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Abstract Non-negative matrix factorization (NMF) is a very effective method for high
dimensional data analysis, which has been widely used in information retrieval, computer
vision, and pattern recognition. NMF aims to find two non-negative matrices whose product
approximates the original matrix well. It can capture the underlying structure of data in the
low dimensional data space using its parts-based representations. However, NMF is actually
an unsupervised method without making use of prior information of data. In this paper, we
propose a novel pairwise constrained non-negative matrix factorization with graph Laplacian
method, which not only utilizes the local structure of the data by graph Laplacian, but also
incorporates pairwise constraints generated among all labeled data into NMF framework.
More specifically, we expect that data points which have the same class label will have
very similar representations in the low dimensional space as much as possible, while data
points with different class labels will have dissimilar representations as much as possible.
Consequently, all data points are represented with more discriminating power in the lower
dimensional space. We compare our approach with other typical methods and experimen-
tal results for image clustering show that this novel algorithm achieves the state-of-the-art
performance.
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1 Introduction

Dimensionality reduction has been widely used as a fundamental tool to analyze the high-
dimensional data [1,18,20]. Linear discriminant analysis (LDA) [24], principal component
analysis (PCA) [25] are the most popular dimensionality reduction techniques. Some dimen-
sionality reduction techniques such as LDA and PCA can be understood as matrix factoriza-
tion by using different objective function criteria. Matrix factorization approximately decom-
poses a matrix as a product of two or more matrices.Among existing matrix decomposition
methods, non-negative matrix factorization (NMF) [12] can be used to obtain new represen-
tations of data points with non-negativity constraints. That is, it requires that all elements
of the decomposed factor matrices are non-negative. These non-negative constraints lead to
parts-based representations of the objects because they only allow additive, not subtractive,
combinations of the original data points. NMF is a helpful dimensionality reduction method
for face recognition [7], document clustering [29], image processing [10] and computer vision
[22].

Generally, clustering can be divided into unsupervised clustering and semi-supervised
clustering. In unsupervised clustering, we don’t need to use any label information to cluster
data. In semi-supervised clustering, we need labels of some data points to clustering. Semi-
supervised clustering methods need some labeled data that can be user specified or randomly
selected from the data points. NMF is an unsupervised learning method. NMF does not
use any prior knowledge of data to guide the learning process, nevertheless, there is certain
amount of prior knowledge in the real world applications. Using prior knowledge to improve
the performance of the algorithms has become one of the hot areas of machine learning.
Many machine learning researchers have pointed out that when a small amount of labeled
data is used in conjunction with unlabeled data, it can produce encouraging improvement in
learning performance [3,6,8,30,35]. However, it is infeasible to label all the data points in
the database, because the cost will be highly expensive, whereas obtaining a small amount of
labeled data is relatively inexpensive. Under these circumstances, semi-supervised learning
algorithms can play a greater performance. NMF has been extended to semi-supervised
manner to get better performance [9,16,23,31].

Liu et al. [16] proposed a constrained non-negativematrix factorization (CNMF) approach
which took the label information as additional constraints. The main idea of their algorithm
is that the data points with the same class label must be strictly mapped to share the same
representation in the new parts-based representations space. Thus, the method forces the new
parts-based representations to have the consistent label information with the original data.
Obviously, this requirement is too strict so that it will weaken the representational ability of
the new parts-based representations space for other unlabeled data, because it might assign
unlabeled data with totally wrong representations due to its constraints. Wang et al. [23]
proposed a penalized matrix factorization (PMF) algorithm, which took the form of pairwise
constraints as supervisory information. However, the penalties for violating the must-link
constraints are hard to fix. Yang et al. [31] proposed a pairwise constraints guided non-
negative matrix factorization (PCNMF), which used the pairwise constraints to guide the
clustering process.

Recently, manifold learning method [36,37] has also been incorporated into NMF. Cai
et al. [2] had proposed a graph regularized NMF (GNMF) algorithm which encoded the
geometrical information of the data space by constructing a nearest neighbor graph to model
the local manifold structure.

In our previous work [9], we have proposed a Semi-supervised non-negative matrix fac-
torization (SEMINMF) with graph Laplacian method which incorporated label information
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and graph Laplacian into NMF. However we can only set the dimensionality of the factorized
matrices to the number of clusters in SEMINMF, which may result in bigger reconstruction
error between the original matrix and the factorized matrices. Besides, the label information
used in SEMINMF can be regarded as hard constraints, it forces the factorized coefficient
matrix to have the consistent label information with the cluster indicator matrix of the labeled
points, which also may generate bigger reconstruction error.

In this paper, we propose a novel pairwise constrained non-negative matrix decomposition
with graph Laplacian (PCGNMF) method. Unlike SEMINMF, PCGNMF does not directly
use the class label information to clustering, but utilizes the pairwise constraints generated
among all the labeled data to enhance the learning quality. The label information used in
SEMINMF can be regarded as hard constraints, while pairwise constraints used in PCGNMF
can be regarded as soft constraints. PCGNMF can set the dimensionality of the factorized
matrices freely, but in SEMINMF the dimensionality of the factorized matrices must be
the same as the number of clusters. With the pairwise constraints, PCGNMF requires that
two data points having the same class label should have very similar representations in the
new parts-based representations space as much as possible. On the contrary, the data points
having different class labels should have quite dissimilar representations in the new parts-
based representations space. We do not directly use the pairwise constraints to create the
graph Laplacian matrix, because the number of pairwise constraints is small, which can not
characterize the local structure of the data adequately. So we incorporate graph Laplacian
into NMF, it requires that the nearby points should share the similar representations as
much as possible. In this way, we expect that PCGNMF can obtain a more compact and
discriminative representation for the data. To achieve this, we carefully design a new NMF
objective function incorporating the pairwise constraints information and graph Laplacian
into it. Our experimental evaluations show that the proposed approach achieves the state-of-
the-art performance.

