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Abstract In this paper, based on the exponential dichotomy theory, contraction mapping
fixed point theorem and inequality analysis technique, we obtain some sufficient conditions
ensuring the existence and global exponential stability of pseudo almost periodic solutions
for a new generalized cellular neural network model with continuously distributed leakage
delays. Our results complement with some recent ones. Moreover, an illustrative example and
its numerical simulation are given to demonstrate the effectiveness of the obtained results.
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1 Introduction

In the last three decades, the dynamical behaviors of delayed cellular neural networks
(DCNNSs) have received much attention due to their potential applications in associated mem-
ory, parallel computing,pattern recognition, signal processing and optimization problems (see
[1-5]). In particular, a neural network usually has a spatial nature due to the presence of an
amount of parallel pathways of a variety of axon sizes and lengths, it is desired to model them
by introducing continuously distributed delays over a certain duration of time (see [6-8]).
Recently, a typical time delay called Leakage (or “forgetting”) delay may exist in the negative
feedback terms of the neural network system, and these terms are variously known as for-
getting or leakage terms (see[9—13]). Consequently, the dynamic behaviors of cellular neural
networks with continuously distributed leakage delays have been extensively and intensively
studied. We refer the reader to [14—18] and the references cited therein.
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On the other hand, the variation of the environment plays an important role in the dynamics
of DCNNS. As pointed out in [19,20], periodically varying environment and almost periodi-
cally varying environment are foundations for the theory of nature selection. Compared with
periodic effects, almost periodic effects are more frequent, and many phenomena exhibit great
regularity with being pseudo almost periodic which allow complex repetitive phenomena to
be represented as an almost-periodic process plus an ergodic component. Therefore, many
researchers have focused their attention on the study of existence and stability of almost
periodic solutions and pseudo almost periodic solutions for DCNNs (see [21-25] and the
references cited therein). Most recently, Zhang [26] considered the following CNNs with
continuously distributed delays in leakage terms:

xi(1) = —Ci(t)/hi(S)Xi(t —s)ds + Zaij(t)fj(x]'(t —7;j(1)))
0

j=1

j=1

+ Zbij(t)/Kij(u)gj(xj(t—u))du-i—l,(t), i=1,2,...,n, (LD
0

in which n corresponds to the number of units in a neural network, x; (¢) corresponds to the
state vector of the ith unit at the time ¢, ¢;(t) > O represents the rate with which the ith unit
will reset its potential to the resting state in isolation when disconnected from the network
and external inputs at the time #. a;;(t) and b;;(¢) are the connection weights at the time
t, hi(s) > 0, K;;j(u) and 7;;(¢) > O denote the leakage delay kernel, transmission delay
kernel and transmission delay, respectively, and I;(¢) denotes the external inputs at time ¢.
fj and g; are activation functions of signal transmission, i, j = 1,2, ..., n.

By using Lyapunov functional method and differential inequality techniques, in [26], it has
been established some sufficient conditions to guarantee that all solutions of (1.1) converge
exponentially to the almost periodic solution. Moreover, it is well known that the global
exponential exponential convergence behavior of solutions plays a key role in characterizing
the behavior of dynamical system since the exponential convergent rate can be unveiled
(see [27-30]). However, to the best of our knowledge, few authors have considered the
exponential convergence on the pseudo almost periodic solution for (1.1). Motivated by the
above discussions, in this paper, we shall establish the existence and uniqueness of pseudo
almost periodic solution of (1.1) by using the exponential dichotomy theory and contraction
mapping fixed point theorem. Meanwhile, we also shall give the conditions to guarantee that
all solutions and their derivatives of solutions for (1.1) converge exponentially to the pseudo
almost periodic solution and its derivative, respectively.

The initial conditions associated with system (1.1) are of the form

xi(s) = ¢i(s), xi(s)=¢/(s), s€(—00,0], i=1,2,...,n, (1.2)

where ¢; (-) and (plf () are real-valued bounded continuous functions defined on (—o0, 0].
In the following part of this paper, given a bounded continuous function g defined on R,
let g™ and g~ be defined as

gt =suplg)l, g =inflg(®)l.
1R 1eR

For convenience, we denote by R" (R = R!Y) the set of all n—dimensional real vectors (real
numbers). We will use x = (x1, x2, ...,x,)T € R" to denote a column vector, in which
the symbol (7) denotes the transpose of a vector. We let |x| denote the absolute-value vector
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given by |x| = (|x1], |x2, ..., |x.D7, and define |x|| = 1m‘ax |xi|. A matrix or vector
<i<n

A > 0 means that all entries of A are greater than or equal to zero. A > 0 can be defined
similarly. For matrices or vectors A and B, A > B (resp. A > B) means that A — B > 0
(resp. A — B > 0).

The paper is organized as follows. Section 2 includes some lemmas and definitions, which
can be used to check the existence of pseudo almost periodic solutions of (1.1). In Sect. 3, we
present some new sufficient conditions for the existence and uniqueness of the continuously
differentiable pseudo almost periodic solution of (1.1). In Sect. 4, we establish sufficient
conditions on the global exponential stability of pseudo almost periodic solutions of (1.1).
At last, an example and its numerical simulation are given to illustrate the effectiveness of
the obtained results.

2 Preliminary Results

In this section, we shall first recall some basic definitions, lemmas which are used in what
follows.

