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Abstract Artificial neural networks (ANN) have been widely used in recent years to model
non-linear time series since ANN approach is a responsive method and does not require some
assumptions such as normality or linearity. An important problem with using ANN for time
series forecasting is to determine the number of neurons in hidden layer. There have been some
approaches in the literature to deal with the problem of determining the number of neurons
in hidden layer. A new ANN model was suggested which is called multiplicative neuron
model (MNM) in the literature. MNM has only one neuron in hidden layer. Therefore, the
problem of determining the number of neurons in hidden layer is automatically solved when
MNM is employed. Also, MNM can produce accurate forecasts for non-linear time series.
ANN models utilized for non-linear time series have generally autoregressive structures since
lagged variables of time series are generally inputs of these models. On the other hand, it is
a well-known fact that better forecasts for real life time series can be obtained from models
whose inputs are lagged variables of error. In this study, a new recurrent multiplicative neuron
neural network model is firstly proposed. In the proposed method, lagged variables of error
are included in the model. Also, the problem of determining the number of neurons in hidden
layer is avoided when the proposed method is used. To train the proposed neural network
model, particle swarm optimization algorithm was used. To evaluate the performance of
the proposed model, it was applied to a real life time series. Then, results produced by the
proposed method were compared to those obtained from other methods. It was observed that
the proposed method has superior performance to existing methods.
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1 Introduction

Various different methods have been used to forecast non-linear real-world time series in the
literature [2]. These methods can be grouped as probabilistic methods, the methods based
on fuzzy set theory and the methods based on artificial neural network. In recent years, there
have been many studies which focus on ANN. Different approaches can be utilized when
time series are forecasted with ANN. In these approaches, lagged variables of time series
or more than one time series can be used as input values. The first one has been usually
preferred in the literature. Multilayer perceptron neural networks are extensively used to
forecast time series. The literature related to usage of this kind of neural network for time
series forecasting was reviewed by Zhang et al. [22] and Zhang [21]. Crone and Kourentzes
[7] and Crone et al. [8] discussed performance of artificial neural networks for forecasting.
Multilayer perceptron uses McCuloch&Pitts neuron model which is based on an additive
aggregation function. Thus, the output of the multilayer perceptron can be considered as
non-linear transformation of sum of the inputs. Activation function provides non-linearity in
here. In a multilayer perceptron which includes more than one neuron in the hidden layer, the
output is a non-linear function of multiplication of weighted sum of the inputs. Especially, the
number of neurons in hidden layer directly affects the performance of multilayer perceptron
neural networks. Therefore, determination of the number of neurons in hidden layer is a
vital issue. Egrioglu et al. [9], Aladag et al. [3], and Aladag [1] proposed some methods to
determine the number of neurons in hidden layer and inputs of the model.

Yadav et al. [18] introduced multiplicative neuron model ANN (MNM-ANN) which has
only one neuron in the hidden layer. This kind of neural network is different from multilayer
perceptron neural network in aspect of the neuron model included. MNM-ANN is composed
of multiplicative neuron model instead of McCuloch&Pitts neuron model. In multiplicative
neuron model, aggregation function is not additive but multiplicative. Hence, the output of
MNM-ANN is a non-linear function of multiplication of the inputs. This multiplicative struc-
ture strengthens non-linearity characteristic of the model. MNM-ANN uses less parameter
than those employed by multilayer perceptron neural networks since it has only one neu-
ron in the hidden layer. For time series forecasting, different ANN based on multiplicative
neuron model such as linear and non-linear ANN (L&NL-ANN) and multiplicative seasonal
artificial neural network (MS-ANN) were proposed by Yolcu et al. [19] and Aladag et al. [4],
respectively.

In probabilistic models used for time series forecasting, inputs are lagged variables of time
series (autoregressive terms) and lagged variables of error (moving average terms). Utilizing
moving average (MA) terms in these models is as effective as using autoregressive (AR) terms.
On the other hand, when ANN models are used for time series forecasting, AR terms are
usually employed as inputs and MA terms are not taken into consideration. In addition to AR
terms, if MA terms are also used, more accurate forecasts will be obtained. When MA terms
are utilized, it is necessary to make important adjustments in ANN architectures and training
algorithms of these architectures. Like using MA terms, Elman neural networks [11] have a
mechanism in which neurons in context layer are fed from the hidden layer. However, Elman
neural networks do not exactly including a MA term. To incorporate MA terms into ANN,
the architecture should have a recurrent feedback structure from output layer. Jordan [14]
suggested a recurrent architecture structure in which neurons in context layer are fed from the
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output layer. Jordan’s recurrent architecture structure is proper only for one step lag. However,
it is a well-known fact capability of using more than one step lag cause an increase in forecast-
ing performance of ANN. Recurrent neural networks were proposed in Giles et al. [12] and
Lin et al. [17]. Zemouri and Patic [20] considered prediction error feedback as like MA term.