2 Related Works

Given a set of data points matrix X = [x1, x2, . . . , xn] ∈ R
m×n , x j , j = 1, . . . , n, is an

m-dimensional non-negative vector, denoting the jth data point. NMF aims to factorize X
into the product of two non-negative matrices U and V. The product of U and V is a good
approximation to the original matrix, i.e.,

X ≈ UVT (1)

In order to obtain the two non-negative matrices, we can quantify the quality of the approx-
imation by using a cost function with some distance metric. For example, if the Euclidean
distance between twomatrices is used, the problem turns to minimize the following objective
function.

J = ||X − UVT ||2 =
m∑

i=1

n∑

j=1

(xi j −
k∑

c=1

uicv jc)
2 (2)

where ‖.‖ is the matrix Frobenius norm denoting the squared sum of all the entries in the
matrix. The sizes of the factorized matrices U and V are m × k and n × k, respectively. The
dimensionality of U and V is k. Usually, k is chosen such that k � min{m, n}. Each column
vector uc of matrix U can be regarded as a basis of the new representations space [4,28],
while the jth row vector of matrix V contains the coefficients of a linear combination of the
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column vectors of U, this linear combination is used to approximate the jth column vector
x j of matrix X. NMF can derive the latent characteristic structure space U using the matrix
factorization in the clustering process [13,27,29,33].

When NMF is used to deal with clustering tasks, the dimensionality k of the factorized
matrices has multiple choices. We can set k to be the same as or bigger than the number of
clusters, even we can set k to be smaller than the number of clusters. When we set k to be
the same as the number of clusters, each column of decomposed matrix U can be regarded
as the center of one partition of dataset, each data point can be represented by an additive
combination of all column vectors of the decomposed matrix U. Each entry in the jth row
of the factorized matrix V is the projection of the jth data point x j of the matrix X onto
corresponding column vector of matrix U. Hence, the cluster membership of each data point
can be determined by finding the basis (one column of U) with which the data point has
the largest projection value. More specifically, we examine each row of V, and assign data
point x j to cluster c if c = argmax

c
v jc [29]. Certainly, we can also apply K-means to the

coefficient matrix for clustering when k is set to be the same as the number of clusters. But
if k is set to be bigger or smaller than the number of clusters, we can only apply K-means to
the coefficient matrix for clustering.

Cai et al. [2] had proposed a graph regularized NMF (GNMF) algorithm which incor-
porated the graph Laplacian into NMF. The objective function of GNMF is defined
as:

J = ||X − UVT ||2 + λtr(VTLV) (3)

where tr(·) is the trace operator,L is the graph Laplacianmatrix,L = D−W,W is the affinity
matrix, its entry w jq denotes the similarity between point x j and xq , D is a diagonal matrix
with its entries defined as d j j = ∑n

q=1 w jq . Due to the graph Laplacian matrix, GNMF can
effectively utilize the local structure of the data and obtain a compact representation for the
data.

Recently, pairwise constraints have been incorporated into NMF.Yang et al. [31] proposed
a PCNMF, which utilized the pairwise constraints to improve the performance of NMF. The
objective function of PCNMF is defined as:

J = ||X − UHT ||2 + λtr(HT SH) (4)

Ai j =

⎧
⎪⎨

⎪⎩

α if xi , x j (i �= j) have the same class label

−(1 − α) if xi , x j (i �= j) have different class labels

0 otherwise

where S = D − A, D is a diagonal matrix with its entries defined as dii = ∑n
j=1 Ai j . The

objective function of PCNMF looks like the objective function of GNMF, the main difference
is that PCNMF only uses the explicit pairwise constraints to construct the graph Laplacian
matrix, while GNMF uses all the data to construct a graph to model the local structure.

Liu et al. [16] proposed aCNMF approach, which utilized the label information to enhance
the performance of NMF. The objective function of CNMF is defined as:

J = ||X − UZA||2 (5)

CNMF incorporates the label information by introducing an auxiliary matrix A. For each
data point, if xi and x j have the same class label, they will have the same representation in
the new parts-based representations space.
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In our previous work [9], we have proposed a SEMINMF method which incorporated
label information and graph Laplacian into NMF. The objective function of SEMINMF is
defined as:

J = ||X − UVT ||2 + αtr(VTLV) + β||V − Y||2 (6)

where L is the graph Laplacian matrix,Y is the cluster indicator matrix of the labeled points.
The main drawback of SEMINMF is that we can only set k to the number of clusters, which
may result in bigger reconstruction error between the original matrix and the factorized
matrices.

Yang et al. [32] proposed a non-negative spectral clustering with discriminative regular-
ization algorithm, which imposed non-negative constraints to the cluster indicator matrix.

In Sect. 3, we present a novel PCNMF with graph Laplacian method, which incorporates
the pairwise constraints generated among the labeled data and graph Laplacian into NMF.
The new objective function for NMF is different from these algorithms.