In this paper, BC(R, R") denotes the set of bounded continued functions from R to
R". Note that (BC(R,R"), || - |loo) is a Banach space where || - ||s denotes the sup norm
| flloo := sup [ F(D]I.

teR

Definition 2.1 (see [19,20]) Let u(t) € BC(R, R"). u(z) is said to be almost periodic on
R if, for any ¢ > 0, the set T(u,e) = {§ : |ju(t +68) — u(t)|| < ¢ forall ¢+ € R} is
relatively dense, i.e., for any ¢ > 0, it is possible to find a real number /| = I(e) > 0,
for any interval with length [/ (¢), there exists a number § = §(¢) in this interval such that
lu(t +8) —u()| < e, forall t € R.

We denote by AP (R, R") the set of the almost periodic functions from R to R". Besides,
the concept of pseudo almost periodicity (pap) was introduced by Zhang in the early nineties.
It is a natural generalization of the classical almost periodicity. Precisely, define the class of
functions P A Py(R, R") as follows:

.
1
f € BCR,R"| lim —/|f(t)|dt =0
r—+o00 2r
—r

A function f € BC(R, R") is called pseudo almost periodic if it can be expressed as
f=h+o,

where h € AP(R,R") and ¢ € PAPy(R,R"). The collection of such functions will
be denoted by PAP (R, R"). The functions & and ¢ in above definition are respectively
called the almost periodic component and the ergodic perturbation of the pseudo almost
periodic function f. The decomposition given in definition above is unique. Observe that
(PAP(R,R"), ||.llso) is aBanach space and A P (R, R") is a proper subspace of PAP (R, R")
since the function ¢ (t) = cosmt + cost + e’ Fsin® 1 g pseudo almost periodic function but
not almost periodic. It should be mentioned that pseudo almost periodic functions possess
many interesting properties; we shall need only a few of them and for the proofs we shall
refer to [19].
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Lemma 2.1 (see [19, p. 57)) If f € PAP (R, R) and g is its almost periodic component,
then we have

g®) C fF(R).
Therefore | flloo = lIglloc = inf [g(x)| = inf | f(x)].
xeR xeR

Lemma 2.2 (see [19, p. 140]) Suppose that both functions f and its derivative f’' are in
PAPR,R). Thatis, f = g+ ¢ and ' = a + B, where g, € AP(R,R) and ¢, €
PAPy(R, R). Then the functions g and ¢ are continuous differentiable so that

g=a ¢ =8

Lemma 2.3 Ler B* = {f|f, f' € PAP(R, R)} equipped with the induced norm defined by
I 1l8+ = max{l| flloc, | f'lloc} = max{sup | f (t)], sup | f'(t)I}, then B* is a Banach space.
teR teR

Proof Suppose that { f,,}+ | is a Cauchy sequence in B*, then for any ¢ > 0, there exists
N (&) > 0 such that

Ifp = fqllB= = max{sullglfp(t) — Ja@l Sulglf,’,(t) — fy®I} <&, VYp.q = N(e)(2.1)
te te

By the definition of pseudo almost periodic function, let
fp=28p+op, whereg, € APR,R), ¢, € PAP)(R,R)andp =1,2,---.
From Lemma 2.2, we obtain
f’ = g;7 + (p;,, whereg;7 € AP(R,R), go;j € PAP)(R,R)andp =1,2,---
On combining (2.1) with Lemma 2.1, we deduce that, {gp}p 1 {gp}+°<i C AP(R, R) are

Cauchy sequence, so that {gap}+ 1 {(pp}+ 1 C PAPy(R, R) are also Cauchy sequence.

Firstly, we show that there exists g € AP (R, R) such that g, uniformly converges to g,
as p — +oo.
Note that {g,} is Cauchy sequencein AP (R, R).Ve > 0,3 N(e),suchthatV p,q > N(¢)

lgp() — gq()| <&, forallt € R. (2.2)

So for fixed 7 € R, it is easy to see {g (t)}+ 1 is Cauchy number sequence. Thus, the limits
of g, (t) exists as p — +oo and let g(t) = IIT gp(t).In (2.2), let ¢ — +o00, we have
p—>T00

g(t) —g,()] <&, forallt €R, p > N(e). (2.3)

Thus, g, uniformly converges to g, as p — +o00. Moreover, from the theorem 1.9
[20, p. 5], we obtain g € AP (R, R). Similarly, we also obtain that there exist g* € AP (R, R)
and ¢, ¢* € BC(R, R), such that

Ig" (") —g, (O] <&, lpM)—pp()] <&, l¢*(1) — @, ()] <e, forall t€R, p=N(e),
(2.4)

which imply that
g =>8" op =0, ¢, = 0",

where p — +o00 and “ =" means uniform convergence.
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Next, we claim that ¢, ¢* € P A Py(R). Together with (2.4) and the facts that

1
lim —
r—+o0 2r

r r
. 1 ,
/pr(S)lds =0, rgrfw;/lwp(wlds =0,p=1,n2,...,
7, 7

r r r
1 1 1
;/|(p(s)|ds < ;/ko(s) —(pp(s)|ds+;/|(pp(s)|ds, r>0, p=12,...,
—r —r —r
and
r r r
i/w*(s)us < i/|¢*<s>—<p’ <s>|ds+i/|¢/ ()lds. r >0, p=1,2
2r = 2r P 2r P ’ ’ T
—r —r —r

we have

r—+00

r r
. 1 . 1 y
lim ;/|<p(s)|ds =0, riu}rloo;/kp (s)|ds = 0.
—=r —=r

Hence ¢, ¢* € PAPy(R). Let f = g+ ¢, f*=g"+¢*, then f = g+ ¢ € PAP(R),
[f=g"+¢* € PAP(R)and fp = f, f, = f"as p — +oo.
Finally, we reveal f' = f*. Fort, At € R, it follows that