In some studies available in the literature such as Buhamra et al. [6], Egrioglu et al.
[10], and Khashei and Bijari [16], hybrid methods were proposed and lagged variables of
error were taken as inputs of ANN. On the other hand, in these studies, lagged variables
of error were obtained from Box and Jenkins [5] models instead of ANN models. In the
literature, a few artificial neural network models which uses lagged variables of its own
error for feedback were proposed. In other words, an multiplicative neuron model artificial
neural network model that has ARMA(p, q) structure does not exist in the literature. In this
study, a novel artificial neural network model which has ARMA(p, q) structure and based on
multiplicative neuron model is proposed for time series forecasting. The proposed model is an
artificial neural network model which has ARMA structure. In the next section, the proposed
model is introduced and the algorithm, which is based on particle swarm optimization (PSO),
for training of this model is presented. In Sect. 3, the proposed model is applied to a real-world
time series. Finally, the last section concludes the paper.

2 The Proposed Model

Forecasting is the process of making statements about events whose actual outcomes have not
yet been observed. Forecasting methods can be classified into two classes as probabilistic and
non-probabilistic methods. Artificial neural networks are non-probabilistic methods. Because
artificial neural networks do not need strict assumptions such as normality, linearity, they
have been commonly used in the literature in recent years. In the literature, many artificial
neural network models have been proposed for forecasting. Yadav et al. [18] introduced
multiplicative neuron model ANN (MNM-ANN) which has only one neuron in the hidden
layer. Because MNM-ANN has one neuron, determining number of hidden layer neurons is
not needed. This is very important, because determining number of hidden layer neurons is
important problem for multilayer perceptron.

Although MNM-ANN has proved its success on forecasting problems in Yadav et al.
[18], a major drawback of the method is that MNM-ANN does not have a recurrent feedback
mechanism. In the time series literature, it is a well-known fact that using MA terms in
forecasting models is as effective as using AR terms. In this study, a new recurrent ANN model
based on multiplicative neuron model is proposed. The proposed model is called recurrent
multiplicative neuron artificial neural network model (RMNM-ANN). In the proposed model,
in addition to AR terms, MA terms are also incorporated into the model by feedbacking own
error of the model. The architecture of the proposed ANN model is given in Fig. 1. In this
figure, L and et are backshift operator and error for time t respectively, so Let = et−1. Xt

represents observation value for time t . f represents activation function which provides
non-linear mapping. Sigmoid function is used as activation function in this study since this
activation function is widely used in the literature. Outputt and Desiredt are the output
value and target value of the model for time t , respectively.

The algorithm of the calculation of the output values of the proposed method is given
below.

Algorithm 1 Calculation of the output values of the proposed RMNM-ANN model.
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Fig. 1 The architecture of the proposed RMNM-ANN model

Let n be the number of learning samples. First of all, the number of input of RMNM-ANN
is determined, that is, values of p and q are decided. Then, according to these values of p
and q , the outputs of the proposed RMNM-ANN model can be computed as follows:

Step 1 Initialize the loop counter k (k = 0).
Step 2 Increase k by 1 (k = k + 1). Calculations for kth learning sample are performed.
The inputs of RMNM-ANN are Xt−1, Xt−2, . . . , Xt−p, et−1, et−2, . . . , et−q . As seen
from Fig. 1, RMNM-ANN has one neuron in the hidden layer. Activation value of the
neuron is represented by net and obtained from multiplication of inputs of RMNM-ANN
by corresponding weights. When k = 1, et−1, et−2, . . . , et−q are taken as 0 since the
output of RMNM-ANN has not been calculated yet. When k = 2, et−1 can be cal-
culated. et equals to (Desiredt − Outputt ) since the output of RMNM-ANN for the
first learning sample was obtained. However, et−1, . . . , et−q are taken as 0. In a similar
way, last q − k terms of et−1, et−2, . . . , et−q will be taken as 0 for k ≤ q . If k > q
then, each et−i (i = 1, 2, . . . , q) can be calculated. Let W Xi and bXi (i = 1, 2, . . . , p)

be weights which connect Xt−1, Xt−2, . . . , Xt−p inputs to the neuron and the related
bias values, respectively. Let W Ei and bEi (i = 1, 2, . . . , q) be weights which connect
et−1, et−2, . . . , et−q inputs to the neuron and the related bias values, respectively. Thus,
for kth learning sample, activation value of the neuron netk can be calculated using the
formula (1).