3 NMF with Pairwise Constraints and Graph Laplacian

3.1 The Objective Function

Given a data set consisting of n data points X = [x1, x2, . . . , xn] ∈ R
m×n , the label infor-

mation of the first s data points xt (t ≤ s) is available and the rest points xr (s < r ≤ n) are
unlabeled.Whenwe have these labeled points, we can obtain the specific pairwise constraints
information among them. Suppose the data set X is going to be divided into k clusters, we
randomly select f labeled points from each cluster, the pairwise constraints can be easily
generated among the labeled points. More specifically, if any two labeled points have the
same class label, we generate a must-link constraint for them. If any two labeled points
share different class labels, a cannot-link constraint is generated for them. The number of all
must-link pairwise constraints and cannot-link pairwise constraints is k × C2

f and f 2 × C2
k ,

respectively. Cm
n denotes the number of ways to select m from n objects.

Then we can construct a must-link pairwise constraint symmetric matrix M = [mpj ] ∈
R
n×n (p, j = 1, 2, . . . , n) and a cannot-link pairwise constraint symmetric matrix C =

[cpj ] ∈ R
n×n (p, j = 1, 2, . . . , n) with the first s labeled data points on the data set as

follows:

mpj =
{
1 if xi , x j (i �= j) have the same class label

0 otherwise

cpj =
{
1 if xi , x j (i �= j) have different class labels

0 otherwise
(7)

With the pairwise constraints, our proposed approach reduces to minimize the following
objective function:

J =
m∑

i=1

n∑

j=1

(
xi j −

k∑

c=1

uicv jc

)2

+ α

k∑

c=1

n∑

q=1

n∑

j=1

w jq(v jc − vqc)
2

+β

n∑

j=1

⎛

⎝
∑

p:mpj=1

k∑

c=1

k∑

h=1,h �=c

v jcvph +
∑

p:cpj=1

k∑

c=1

v jcvpc

⎞

⎠ (8)
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w jq =
{
exp(−||x j−xq ||2

σ 2 ) if x j ∈ Np(xq) or xq ∈ Np(x j ) and j �= q

0 otherwise
(9)

The Eq. (8) can be rewritten in matrix form using an auxiliary matrix A ∈ R
k×k , A is

defined as:

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 ... 1
1 0 ... 1
. . .

. . .

. . .

1 1 ... 0

⎞

⎟⎟⎟⎟⎟⎟⎠

J = ||X − UVT ||2 + αtr(VTLV) + β[tr(VTMVA) + tr(VTCV)] (10)

Although Eq. (10) is compact, it may not easy to understand how it works. Hence, we
analyze it with Eq. (8).

In Eq. (9), Np(xq) denotes the set of the p nearest neighbors of the data point xq . In Eq.
(8), uic ≥ 0 and v jc ≥ 0, i = 1, 2, . . . ,m; q, p, j = 1, 2, . . . , n; c = 1, 2, . . . , k. The first
term in Eq. (8) corresponds to the cost function of NMF, it denotes the squared sum of the
Euclidean distance between X and UVT . The second term is graph Laplacian regularization
which is used to capture the local structure of the data, it implies that the nearby points should
share the similar representations as much as possible. The third term is the cost function for
violation of the pairwise constraints. Specifically, the third term includes two components,
one is the cost for violation of the must-link constraints, the other is the cost for violation of
the cannot-link constraints. We now analyze how the two components of pairwise constraints
work when we set k to be the same as the number of clusters:

1. Suppose point x j belongs to the cth cluster, then it will have the largest projection
value v jc in the jth row of the matrix V onto corresponding column vector uc of
the matrix U. If point xp has a must-link constraint with point x j (mpj = 1), then
xp also belongs to the cth cluster. We expect that xp will also have the largest pro-
jection value vpc in the pth row of the matrix V onto corresponding column vector
uc of the matrix U. In this case, the product of v jc and vpc is the biggest than any
other product of v jc and vph (h = 1, . . . , k; h �= c) in the jth row and the pth row
of the matrix V. Therefore, vpc should be maximized in the p-th row of the matrix
V, this is imposed by minimizing

∑n
j=1(

∑
p:mpj=1

∑k
c=1

∑k
h=1,h �=c v jcvph). When

∑n
j=1(

∑
p:mpj=1

∑k
c=1

∑k
h=1,h �=c v jcvph) is minimized, vph(h = 1, . . . , k; h �= c) will

be as smaller as possible, while vpc will be getting bigger as much as possible. Eventu-
ally, the point xp is assigned to the cth cluster as much as possible, as it has the largest
projection value vpc in the pth row of the matrix V onto corresponding column vector uc
of the matrix U.

2. When two points x j and xp have a cannot-link constraint (cpj = 1), theymust be assigned
to different clusters. For example, x j is going to be assigned to the cth cluster and it will
have the largest projection value v jc in the jth row of the matrix V onto corresponding
column vector uc of the matrix U. Then xp must be assigned to a different cluster, say,
the hth (h �= c) cluster, so it will have the largest projection value vph in the pth row of
the matrix V onto corresponding column vector uh of the matrix U. That is, we expect
that the jth row and the pth row of the matrix V are as orthogonal as possible. This can
be imposed by minimizing

∑n
j=1(

∑
p:cpj=1

∑k
c=1 v jcvpc).
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In PCGNMF, we can also set k to be smaller or bigger than the number of clusters. When
k is different from the number of clusters, how the two components of pairwise constraints
work is similar to the above analysis.