1+At
fpt+ A1) — fp(t) = / f;)(s)ds (2.5)

t
In view of the uniform convergence of f, and f 1’,, let p — +oo for (2.5), we get

t+At

£+ D — () = / £ (5)ds,

t

which implies that

t—}AI

fr(s)ds

"= lim - — im LEEADZSO

Fo = fim s = A, Ar = f'@). (2.6)

In summary, in view of (2.3), (2.4) and (2.6), we obtain that the Cauch sequence { f p};g -
B* satisfies

Ifp — flipx —> O(p — +00),

and f € B*. This yields that B* is a Banach space. The proof is completed. O

Remark 2.1 Let B ={f|f, f' € PAP(R, R")} equipped with the induced norm defined by
I £l = max{[| fllcc, | flloc} = max{sup || f®)II, sup || f'(®)[]}. It follows from Lemma 2.3
teR teR

that B is a Banach space.
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Definition 2.2 (see [19,20]) Let x € R" and Q(¢) be a n x n continuous matrix defined on
R. The linear system

x'(t) = Q()x(t) .7

is said to admit an exponential dichotomy on R if there exist positive constants k, o, projection
P and the fundamental solution matrix X (¢) of (2.7) satisfying

IX@OPX ()| < ke @9 for s> s,
I1IX()T — P)X )| < ke 6= fort <.

Lemma 2.4 (see [19]) Assume that Q(t) is an almost periodic matrix function and g(t) €
PAP R, R"). Ifthe linear system (2.7) admits an exponential dichotomy, then pseudo almost
periodic system

x'(t) = Q()x (1) + g(1) (2.8)
has a unique pseudo almost periodic solution x(t), and
1 +00
x(t) = / XOPX ' (s)g(s)ds — / X()(I — P)X " (s)g(s)ds. (2.9)
—0o0 t

Lemma 2.5 (see [19,20]) Let ¢;(t) be an almost periodic function on R and

| +T
M[c[]:Tli)riloo?/c,-(s)ds>0, i=1,2,...,n.
t

Then the linear system
(1) = diag (—c1 (), —c2(1), . . ., —ca(0)x(1)

admits an exponential dichotomy on R.

3 Existence and Uniqueness of Pseudo Almost Periodic Solutions

In this section, we establish sufficient conditions on the existence of pseudo almost periodic
solutions of (1.1).

Fori,j =1, 2,...,n, it will be assumed that #; : R — [0, +00) is a continuous
function with 0 < [;° h;(v)dv < +o0 and [;° vh;(v)e*'dv < +oc for a certain positive
constant k, ¢; : R — (0, +00) is an almost periodic function, 7;; : R — [0, +00) and
I;, a;j, bij : R — R are uniformly continuous pseudo almost periodic functions. We also
make the following assumptions which will be used later.

(A1) foreach j € {1,2, ..., n}, there exist nonnegative constants L{ and Lif such that
i @) = f;)] < LY ju —vl. ;) — gj(w)] < Lé|u —v], forall u, veR.

(Ap) for i, j € {1,2,...,n}, the delay kernels K;; : [0,00) — R are continuous,
|Kij(1)|e¥" are integrable on [0, 00).
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(A3) foreachi € {1, 2,...,n}, there exist constants ¢; > 0 and &; > 0, such that
o oo n
—c / hi(v)dv + ¢ / vhi (v)dv + & Za;Lfgj
0 0 j=1

o0
n
+Si—1 Zb;/ |K,~j(u)|duL§§j < —a;,
Jj=L 9

and
o0 o0
"
c; hivdv—ai+c.+/hivdvl—7’ <1
! / @ ! (@)dv( clffooohi(v)dv)
0 0

Lemma 3.1 Assume that assumptions (A1) and (Az) hold. Then, for ¢(-) € PAP (R, R),
the function fooo K;j(u)gj(p(t — u))du belongs to PAP (R, R), where i, j =1,2,...,n.

Proof Let ¢ € PAP(R,R). Obviously, (A) implies that g; is a uniformly continuous
function on R. By using Corollary 5.4 in [19, p. 58], we immediately obtain the following,

gilp(t) = xj1(t) + xj2(t) € PAP(R,R),

where xj1 € AP(R,R), xj» € PAPy(R,R), j = 1,2,...,n. Then, for any ¢ > 0, it is
possible to find a real number / = /(¢)) > 0, for any interval with length /, there exists a
number T = 7(&) in this interval such that

&
1+ o7 1Kij)du’

[xj1(r +17) = xj1(0)] < VieR, i,j=12,....n,

and
1 r
r_l)lr_‘r_loog/|xj2(v)|dv20, j=12,...,n.
—r
It follows that
o0 o0
‘/K,'j(u)le(t—i-t—u)du—/K,'j(u)le(t—u)du|

0 0

o0
< / K )l 1 (7 — 1) — 31 — ) du
0

o0
&
< |K;ii(u)|du <e VteR, i,j=1,2,...,n,
0/ Y L+ [o° 1K (u)|du
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and
r_lir_,l_loo 2r/‘/Kz](”)X12(U—u)du’dv
= ,Li;noo* / / |Kij )l xj2(v — u)|dudv
e
1 oo
:r_llrfooz /}Ku(“)|/|sz(v—u)|dvdu
0
] o0
:r_ljrfoo 2,,/ Kij(u)l / |xj2(2)|dzdu
0 —r—u
1 o r+u
Sr—llrfooﬂ/“(ij(uﬂ / |xj2(2)|dzdu
0 —r—u
% 1 1 r+u
ErETOO/|Kij(M)|(1 +;M)m / |Xj2(Z)|dZdM
0 —r—u
r+u
=, Ki dzd
< lim /‘ u(u)le 2( I / Ixj2(2)|dzdu
—r—u
r+u 1
Sr_l)il_’l_l /|Ku(u)|g’(um / |xj2(2)|dzdu = 0, Wherer>;,
i,j—1,2,...,
Thus,
w o0
/Kij(u)le(t —wdu € AP(R, R) and /Kij(M)ij(t —w)du € PAPy(R, R),
0 0
which yield
oo 00 o
/Kij(u)gj(w(t_u))du :/Ki"(u)le(t_u)d”J” /Ki./(M)ij(f—u)duePAP(]R, R),
0 0 "
i,j=12,...,n
The proof of Lemma 3.1 is completed. .

