of each problem and the average AUC values across
all databases using the different strategies here explored: the imbalanced case, the MSE
back-propagation over-sampling technique (MSEBPOS), SMOTE, MSEBPOS+GGE and
SMOTE+GGE. The average ranks (Friedman score) are also given. As expected, classifica-
tion with the imbalanced data set (the non-preprocessed training set) yields the poorest AUC
value. The two best performing algorithms corresponds to SMOTE and MSEBPOS tech-
niques. This can be further confirmed by noting the average ranks, which provides a useful
comparison of the algorithms, where the imbalanced case has the highest average rank. The
SMOTE and MSEBPOS were ranked with 1.27 and 2.67, respectively.

In order to detect whether there exist statistical differences between the AUC results of the
techniques studied, we employed the Iman-Davenport statistic. This computation produced
FF = 17.3745, distributed according to F distribution with 4 and 56 degrees of freedom.
The p−value returned by using F(4, 56) was 25.41E − 10. As the p−value is lower than
a significant level of α = 0.05, the null hypothesis which states that all algorithms here
explored behave equally can be rejected. Hence, we carried out a post-hoc statistical analysis
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by using Bonferroni-Dunn procedure to compare each strategy against the control classifier,
which corresponds to the best strategy.

Figure 1 plots the average ranks for each strategy, which appear sorted according to their
ranks. The horizontal line represents the threshold of the critical difference value computed
by the Bonferroni-Dunn test with α = 0.05. This line is equal to the sum of the lowest
rank (1.27) and the CD value (1.442). Those bar (algorithms) above this cut line perform
significantly worse than the best model. Observing the results from Fig. 1, we can see that
only the MSEBPOS behaves equally to SMOTE. The other three strategies do not perform
significantly better. Therefore, theMSEBPOS appears to be a suitable and effective approach
to deal with multi-class imbalance problems.

We have also analysed the final set size obtained by each algorithm. Table 4 reports the
set size ratio on each database. It was computed as ratiok = Qk/QSMOT E , where Qk and
QSMOT E are the size of the preprocessed and balanced data sets (this by SMOTE), respec-
tively. As can be observed, the re-sampling methods based on the MSE back-propagation
over-sampling technique (MSEBPOS and MSEBPOS+GGE) have achieved less than 0.53
of set size ratio, what means significant saving in time computing (see Table 5) and storage
requirements, when compared to the balanced data set by SMOTE. From Table 5, we also
can see that the time processing rate was remarkable reduced more than twice SMOTE.

For the sake of a visual comparison and with the aim of analyzing the performance of a
re-sampling approach in terms the AUC and the set size ratio, we have employed a scatter-
plot of the size ratio versus the AUC, values by means of average ranks. Fig. 2 displays all
the strategies studied (including the imbalanced data set), where the x− axis are the average
ranks of AUC results and the y−axis are the average ranks of the set size ratio. In such a way,
points close to the origin (0, 0) of the plot might corresponds to the best methods with a good
balanced trade-off between performance and size complexity. Similarly, we have plotted the
average ranks of the time processing versus the AUC values in Fig. 3.

From Figs. 2 and 3, one can observe that the MSEBPOS approach lies the nearest from
the origin of the plot, which suggest that this technique has the most suitable trade-off in
terms of performance and size, as well as, time processing. Alternative, MSEBPOS+GGE
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Table 4 The size ratio of each dataset obtained by the strategies studied. It was computed taking as reference
at SMOTE: ratiok = Qk/QSMOTE , where Qk and QSMOTE are the size of data set processed by the strategy
k and SMOTE, respectively