If points x j and xp have a must-link constraint (mpj = 1), they should be assigned into
the same cluster, equivalently, it means that x j and xp will have the very similar repre-
sentations. In other words, v jc should be almost the same as vpc(c = 1, . . . , k). If v jc is
the largest projection value in the jth row of V, we expect that vpc will also be the largest
projection value in the pth row of V as much as possible. This can be imposed by min-
imizing

∑n
j=1(

∑
p:mpj=1

∑k
c=1

∑k
h=1,h �=c v jcvph). On the contrary, if x j and xp have a

cannot-link constraint (cpj = 1), they should be assigned into different clusters, that is to
say, x j and xp will possess quite dissimilar representations. So the jth row and the pth row
of the matrix V should be as orthogonal as possible. This can be imposed by minimizing∑n

j=1(
∑

p:cpj=1
∑k

c=1 v jcvpc).
The trade-off these terms is governed by the positive parameters α, β, which specify the

relative importance of the reconstruction error, local geometrical structure and the violation
of the pairwise constraints.

3.2 The Algorithm

The objective function J of PCGNMF in Eq. (10) is not convex in both two matrix variables
U and V. Therefore, it is unrealistic to find the global minima of J. In the following, we
introduce an iterative updating algorithm which can obtain a local optima for J.

Using the matrix property tr(AB)=tr(BA) and tr(A)=tr(AT ), the objective function J can
be rewritten as following:

J = tr((X − UVT )T (X − UVT )) + αtr(VTLV)

+β[tr(VTMVA) + tr(VTCV)]
= tr(XTX) − 2tr(XTUVT ) + tr(VUTUVT )

+αtr(VTLV) + β[tr(VTMVA) + tr(VTCV)] (11)

Let φi j and ϕi j be the Lagrangemultiplier for constraint ui j ≥ 0 and vi j ≥ 0, respectively,
and � = [φi j ], � = [ψi j ]. The Lagrange function L is

L = J + tr(�UT ) + tr(�VT ) (12)

Let the derivatives of L with respect to V and U vanish, we have:

∂L
∂V

= −2XTU + 2VUTU + 2α(DV − WV) + β(MVA + CV) + � = 0 (13)

∂L
∂U

= −2XV + 2UVTV + � = 0 (14)

Using the KKT conditions ψ jcv jc = 0 and φicuic = 0, we get the following equations
for v jc and uic:

v jc ←− v jc
2(XTU) jc + 2α(WV) jc

2(VUTU) jc + 2α(DV) jc + β(MVA + CV) jc
(15)

uic ←− uic
(XV)ic

(UVTV)ic
(16)
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Table 1 Parameters used in
complexity analysis

Parameters Description

n Number of data points

m Number of features

k Number of factors

s Number of labeled data points

mn Number of pairwise must-link constraints

cn Number of pairwise cannot-link constraints

3.3 Computational Complexity Analysis

The objective function of PCGNMF is minimized by iteratively updating matrices U and V.
In this section, we will discuss the extra computational cost of our PCGNMF algorithm.

The big O analysis is usually used to express the complexity of the algorithm [15].
However, it may be not precise enough to differentiate the complexity of PCGNMF. Thus, we
count the arithmetic operations for PCGNMF algorithm [2,15]. Three arithmetic operations
addition, multiplication and division are involved in the updating computation. All these
operations are performedonfloating-point numbers [15]. Table 1has described the parameters
used in the complexity analysis.

Based on the updating rules, we count the number of operations for each update step
in PCGNMF. It is important to note that M and C are sparse matrices, we use mn and
cn to denote the number of pairwise must-link constraints and pairwise cannot-link con-
straints, respectively. Thus, we only need (mnk + nk2) flam (a floating point addition
and multiplication) to compute MVA and cnk flam to compute CV. Moreover, W is
also a sparse matrix, we only need npk flam to compute WV [2]. So PCGNMF needs
(2mnk + mnk + cnk + 5nk + npk + 2mk2 + 3nk2) fladd (a floating point addition),
(2mnk +mnk + cnk +npk +3nk +2mk2 +3nk2) flmlt (a floating point multiplication) and
(mk +nk) fldiv (a floating point division) in each iteration. Besides the multiplicative updat-
ing, PCGNMF needs O(s2) to construct the constraint matrices M and C, and PCGNMF
also needs O(n2m) to construct the p-nearest neighbor graph [2].

Suppose the multiplicative updates stop after t iterations, the overall computational com-
plexity for PCGNMF will be O(tmnk + s2 + n2m).

4 Experimental Results

In this section, The image clustering tasks are used for the performance evaluations of our
proposed PCGNMF algorithm.

4.1 Evaluation Metrics

Two metrics are used to evaluate the clustering performance on each experiment [2,14,29].
Experimental result is evaluated by comparing the cluster label of each sample point with its
label provided by the dataset. One metric is the accuracy (AC), which can be used to measure
the percentage of correct labels obtained by the algorithm.Given a dataset including n images,
let li and γi be the cluster label and the label provided by the dataset of the ith sample point,
respectively. The AC is defined as follows:

AC =
∑n

i=1 δ(γi ,map(li ))

n
(17)
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where n denotes the total number of images in the dataset. δ(x, y) is the delta function that
equals one if x= y and equals zero otherwise, and map(li ) is the mapping function that maps
each cluster label li to the equivalent label from the dataset. The best mapping can be found
by using the Kuhn-Munkres algorithm [17].