Theorem 3.1 Let (A1), (Az) and (A3) hold. Then, there exists a unique continuously dif-
ferentiable pseudo almost periodic solution of system (1.1).

Proof Set
xi(t) = Sflx,- (1),

@ Springer



Pseudo Almost Periodic Solutions for CNNs 241

then we can transform (1.1) into the following system

Xi(1) = —Ci(t)/hi(S)fi(t —s)ds + &' D aij(0) £ &% — 1 (1))
0 j=l

Jj=1

57D b0 [ K €15~ 0)du+5710)
0
o0 o0 t
= —c,-(t)/hi(s)dsfi(t)+C,-(t)/h,-(s)/)El{(u)duds
0 0 t—s

+§l._1 Za[j(t)f,'(%‘j)zj(f - Tij(t)))

Jj=1

+s,-—1Zbg(t)/K,-j(u)gj(s,-ij(z—u))du+s,-—11i(t>, i=12_..n.
0

j=1

Let ¢ € B. Obviously, the boundedness of ¢’ and (A1) imply that f; and ¢; are uniformly
continuous functions on R for j = 1,2,...,n.Set f(t,2) = ¢;j(t —2)(j € {1,2,...,n}).
By Theorem 5.3 in [19, p. 58] and Definition 5.7 in [19, p. 59], we can obtain that f €
PAP(R x €2) and f is continuous in z € K and uniformly in # € R for all compact subset
K of Q. This, together with 7;; € PAP (R, R) and Theorem 5.11 in [19, p. 60], implies that

it — 1) € PAPR,R), i,j=1,2,...,n.
Again from Corollary 5.4 in [19, p. 58], we have
fiGjeit —j(1)) € PAPR,R), i,j=12,...,n. (3.1

In view of fooo hi(v)dv < 400 and fooo vh;(v)dv < 400, by using a similar argument as in
proof of Lemma 3.1, we can show

oo oo oo

'
/h,-(s) / wf(u)duds :/h,-(s)dsw,-(t) —/hi(s)goi(t —s5)ds € PAP(R,R),
0 t—s 0 0

(3.2)

foralli =1,2,...,n.
By combining (3.1), (3.2) with Lemma 3.1, we obtain

o0 ? n
ci(t) / hi(s) / i duds + &7 aij (1) £ (t — 11 (1)))
0 t—s

j=1

-|-Si_]Zbij(t)/ng(u)gj(éjgoj(t—u))du+ £ 'Lt ePAPR,R), i=1,2,...,n.
j=1 0
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For any ¢ € B, we consider the pseudo almost periodic solution x¥(#) of the pseudo
almost periodic differential equations

o0 o0 t
xX@) = —ci(z)/h,-(s)dsii(t)—l-ci(t)/h,-(s) / @i (u)duds
0 0

t—s

+&7! Zaij(l‘)fj(fﬂﬂj(f — (1))

j=1

+& 1Zb,](t)/K,](u)g](Sjwj(t—u))du—i—“g‘ Lo, i=12,...,n.

Jj=1
(3.3)

Then, notice that M|c;(t) fooo hi(s)ds] >0, i =1, 2,...,n, it follows from Lemma 2.5
that the linear system

@ = —ci(t)/hi(s)dsii(t), i=1,2,...,n, (3.4)
0

admits an exponential dichotomy on R. Thus, by Lemma 2.4, we obtain that the system (3.3)
has exactly one pseudo almost periodic solution:

X () = (L (0), x50, ..., x )"

= (/ e—lffCl<“)ﬂ§’°hl<v>dvd"[cl(s)/hl(v) / ¢ (w)dudv
- 0

HET D a1 ) fiEjej(s — T15(5)))

j=1

&S ) / K1 (08,810 —w)du + 67 L (5))ds -
j=1

/ — [en) f§° h,,(v)dvdu[c (S)/h (v) / ¢n(u)dudv

—0o0

+&,! Zan,- (5) £ (Ejj (s — Tj (5))

j=1

FES by / Ko (085610 —w)du + &7 LM, (3.5)

Jj=1

In view of the uniform continuity of coefficients and delays, from (A1), (A2) and the Corol-
lary 5.6 in [19, p. 59], we get

«f @) = [c,m / hi(v) / w,(u)dudv+$‘1Za,,a)f,(s,ga,(r—n,(t)))

j=1

@ Springer



Pseudo Almost Periodic Solutions for CNNs 243

+&! Zb,,a) / Kij(uw)g et —w)du+ &' (r)]

j=1

10) / hi(v)dv / —JﬁfL‘f<">16°°hf<v>dvd"[cl~(s) / hi(v) / @/ (w)dudv

—00

+s“2a,,<s)f,(s,¢,(s r,,(s>>)+s“2b,,<s) / Kij(u)gj(Eppj (s —u))du

j=l1 J=l1

+$l-711,‘ (s)]ds,

is a pseudo almost periodic function, wherei = 1,2, ..., n.
Now, we define a mapping T : B — B by setting

T(p)(t) =x%(t), Vo€ B.