Dataset MSEBPOS+GGE SMOTE+GGE1 MSEBPOS Imbalanced1 SMOTE1

MCAA 0.36 0.65 0.48 0.41 1.00

MCAB 0.40 0.76 0.50 0.45 1.00

MCAC 0.40 0.68 0.56 0.49 1.00

MFEA 0.51 0.65 0.67 0.48 1.00

MFEB 0.30 0.69 0.46 0.36 1.00

MFEC 0.43 0.79 0.57 0.37 1.00

MSAA 0.31 0.33 0.69 0.51 1.00

MSAB 0.17 0.24 0.42 0.31 1.00

MSAC 0.15 0.15 0.40 0.33 1.00

MSEA 0.64 0.79 0.79 0.64 1.00

MSEB 0.32 0.60 0.49 0.37 1.00

MSEC 0.37 0.57 0.67 0.37 1.00

M92A 0.56 0.93 0.43 0.34 1.00

M92B 0.39 0.97 0.43 0.31 1.00

M92C 0.51 0.99 0.45 0.26 1.00

Average 0.39 0.65 0.53 0.40 1.00

Average Rank 1.53 3.40 3.23 1.83 5.00

1 Classification using SBP

Table 5 Time processing rate obtained from analyzed strategies. It was computed taking as reference at
SMOTE: ratiok = T Tk/T TSMOTE , where T Tk and T TSMOTE are the training time (measured in minutes)
of the strategy k and SMOTE, respectively.

Dataset MSEBPOS+GGE SMOTE+GGE1 MSEBPOS Imbalanced1 SMOTE1

MCAA 0.20 0.63 0.22 0.40 1.00

MCAB 0.26 0.79 0.30 0.48 1.00

MCAC 0.29 0.74 0.37 0.61 1.00

MFEA 0.31 0.69 0.37 0.53 1.00

MFEB 0.27 0.87 0.40 0.56 1.00

MFEC 0.38 0.82 0.52 0.50 1.00

MSAA 0.21 0.45 0.49 0.61 1.00

MSAB 0.13 0.27 0.34 0.31 1.00

MSAC 0.12 0.15 0.36 0.32 1.00

MSEA 0.34 0.79 0.45 0.60 1.00

MSEB 0.22 0.63 0.28 0.40 1.00

MSEC 0.29 0.73 0.50 0.58 1.00

M92A 0.41 0.96 0.32 0.44 1.00

M92B 0.35 0.99 0.35 0.33 1.00

M92C 0.53 0.99 0.48 0.25 1.00

Average 0.29 0.70 0.38 0.46 1.00

Average Rank 1.27 3.60 2.40 2.73 5.00

1 Classification using SBP
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appears as the second algorithmwith a good trade-off. In the case of SMOTE and imbalanced
approaches, these lies the furthest from the origin (0, 0).

6 Conclusions

This paper has proposed aMSEback-propagationover-sampling technique for learningmulti-
class imbalance data sets. The method has been proposed based upon the SBP algorithm.
The aim of this alternative is to identify a suitable over-sampling rate, whilst reducing the
processing time and storage requirements, as well as, keeping or increasing the performance
of predictive models.
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Experimental results over fifteen high imbalancedmulti-class data sets have demonstrated
that the MSEBPOS algorithm achieve competent results in terms of the AUC measure,
processing time and storage requirements with respect to the original SMOTE technique.
Also, an analysis with Bonferroni-Dunn post-hoc model test has allowed to observe that
MSEBPOS behaves similarly to this one. When visualizing the AUC results and the time
processing rate, as well as, the set size ratio, we have found that the strategies based on the
MSEBPOS, yield the most balanced trade-off between the three rates.

Future work will extend this study in order to find the new mechanics to identify the
most appropriate over-sampling ratio which allows to improve significantly the classification
performance of the proposed method but keeping its advantage in terms of NN training time.
On other hand, would be interesting for future work to generalize the proposed method, i.e,
to balance the training dataset through of an effective over-sampling technique and to use
the MSE to automatically identify the optimal amount of samples as the minorities as the
majorities classes so the resulting method may be considered a under and over sampling
technique. In addition, we will want to dip in the analysis of multi-class learning problems
where the dataset shows a large size and an extreme class imbalance.
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