The second metric is the normalized mutual information (NMI ). In clustering problems,
mutual information canmeasure how similar two clusters are.Given two sets of image clusters
C and C ′, their mutual information metric MI(C , C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′
j∈C ′

p(ci , c
′
j ) · log p(ci , c′

j )

p(ci ) · p(c′
j )

(18)

where p(ci ), p(c′
j ) denote the probabilities that an image arbitrarily selected from the data

set belongs to the clusters ci and c′
j , respectively, and p(ci , c′

j ) denotes the joint probability
that this arbitrarily selected image belongs to the cluster ci as well as c′

j at the same time.
MI(C ,C ′) takes values between zero and max(H(C),H(C ′)), where H(C) and H(C ′) are the
entropies of C and C ′, respectively. It reaches the maximum max(H(C), H(C ′)) when the
two sets of image clusters are identical and becomes zero when the two sets are completely
independent. One important character of MI (C,C ′) is that the value keeps the same for all
kinds of permutations [14].We use the following normalizedmetric NMI (C,C ′) which takes
values between zero and one:

NMI (C, C′) = MI (C,C ′)
max(H(C), H(C ′))

(19)

4.2 Performance Evaluations and Comparisons

To evaluate how the clustering performance can be improved by our method, we compare
our algorithm with other five state-of-the-art algorithms:

1. NMF based clustering [29].
2. Graph regularized Non-negative Matrix Factorization (GNMF) which utilizes the local

structure of the data by the graph Laplacian [2].
3. CNMF which takes label information as additional constraints [14].
4. PCNMF which incorporates the pairwise constraints information of the data into NMF

[31].
5. SEMINMFwith graph Laplacianmethod which incorporates label information and graph

Laplacian into NMF [9].

We conduct the performance evaluations using four image datasets. The descriptions
of the four datasets are summarized in Table 2, each dataset contains a certain number of
categories of images. The detailed descriptions for each image dataset will be introduced
later. Generally, when we use NMF to deal with clustering tasks, we set k to the number
of clusters [2,14,29,31]. In some cases, if k is different from the number of clusters, the

Table 2 Descriptions of the four
databases

Dataset Size Dimensionality Clusters number

AT&T 400 1024 40

Yale 165 1024 15

AR 1399 2580 100

USPS 9298 256 10
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Table 3 Clustering accuracy
comparison on the four databases

Bold values signify the best result

Methods Accuracy (%)

AT&T Yale AR USPS

NMF 57.4 ± 5.6 45.6 ± 3.3 48.7 ± 6.5 66.3 ± 5.5

GNMF 69.4 ± 4.2 48.9 ± 3.4 47.0 ± 6.8 76.9 ± 7.3

PCNMF 67.5 ± 3.6 49.7 ± 4.3 57.2 ± 7.2 69.8 ± 11.3

CNMF 71.6 ± 4.7 52.7 ± 4.4 60.1 ± 4.8 74.4 ± 6.1

SEMINMF 83.9 ± 2.3 60.4 ± 3.4 76.9 ± 3.5 80.4 ± 5.5

PCGNMF 84.1 ± 3.2 64.4 ± 5.2 74.7 ± 3.1 87.8 ± 2.0

Table 4 Clustering normalized
mutual information comparison
on the four databases

Bold values signify the best result

Methods Normalized mutual information (%)

AT&T Yale AR USPS

NMF 70.5 ± 4.3 44.4 ± 2.9 62.2 ± 6.6 54.3 ± 4.6
GNMF 79.0 ± 2.9 46.0 ± 3.6 59.2 ± 7.0 76.4 ± 3.6
PCNMF 78.8 ± 3.0 46.8 ± 3.6 69.8 ± 5.5 57.2 ± 11.9
CNMF 81.2 ± 2.7 52.3 ± 4.0 70.9 ± 3.8 62.0 ± 4.3
SEMINMF 84.5 ± 2.2 51.8 ± 3.2 76.8 ± 3.7 62.1 ± 6.2
PCGNMF 86.2 ± 2.4 58.5 ± 4.9 75.2 ± 2.7 72.7±3.5

Table 5 The best clustering
accuracy and corresponding k of
each algorithm comparison on
each database

Bold values signify the best result

Methods Accuracy (%)

AT&T Yale AR USPS

NMF 58.0 ± 5.012 46.3 ± 4.717 55.9 ± 5.727 66.3 ± 5.56
GNMF 69.4 ± 4.220 49.7 ± 4.612 50.9 ± 7.526 81.2 ± 10.523
PCNMF 69.8 ± 3.021 49.7 ± 4.310 64.3 ± 7.428 77.5 ± 8.615
CNMF 72.8 ± 3.522 57.5 ± 5.614 66.7 ± 4.930 78.4 ± 7.110
SEMINMF 83.9 ± 2.320 60.4 ± 3.410 76.9 ± 3.520 80.4 ± 5.56
PCGNMF 84.1 ± 3.220 67.4 ± 5.313 73.8 ± 3.523 88.3 ± 2.58

Table 6 The best clustering
normalized mutual information
and corresponding k of each
algorithm comparison on each
database

Bold values signify the best result

Methods Normalized mutual information (%)