We next prove that the mapping 7 is a contraction mapping of the B. In fact, in view of
(3.5), (A1) and (A3), for ¢, ¥ € B, we have |T(p(1)) — T (¥ (1))]

= T W) = Tl oo [T = T
- / e [ @, ) / e / (@) — ] )dudv

6 Y a0 €055 — 160 — 505 1 6)

Jj=1

+&! Zbl,m / K1j(u)(g(Ejgj(s —u)) — g (Ejrj(s — w)))dulds), -

j=1

9 / R IO / i (w) / (P4 0) = ¥ w))dudv
00 0

+&,! Zanj(s)(f,- (€jj (s — Taj () = £ (&Y (s — Tj(5)))

T
FES b / nj<u)(g,<s]¢,<s—u)>—g,(é,ws—u)))du]ds|)

j=1

< ( / e~ Ji €1 J§T mn@)dvdupe () / h(v) / |} (u) — ¥} () |dudv

—00

+&7 D a1 (ILTEj10j (s = 71,(6) = V(s = 11 ()]

j=1
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+&7! Z|b1j(s)|/|K1j(u)|L§f§j|<ﬂj(s —w) = ¥jls —wldulds, -,
0

j=1
r i y
% /e—j:f L-n(u)ﬂ)”oh,,(u)dudu[cn(s)/hn(v) / |(p;l(u) —1//;1(1/!)|dudv
0o 0 s—v

8 D an$ILTEjles(s = T () = Wi(s = T (5))]

j=1

n o0 T
57D bu )| / | Knj OILTE )l (s = w) = ¥rj(s — ”W”]ds)
J=1 0

' n
< ( / e~ f;Cl(M)fOoo hl(”)d')d“[c?—/vhl(v)dv + %.1—1 Z(a?;l']f
0 =l

—00

407, [ 1K @IdL)E s o0 = b Ol ...
0

t [ee)

n
/ - JEen(w) [5° hu(v)dvdu [c;l" / vhy(v)dv + gn_l Z(a;;L{

o 0 /=1

o0 T
+b / |Knj(u>|duL§)s,-]ds||go<r)—wmng)
0

t

oo
- ( / e_f; c,(u)fowhl(v)d“d”(cl(s)/hl(U)dU —ay)ds, ...,
0

—0o0
t

00 T
/ o= S ent [5° h,,(v)dvdu(cn(s)/hn(v)dv — an)ds) lo@) — ¥ (@®)s
0

—00

' t

- (/e—jgC](M)f()oohl(v)dvdud(_/Cl(u)/hl(v)dvdu)
0

—0o0 §

t

—00

' 1

o0
/effs’Cn(“)fooch”(“)d”d“d(—/Cn(”)/hn(v)dvdu)
0

oo K
t

T
— / e*fsf~<“>fo°°h"<“>d“d"ds) o) — v ()l

—00
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t
< (1 — / e L el 5o m@advdugg
—0o0
! T
1 —ay / e kel fo”’l"(”d""“ds) lo) = ¥ ()5
—00
(1 e ) e -yl GO
- cf [ mdv T en Joo ha(v)dv '

and |T"(¢(1) = T'(y (1))
= (T (@) = T' @O, .., (T (@) = T' @ @O)NaD"

o0 t
— (le1(0) / i () / @} ) — Y| w)dudv
0 —v

t

HET D i (O(fi &t — T (0) — f1EY = T1(1)))

j=1
+&7! Zblj(t)/Klj(u)(gj(éjwj(l —u)) — gj&vi(t —u)))du]
j=1 0

1

—cl(t)/hl(v)dv / eaf;cl(u)foochl(v)dvdu[cl(s)/hl(v)
0 0 s

—0o0

HET D a1 ()i Ejej(s — T1i(9) — fiEils — 11 (5)))

j=1

+E D b1 / K1) (g (&0 (s = w) = g E;¥j(s —w))dulds]. ...
0

j=1

[ee) 1
I[Cn(t)/hn(v) /((ﬂ;(u)—llf,/,(u))dudv
0 ‘

—v

& D an (0(F & (1 = T (0)) = £ = T (D))
j=1

FE Dby 0) [ Ky (€050 = 1) = g6 ¢~ w))du]
Jj=1 0

1

/ (¢1 () — Y{(u))dudv

— elt) / i (V) / o i entw [ mwdvdue, (o) / i (0) / (6, ) — ¥, ) dudv
0 0 s—v

FE D ani () (&0 (s = () — £ E V(s = Taj(5)))

Jj=1
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+g)! an, (s) / Konj () (8(Ejp; (s — 1)) — 8 (& (s — u))dulds))"

j=1

oo
< [CT/”hl(”)d”Ef' ZWTJL.{
0

j=1

3

+by; [ 1K @lduLHElp®) — ¥ (@)

1

00
hl(v)dv/ 7fsrc1(u)f0°0h1(v)dvdu[ /Uhl(v)dv'i‘sl_lZ(a]/
0

j=1

+c

0\8 o\

—0o0

407, [ 1K @IaLE o0 = Ol ..
0

0 n
[c;," / vh, (v)dv + gn—l Z(aniL]f
0 J=1

3

+by [ 1K @)ldul$)g; e — v (@)l s

t

oo n
oy (0)dv / e Ji ent) [y hn()dvdup o+ / vh,,(v)dv+sglz(aijj
0

j=1

+c

O\8 O\

—0o0

b}, / |Knj @) ldu L)) = Y0 15)T

23]
- l——), ...
/h](v)dv ar + ¢ /h](v)dv( cf‘ fooohl(v)dv% ,
0 0
_ o
c O/ (V) dv—ay+c; O/ h(V)dv(1— W)) le@—¥Ollp. (G.7)