AT&T Yale AR USPS

NMF 70.6 ± 3.712 45.6 ± 3.417 66.6 ± 5.427 54.3 ± 4.66
GNMF 79.0 ± 2.920 45.7 ± 5.012 64.6 ± 5.126 79.5 ± 5.823
PCNMF 79.7 ± 1.621 46.8 ± 3.610 75.0 ± 6.828 65.4 ± 4.415
CNMF 81.5 ± 2.422 54.2 ± 5.514 76.2 ± 4.930 63.6 ± 5.510
SEMINMF 84.5 ± 2.220 51.8 ± 3.210 76.8 ± 3.720 62.1 ± 6.26
PCGNMF 86.2 ± 2.420 62.8 ± 3.813 78.4 ± 3.023 73.3 ± 4.58

performances of the algorithms may be even better. In order to demonstrate this difference,
we first set k to the number of clusters, Tables 3 and 4 have shown the performance of each
algorithm. Then, we report the best performance and corresponding k of each algorithm in
Tables 5 and 6. On AT&T, Yale, AR and USPS, the number of categories which is used to
clustering is 20, 10, 20, 6, respectively. The experiments are carried out as follows:

(1). We conduct ten independent experiments on each dataset. In each experiment, we ran-
domly select twenty subjects for clustering on AT&T and AR databases. On Yale data-
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base, we randomly select ten subjects for clustering. On USPS, we randomly select six
subjects for clustering in each experiment.

(2). In our experiments, three images are randomly selected from each cluster with labels on
AT&T and Yale datasets. On AR database, we randomly select five images from each
category to provide the label information. For USPS dataset, we randomly pick up 10 %
images from each cluster as the available label information. For PCGNMF and PCNMF,
the pairwise constraints are generated among all the labeled data points on each dataset.

(3). In the clustering process, for NMF, GNMF, PCNMF and CNMF, in order to achieve
the best performance, fast K-means algorithm [19] is further applied to the new data
representation V for clustering. For PCGNMF and SEMINMF, we use V to determine
the cluster label of each data point when k is set to the number of clusters. That is, we
examine each row of V, and assign data point x j to cluster c if c = argmax

k
v jk . If k

is set to be smaller or bigger than the number of clusters, we can apply fast K-means
algorithm to the new data representation V obtained by PCGNMF for clustering.

The above process is repeated ten times, we calculate the average AC and NMI over
the ten tests. For each algorithm, in order to achieve its best results, the parameters
are appropriately selected. In GNMF, the regularization parameter λ searches the grid
{0.01, 0.1, 1, 10, 100, 500, 1000}. For PCNMF, λ searches the grid {0.01, 0.1, 1, 10, 100},
α searches the grid {0.8, 0.85, 0.9, 0.95, 0.99}.For SEMINMF, the regularization parame-
ter α is set by searching the grid {200, 260, 320, 380, 440, 500, 560, 620}, β searches
the grid {6, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For FCGNMF, α searches the grid
{0.01, 0.1, 1, 10}, β is set by searching the grid {1, 10, 20, 30, 60, 100}, the number of the
nearest neighbors p searches the grid {3, 4, 5, 6, 7, 8, 9, 10}, in our all experiments, we sim-
ply fix α = 0.1, β = 20, p = 3. For GNMF and PCGNMF, the parameter σ 2 is set to 1 on each
database. For SEMINMF, the parameter σ 2 is set to 1 on AT&T, Yale and AR, on USPS, σ 2

is set to 0.1.

4.3 Data Sets

4.3.1 AT&T Dataset

The AT&T1 dataset contains 400 images of 40 distinct subjects. Each subject has 10 different
images. For some subjects, the images were taken at different times, varying the lighting,
facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses /
no glasses). All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some side movement). In all the
experiments, the original images are normalized in scale and orientation such that the two
eyes are aligned at the same position. Then, the facial areas are cropped into the final images
for clustering. The size of each cropped image is 32×32 pixels, with 256 gray levels per
pixel. Thus, each image can be represented by a 1,024-dimensional vector [14].

4.3.2 Yale Dataset

The Yale Face2 database contains 165 grayscale images in GIF format of 15 individuals.
There are 11 images per subject, one per different facial expression or configuration: center-
light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, surprised,

1 http://www.face-rec.org/databases/.
2 http://www.face-rec.org/databases/.
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Table 7 Reconstruction errors of
PCGNMF and SEMINMF on AR
database

Database ||X − UVT ||2

SEMINMF PCGNMF

k =20 k =20 k =25 k =29

AR 26.1 10.6 9.4 8.7

and wink. Preprocessing for this dataset has done the same as the AT&T dataset. Each image
can also be represented by a 1,024-dimensional vector.

4.3.3 AR Dataset

The AR database consists of over 4,000 frontal images for 126 individuals.We select a subset
(with only illumination and expression changes) containing 50 male subjects and 50 female
subjects, the total images is 1,399 [26,34].

4.3.4 USPS Dataset

The USPS3 handwritten digit database contains 10 objects. We select a popular subset con-
taining 9298 16×16 handwritten digit images in total.

When k is set to the number of clusters, Tables 3 and 4 show the detailed clustering
accuracy, normalized mutual information and standard deviations on the four datasets. On
AT&T, we can see that SEMINMF gets the second best performance, PCGNMF achieves
0.2 % improvement in accuracy and 1.7 % improvement in normalized mutual information
over SEMINMF on average. On Yale, SEMINMF obtains the second best result for accu-
racy, CNMF gets the second best performance in normalized mutual information, PCGNMF
improves 4 % in accuracy and 6.2 % in normalized mutual information over SEMINMF and
CNMF. On AR, SEMINMF is the best algorithm, PCGNMF gets the second best perfor-
mance. On USPS, we can see that the local structure of the data is particularly important,
GNMF even obtains the best result for normalized mutual information with graph Laplacian
only. PCGNMF gets the best result for accuracy.

Tables 5 and 6 (the subscripts in the tables denote the dimensionality k of the factorized
matrices.) show the best performance and corresponding k of each algorithm on all the
databases. Note that in SEMINMF, we can only set k to the number of clusters, the results
of SEMINMF are the same as in Tables 3 and 4. In order to compare with others algorithms,
we list the results of SEMINMF again. On AT&T, NMF achieves the best performance
when the dimensionality k of the factorized matrices is 12, GNMF and PCGNMF obtain
the best performances when k is the same as the number of clusters, PCNMF and CNMF
have slight improvements in performances when k is 21 and 22, respectively. On Yale, when
k is bigger than the number of clusters, NMF, GNMF, CNMF, and PCGNMF obtain better
performances. On AR, PCGNMF gets the best result for normalized mutual information
when k is 23, but when k is 20 the normalized mutual information of PCGNMF is worse
than that of SEMINMF. k is limited to the number of clusters, which is the main drawback
of SEMINMF. On USPS, the performances of GNMF, PCNMF, CNMF and PCGNMF have
been improved when k is bigger than 6, PCGNMF still gets the best performance in accuracy.

Tables 7 and 8 show the reconstruction errors of PCGNMF and SEMINMF on AR and
USPS databases. In SEMINMF, we can only set k to the number of clusters, which may

3 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

123

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html


Non-negative Matrix Factorization 179

Table 8 Reconstruction errors of
PCGNMF and SEMINMF on
USPS database

Database ||X − UVT ||2

SEMINMF PCGNMF

k =6 k =6 k =20 k =30

USPS 517.0 498.0 367.2 325.5
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Fig. 1 When the number of labeled points varies, the performances of the algorithms on each database

result in bigger reconstruction error between the original matrix and the factorized matrices.
Besides, the label information used in SEMINMF can be regarded as hard constraints, SEM-
INMF forces the factorized coefficient matrix to fit the cluster indicator matrix of the labeled
points, which is too strict so that it may also lead to bigger reconstruction error. From Tables
7 and 8, we can see that when k is the same as the number of clusters, the reconstruction error
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Fig. 2 The performance of PCGNMF versus a, c α with β fixed, b, d β with α fixed on AT&T and Yale,
respectively

of PCGNMF is smaller than that of SEMINMF. When k becomes large, the reconstruction
error of PCGNMF becomes smaller, so the product ofU andVwill be a better approximation
of X.

4.4 Parameters Selection

Our PCGNMF algorithm has three main parameters: the number of labeled points, the reg-
ularization parameters α and β. In this section, we illustrate the effect of the parameters on
performance.

Figure 1 showshow the performances of semi-supervised algorithmsvarywith the increase
of labeled points. On AT&T, as can be seen, when the number of the labeled points increases,
the performances of PCNMF, CNMF, SEMINMF and PCGNMF have been improved sig-
nificantly. On Yale, when the number of labeled points increases, PCGNMF can make use
of the label information to enhance the performance and obtain the best results. The per-
formance of PCNMF is not improved significantly when the number of the labeled points
increases. On AR, when the number of labeled points is 7 for each cluster, PCGNMF will be
as good as SEMINMF. On USPS, the performance of CNMF is not improved significantly
when the number of labeled points increases, the performance of PCNMF even degrades.
When the number of labeled points is 120, the normalized mutual information of PCGNMF
is competitive with that of GNMF.
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Fig. 3 The performance of PCGNMF versus a, c α with β fixed, b, d β with α fixed on AR and USPS,
respectively

To study how the two regularization parameters α and β affect the image clustering
performance, we carry out some experiments on the parameters sensitivity with α and β

varying respectively. Figure 2a shows the performance of PCGNMF varies with α when β is
fixed on AT&T. We can see that when α varies from 0 to 0.1, the performance of PCGNMF
has been improved.When α varies from 0.1 to 0.2, PCGNMF consistently achieves good and
stable performance. When α is greater than 0.2, the performance obviously declines. Figure
2b shows the performance varies with β when α is fixed, from which we can see that when
β varies from 1 to 15, the performance has been improved significantly, when β is greater
than 25 and 20, the accuracy and the normalized mutual information of PCGNMF will drop,
respectively. Figure 3a shows the performance of PCGNMF varies with α when β is fixed
on USPS. It can be seen that when α varies from 0 to 1, the performance has been improved
significantly, PCGNMF consistently achieves good and stable performance when α varies
from 1 to 20. When α is fixed, Fig. 3b shows the performance varies with β, we can see that
when β varies from 0 to 0.5, the performance has been improved significantly, PCGNMF
consistently achieves good and very stable performance when α varies from 0.5 to 10,000.
From Fig. 2 to Fig. 3, we can see that the local structure and the pairwise constraints of the
data are all important, with combination of the graph Laplacian and the pairwise constraints,
PCGNMF obtains a more compact and discriminative representation for the data and so it
can achieve good performance.
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5 Conclusions

In order to enhance the performance of NMF, label information and pairwise constraints have
been incorporated into NMF. However, some previous existing methods can not make full
use of the pairwise constraints and label information to improve the performance of NMF.
The CNMF proposed by Liu et al. [16] did not consider that data points with different class
labels should have dissimilar representations. The PCNMF proposed by Yang et al. [31] did
not consider the local structure of the data. Our previous work SEMINMF [9] incorporated
label information as hard constraints and graph Laplacian into NMF. However, SEMINMF
can only set the dimensionality of the factorized matrices to the number of clusters, which is
the main drawback of SEMINMF.