From (A3), we have
2%

0<l——————<1
ci+ fooo hi(v)dv

and

K =max{ max {1—
[15i<n[ +f0 hi (v)dv]

o0 oo
o
| hiwdv —a; + ¢ | hi(w)dv(l — —————— 1
lrg_aén‘cl / i(Wdv —a; +¢; / ;(v)dv( c;rfooohi(v)dv)]] <
0 0
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which, together with (3.6) and (3.7), yield
IT(@@) =T < Kle) —¥@®)ls,

which implies that the mapping 7 : B — B is a contraction mapping. Therefore, the
mapping T possesses a unique fixed point

X = (@), 5@, . x0T € B, Txt = x*.
By (3.3) and (3.5), x** satisfies (3.3). So (1.1) has a unique continuously differentiable almost
periodic solution x* = (§1x]™ (1), £2x5% (1), ..., Eux " ()T . The proof of Theorem 3.1 is now
completed. O

4 Global Exponential Stability of the Pseudo Almost Periodic Solution

In this section, we will discuss the global exponential stability of the pseudo almost periodic
solution of system (1.1).

Definition 4.1 Let x*(t) = (x{ (), x5 (1), ..., x; ()T be the pseudo almost periodic solu-
tion of system (1.1). If there exist constants « > 0 and M > 1 such that for every
solution x(t) = (x1(¢), x2(2), ..., x,(t))T of system (1.1) with any initial value ¢(t) =
(@1(1), @2(1), ..., u (1)) satisfying (1.2),
x(@) —x* @)l = ,_max  {max{|x; (1) — xFO xi () = x7 (O < Mllg — x*[loe™™,
vt > 0,

where [|¢ — x*|lo = max{sup max lgi (8) — x] (@), sup max |<p (1) = x}'(1)|}. Then x*(1)
t<0 t<0
is said to be globally exponennally stable.

Theorem 4.2 Suppose that all conditions in Theorem (3.1) are satisfied. Moreover, assume
that

cf <>fohi(v)dv o
0o 1 + f
-+ ¢ fooohi(v)dv) O/Uh (v +5; Za L

+$_12a+LfE,+S_]Zb/ |Kij)lduL8g; | < 1; i =152 50 (41)

Then system (1.1) has at least one pseudo almost periodic solution x*(t). Moreover, x*(t) is
globally exponentially stable.

Proof By Theorem 3.1, (1.1) has a unique continuously differentiable pseudo almost periodic

solution x*(¢) = (x{ (), x3(®), ..., x5 ()T, Suppose that x (1) = (x1(t), x2(), - .., X, (£))T
is an arbitrary solution of (1.1) associated with initial value ¢ (t) = (¢1(t), p2(t), ..., ¢n enT
satisfying (1.2).

Let

y(t) = (1), y2(), ., yu ()T
= & @ —xF0), & ) — 5@, . 8 () — xE0)T
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Then

yi(t) = _Ct(t)/h ()yi(t=s)ds+&; Zaz/(t)(f/(x/(t—m(t))) [iG5 @ = 1i;(1)))

j=1

+E IZb,,m / Kij () (g (xj(t — u)) — g (x5 (t — u)))du

Jj=1

= _Ci(t)/hi(s)ds)’i(t)+Ci(t)/hi(5)/yi/(u)duds
0 0

=58

FET D (O (x (=1 (0)) = £ = 135(1))))

j=1

+€_1sz,(t)/Ku(u)(g/(xj(t ) — g (x;(t —u)))du, (4.2)

j=1

wherei =1,2,...,n.
Define continuous functions I'; (w) and I1; (w) by setting

o0 o0
I () = —ci’/hi(v)dv—l—a)—i—cf/vh (v)ewvdv_,_%- IZQ;L;S‘/ wz
0 0 j=1

+& 1Zb / |Kij()le”duL’;,

and

Ci+ fOoo hi(v)dv wv 1 +7f wr
= (1 * ¢ JoT hi(wydv — o O/Uh iWedv+ & Zaz/ Ljgje
e Zb / |K,,<u>|e“’"duLgs,}

wheret > 0,w € [0, «], i =1, 2,...,n. Then, from (A3) and (4.1), we have

I (0) = —c;/h,»(u)du+cl.+/uh ()dv + & Za+Lf
0 0

+§“Zb /|K,,(u)|duL‘gé,_—a,<0 i=1,2,...,n,
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and
+ (o0 ®
I1;(0) = 1+M (cf/vhi(v)dv
¢ Jo hiwydv )
+.§‘1Z“+Lf%‘,+€_lzb /|K,-j(u)|duL§§,) <1, i=1,2,...n,

which, together with the continuity of I'; (w) and I1; (w), implies that we can choose a con-
stants A € (0, min{x, 111121n ¢; }) such that
i=12,n

o0 [ee)

n
Ti(h) = —C;/hi(v)dv+A+ci+/uh,-(v)e“dv+§;lZa;Lfgje*ffY
0 0 Jj=1
+5“Zb /IK,](u)Ie)‘"duLgSJ
i 8
= (e [ hyw)dv -2 d —1) <o, 43
(c’ 0/ v )(ci_fomhi(v)dv—k )< @3
and
o0
cf J hi(v)dv 00
;) = 1+ooo— /vh (v)e)‘”dv+<§_12a Lfé,
c; fh[(v)dv —A 0
0
n
+e§;1Zb;/u(ij(une“dmf;?gj
o0
c?' fh,-(v)dv
|1+ ——|B <1 (4.4)
¢; [ hi(v)ydv —
0
where
o0
Bi=c /vh ()erdv + £~ Zamfg, “u+a§ Zb /IK,j(u)Ie)‘"duLgéj,
0

andi =1,2,...,n
Let

llo — x*lle —maX{SllplmaX £ g (1) — xF (@), sup [max ‘s‘_ loi () = x 'O} (4.5)

t<0 l=t=n <0
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and M be a constant such that

oo
¢; [ hi(vydv—21
0

M>p%>l’ forall i=1,2,...,n, 4.6)
i
which, together with (4.3), yields
1 . .
— - — bi <0, — bi <1, forall i=1,2,...,n,4.7)
¢; [ hi(vydv—21 c; [ hi(vydv—21
0 0

Consequently, for any € > 0, it is obvious that
Iyl < (lg — x*lls +e)e ™ < M(lg — x*|l¢ + e)e *forallt € (—oo, 0].
In the following, we will show
ly@lh < Ml — x|l + e)e Mforallr > 0. (4.8)
Otherwise, there must existi € {1,2,...,n}and 6 > 0 such that

[ ly@l1 = max{]y; )1, [y/ @)} = M(llg — x*|lg + e)e ™,

49
@Ol < Ml — x*[ls + e)eHfor all 7 € (—oc0, ). .9)

Note that

V(s) + cis) / i ()dvyi ()

0
=Ci(5)/hi(v) / y; w)dudv
0 s—v

+‘§i_1 Zaij(s)(fj(xj(s =7 () = £ (xj(s = 7j(5)))

j=1

j=1

HE D050 [ K06 = 0) = g5~ w)du, 5 €10,11, 1€ (0,01
0

(4.10)
Multiplying both sides of (4.10) by elo e fg* hi@)dvdu " and integrating on [0, ¢], we get

() = yi (e fo 0 e

t oo

s
+/e_fxlci(“).fooohi(“)dvd“[c,»(S)/hi(v) / yi(w)dudv
0 0 s—v

+ED a ) (fi(xjls — 1 () — (T (s = ij(5)))

j=1

&7 bij(s) / Kiju) (g, (xj(s — u)) — g;(cH(s — w))dulds, 1 € [0,6].
0

Jj=1
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Thus, with the help of (4.9), we have

i O] = ‘yi () i 1w J5huCwrdu
0 00 s
0 00
+/€_ff ci(u) [y hi(v)d')d”[ci(s)/hi(v) / y{(u)dudv
0 0

+§f1 Zaij () ([ Cxj(s = 7i5(5)) — fi(xf(s — 7 (5))))

j=1

+$ 1szj(s)/Ku(M)(gj(x](z —u)) _g](x (S _ M)))du]
j=1
< (lg —x*|lg +&)e i IS hi)dve
0 00

0 00
-+ /e_J: Ci(u)f() I’Li(v)dl)du[ci#»/Uhi(v)e)uvde(”q)_x*”é +8)e—)»s
0 0

+g! Z |aij(s)|L{§j|yj(s = T (5))]

j=1

+§ 1Z|blj(s)|/Klj(M)Lg§j|y](S M)|du]ds
j=1
< (g —x*|lg +&)e i IS hi)dve

6 oo
9 ~L 00 .
+ /e_j; Lz(u)fo /’lz(v)dl)du[clﬂ—/vhi(v)e)»vde(”(p_x*Hg +8)e—)»s
0

n
&7 i (9)ILT & M (lg — x* ¢ + e)e 70D
j=1

FETS o) / Ky )36 M(lg — x* e + £)e™ ™ dulds
j=l1
< (||<p—x ”E +8)eici fo hi(v)dvo

6 e

n /e_'l;ﬁ ci(u) f()oo hi(U)dUdu[C;F / vhi(v)e}»vdve—)»s

0 0
+é§—1 Za+Lf T e*)\s

¢}

n
+E7 Db [ KyoLe eMdue s Ml — i + o
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< (g =27l +epem I b0
6
_i_efcl__ fODQ h[(v)dve/e(ci_ fooo hi(v)dvf)»)sdsﬂiM(”go _ X*HE + 8)
0

e—ci Jo° hi()dv)e

<M X e —A0
< Ml — "¢ +e)e -

+ Bi (1 — e [y~ hiavy,

oo

¢; [ hi(vydv—21
0
= M(llg — x*|lg +e)e

1 B; (—c; ?h[ (v)dv)d B;
W~ Pmwman—2)¢ A
¢ Jo hi()dv ¢; [ hi(vydv—21
0

4.11)
which, together with (4.7) and (4.9), implies that
i )] < M(llg = x* [l +e)e™,
and
Ly @)l = max{|y: (0)], |y{ @)} = |y/ ()] = M(llp — x*[|¢ + &)e . (4.12)
From (4.4) and (4.7), (4.10) and (4.11) yield