In this paper, the proposed PCGNMF algorithm takes pairwise constraints of the labeled
data points and the local structure of the data with graph Laplacian into account. In PCGNMF,
we can set the dimensionality of the factorized matrices freely, so the model is more flexible.

Our experimental evaluations for image clustering tasks show that the proposed algorithm
is effective and achieves the state-of-the-art performance. Compared with SEMINMF, the
reconstruction error of PCGNMF is smaller than that of SEMINMF, which means that the
product of the factorized matrices obtained by PCGNMF will be a better approximation of
original data matrix.
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6 Appendix

In this section, we prove the convergence of PCGNMF.We begin with the following theorem
regarding the iterative updating rules in Eqs. (15) and (16).

Theorem 1 The objective function J is nonincreasing under the iterative updating rules in
Eqs. (15) and (16). The objective function is invariant under these updates if and only if U
and V are at a stationary point.

Theorem 1 guarantees that these iterative updating rules of U and V in Eqs. (15) and (16)
can converge on a stationary point and hence final solution will be a local optimum. To prove
Theorem 1, we have to show that J is nonincreasing under the iterative updating rules in Eqs.
(15) and (16). Since the second term and the third term of J are only related to V, and the
iterative updating rule (16) is exactly the same as update formula for U in the NMF. The
convergence proof of NMF has shown that J is nonincreasing under the iterative updating
rule in Eq. (16) [11]. So, we only need to prove that J is nonincreasing under the iterative
updating rule in Eq. (15). Firstly, we make use of a similar auxiliary function which has been
used in the Expectation-Maximization algorithm [5,21].

Definition G(v, v′) is an auxiliary function for F(v) if the conditions G(v, v′) ≥ F(v),
G(v, v) = F(v) are satisfied.

We have the following lemma regarding the very useful auxiliary function, which will be
helpful to prove the convergence of the objective function.
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Lemma 1 If G is an auxiliary function of F, then F is nonincreasing under the update

v(t+1) = argmin
v

G(v, vt ) (20)

Proof F(v(t+1)) ≤ G(v(t+1), vt ) ≤ G(vt , vt ) =F(vt )

Now, we will prove that the iterative updating rule for V in Eq. (15) is exactly the update
rule in Eq. (20) with an appropriate auxiliary function. For any entry vab in V, we use Fvab

to denote the part of J only relevant to vab. It is easy to check that

F′
vab

= (
∂J

∂V
)ab = −2(XTU)ab + 2(VUTU)ab + 2α(DV)ab

−2α(WV)ab + β(MVA + CV)ab (21)

F′′
vab

= 2(UTU)bb + 2αDaa − 2αWaa + βCaa (22)

Where F′, F′′ are the first and second order derivative with respect to V, respectively. ��
Lemma 2 The function

G(v, v
(t)
ab ) = Fvab (v

(t)
ab ) + F′

vab
(v

(t)
ab )(v − v

(t)
ab )

+ (VUTU)ab + α(DV)ab + β
2 (MVA + CV)ab

v
(t)
ab

(v − v
(t)
ab )2 (23)

is an auxiliary function for Fvab , and it is the part of J related vab.

Proof Since G(v, v) = Fvab (v) is explicit, we only have to show that G(v, v
(t)
ab ) ≥ Fvab (v).

In order to achieve that, we can compare the Taylor series expansion of Fvab (v) with the

auxiliary function G(v, v
(t)
ab ).

Fvab (v) = Fvab (v
(t)
ab ) + F′

vab
(v

(t)
ab )(v − v

(t)
ab ) (24)

+
[
(UTU)bb + αDaa − αWaa + β

2
Caa

]
(v − v

(t)
ab )2

Clearly, showing G(v, v
(t)
ab ) ≥ Fvab (v) is equivalent to prove that

(VUTU)ab + α(DV)ab + β
2 (MVA + CV)ab

v
(t)
ab

≥ (UTU)bb + αDaa (25)

−αWaa + β

2
Caa

In order to prove above inequality holds, we have

(VUTU)ab =
k∑

c=1

v(t)
ac (UTU)cb ≥ v

(t)
ab (UTU)bb (26)

and

α(DV)ab = α

n∑

j=1

Dajv
(t)
jb ≥ αDaav

(t)
ab (27)

β

2
(CV)ab = β

2

n∑

j=1

Cajv
(t)
jb ≥ β

2
v

(t)
abCaa (28)
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Therefore, the inequality G(v, v
(t)
ab ) ≥ Fvab (v) holds. ��

Now, we can show the convergence of Theorem 1 for V:

Proof of Theorem 1 we can replace G(v, v
(t)
ab ) in Eq. (20) by Eq. (23) to obtain the update

rule which is exactly the same as the iterative updating rule for V.

v
(t+1)
ab = v

(t)
ab

[2VUTU + 2αDV + β(MVA + CV)]ab − F′
vab

(v
(t)
ab )

[2VUTU + 2αDV + β(MVA + CV)]ab (29)

= v
(t)
ab

2(XTU)ab + 2α(WV)ab

2(VUTU)ab + 2α(DV)ab + β(MVA + CV)ab

Since Eq. (23) is an auxiliary function, Fvab is nonincreasing under this updating rule with
Lemma 2. ��
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