00 00 6
RACHES Ci(G)/hi(v)dvlyi(G)l+Ci(9)/hi(v)/ |yi (u)|dudv
0 0 0—v

HED a O£ (0 — i 0)) — f5 (O — 71, (0)))]

j=1

+&71 D b0 / Kij(u)(g;(xj(0 — u)) — g (x7(0 — u)))dul
0

j=1
o0 o0

< cf/h,-(u)du|y,»(9)| +cjr/vh,»(v)e“de(||(p —x*||g +e)e
0 0

n
+E7 D gL g1y;0 — 1i;(0))]
j=1
n [o.¢]
+57 300 [ 1K @ILE 13,6~ wldu
j=1 0
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o0
- [c*/h,-(v)dv 1 — Bi o= Jo7 hi@)dv)o
i M [ hi()dv — A

0

Bi
* e Jo© hivydv — ,\}

e¢}

/vh (v)e*dv —i—S_l Za+Lf

0

+s‘12b /|Kl,(u>|e*“duLgs,]M<||¢—x lg +&)e™

oo

<M(lp —x*|ls + e)e—w[ /h (v)dv
0

« i_ — Bi e()\fc;‘fowh,-(v)dv)O
M ¢ [y hi(v)dv — A

e Jo7 hi)dv
i : 1
+h (ci_ Jo© hivydv — A + :|

< M(llg — x*|lg +&)e™,

which contradicts (4.12). Hence, (4.8) holds. Letting ¢ —> 0T, we have from (4.8) that
ly@)ll1 < Mllg — x*||lse™" for all t > 0,
which implies
x () —x*(t)|l1 < M|lg — x*[lpefor allt > 0.

This completes the proof. O

5 An Example
In this section, we give an example to demonstrate the results obtained in previous sections.

Example 1 Consider the following CNNs with continuously distributed leakage delays:

xj (1) = 112 0 e x (1 —S)ds + 2(1)'2)6 fi(x1(t —2sin? 1))
+ 3861(1)1()[0 fz(xz(t —sin* 1)) + 2(1)%6 o Isinule gy (x1(t — u))du
+ 35000 Jo |C°S”|6’_”82(x2(1 —u))du + 11 (1),
W) = —1a5 J5T e 0t — 9)ds + Wfl(xl(l — cos? 1))
+ $556 f2(x2(t —2cos*1)) + m J2° I cos ule™ g1 (x1 (¢ — u))du
+ 5055 Jo” Isinule™ ga(xa(t — w)du + (1),

(5.1

where f1(x) = f2(1) =g1(x)=g2(¥) = x|, 11(1)=D2(1) = ygpgy (4-+sin t-+sin V21 + 1L ).
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Obviously,
() = o) = () = e () = 1
11.2° 16.3° ’ ’
) = by (1) sin ¢ ) = ba(t) sin ¢
a = =——.,a = -
H H 4000 " 12 36000
(= b () = a1 = b (1) = &
a = = , a = = N
2 2 1000(1 + 12)” % 247 4000
o0
L =1 = 1,/|K,~j(s)|ds <1, i,j=1,2
0
Let& = & = 1. Then,
—cl_/h1(v)dv+0fr/Uhl(v)dv—i—éfl Za;fjg,- +&! bef]./lKu(u)lduLﬁéj
0 0 j=1 =t %
PR NRORVC A SR U S SRS B
L L
= 1127 2 T 11278 74000 T 36000 4000 ' 36000
~ —0.0674
< —0.067,
_c;/hz(u)du+c;/uh2(v)dv+gglza;jgj+gglzb;j/|K1j(u)|duL§gj
0 0 j=l =l
1 J7 1 1 I 1 1 1
< - ~ - J—
=763 4 T163 3 1000 " 2000 T 1000 " 2000
~ —0.0228
< —0.022,
“ ~0.1533, 1 *2 ~ 0.1907
o [T hiwdy T S o hwydv
o0 o0
_ o]
e | miydv — ay +c+/h1(u)dv(1 -y~ 0.0243,
! / ! cf Jo© hi(v)dv
0 0
o0 o0
c*/hz(v)dv —a2+c+/h2(v)dv(1 ) ~00104
2 2 5 Jo7 ha(v)dv ’
0 0
and
- cli fo: hi (v)dv
¢ Joo hi(w)dv
o0 n n 00
cf/uh,»(u)du+ g > afLlg g Zb;/u(,-j(u)uufg,
0 j=1 =1 9

<0.05, i=1,2.

Hence, from Theorem (4.2), system (5.1) has exactly one pseudo almost periodic solution
x*(t). Moreover, all solutions and their derivatives of solutions for (5.1) with initial conditions
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0.1015

‘
0.101 | z1(t) .
0.1005 |- -

01l i
0.0995
0.099
0.0985 -
0.098 H -

0.0975 |- —

0.097 I I I I I I I I I
0

0.3015

0.301

x2(t) i

0.3005 |- -

0.3 -
0.2995
0.299 —
0.2985 B
0.298 [H 4

0.2975 - i

0.297 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Fig. 1 Numerical solution x(¢) = (x1(t), x2 )T of system (5.1) for initial value ¢(¢) = (0.1, 0.3)7

(1.2) converge exponentially to x*(¢) and x* ’(¢), respectively. The exponential convergent
rate is about 0.001. The fact is verified by the numerical simulation in Fig. 1.

Remark 5.1 To the best of our knowledge, there is no research on the globally exponential
convergence of the pseudo almost periodic solution of DCNNs with continuously distributed
leakage delays. We also mention that all results in the reference [26] cannot be applied to
imply that all solutions and their derivatives of solutions for (5.1) with initial conditions (1.4)
converge exponentially to x*(¢) and x* /(¢), respectively. Here we employ a novel proof to
establish some criteria to guarantee the existence and exponential stability of pseudo almost
periodic solutions for DCNNs with continuously distributed leakage delays. This implies
that the results of this paper are essentially new.
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