netk =
p∏

i=1

(W Xi × Xt−i + bXi ) ×
q∏

j=1

(
W E j × et− j + bE j

)
. (1)

Step 3 Calculate the output value of RMNM-ANN by using netk obtained in the previous
step and the activation function f as follows:

Outputt = f (netk) = 1

1 + exp(−netk).
(2)
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Fig. 2 Structure of a particle

Step 4 Calculate error et based on the difference between the obtained output value and
desired value by using the formula given below.

et = Desiredt − Outputt (3)

This et value will be used as an input of RMNM-ANN for the next learning sample.
Step 5 If k ≤ n, then go to Step 2. Otherwise, terminate the algorithm.

PSO is utilized in order to train the proposed RMNM-ANN model. PSO introduced by
Kennedy and Eberhart [15] is an intelligent optimization technique. In many applications,
PSO method has produced better results than those produced by other methods such as gra-
dient descent and Newton methods which require derivative. Especially, when it is very hard
to calculate derivatives, good results can be obtained using PSO. Therefore, this optimization
method has drawn a great amount of attention in recent years. For the architecture structure
of the proposed RMNM-ANN model, it can be very hard to obtain derivatives so PSO is
utilized to train the proposed model. In the PSO algorithm, positions of a particle are weights
of proposed RMNM-ANN model. Hence, a particle has 2(p + q) positions. Structure of a
particle is illustrated in Fig. 2. The algorithm of the PSO method which is used to train the
proposed model is given below.

Algorithm 2 PSO algorithm used to train the proposed RMNM-ANN model

Step 1 Positions of each mth (m = 1, 2, . . . , pn) particles’ positions and velocities are
randomly determined and kept in vectors Xm and Vm given as follows:

Xm = {
xm,1, xm,2, . . . , xm,d

}
, m = 1, 2, . . . , pn (4)

Vm = {
vm,1, vm,2, . . . , vm,d

}
, m = 1, 2, . . . , pn (5)

where xm, j ( j = 1, 2, . . . , d) represents j th position of mth particle. pn and d represents
the number of particles in a swarm and positions, respectively. The initial positions and
velocities of each particle in a swarm are randomly generated from distribution (0,1) and
(−vm, vm), respectively.
Step 2 The parameters of PSO are determined.
In the first step, the parameters which direct the PSO algorithm are determined.
These parameters are pn, vm, c1i , c1 f , c2i , c2 f , w1, and w2. Let c1 and c2 represents
cognitive and social coefficients, respectively, and w is the inertia parameter. Let(
c1i , c1 f

)
,
(
c2i , c2 f

)
, and (w1, w2) be the intervals which includes possible values for

c1, c2 and w, respectively. At each iteration, these parameters are calculated by using the
formulas given in (6)–(8).

c1 = (
c1 f − c1i

) t

maxt
+ c1i (6)

c2 = (
c2 f − c2i

) t

maxt
+ c2i . (7)

w = (w2 − w1)
maxt − t

maxt
+ w1. (8)
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Step 3 Evaluation function values are computed. Evaluation function values for each
particle are calculated. MSE given in below is used as evtion function.

M SE = 1

n

n∑

t=1

(Desiredt − Outputt )
2 . (9)

where n represents the number of learning sample. The output value of the proposed
model is calculated by Algorithm 1.
Step 4 Pbestm(m = 1, 2, . . . , pn) and Gbest are determined due to evaluation function
values calculated in the previous step. Pbestm is a vector stores the positions correspond-
ing to the mth particle’s best individual performance, and Gbest is the best particle, which
has the best evaluation function value, found so far.

Pbestm = (
pm,1, pm,2, . . . , pm,d

)
, m = 1, 2, . . . , pn (10)

Gbest = (
pg,1, pg,2, . . . , pg,d

)
(11)

Step 5 The parameters are updated. The updated values of cognitive coefficient c1, social
coefficient c2, and inertia parameter w are calculated using the formulas given in (6)–(8).
Step 6 New values of positions and velocities are calculated. New values of positions and
velocities for each particle are computed by using the formulas given in (12) and (13). If
maximum iteration number is reached, the algorithm goes to Step 3; otherwise, it goes
to Step 7.

vt+1
m, j =

[
w × vt

m, j + c1 × rand1 × (
pm, j − xm, j

) + c2 × rand2 × (
pg, j − xm, j

)]
.

(12)

xt+1
m, j = xt

m, j + vt+1
m, j , where m = 1, 2, . . . , pn, j = 1, 2, . . . , d (13)

Step 7 The best solution is determined. The elements of Gbest re taken as the best weight
values of the new ANN model.

3 The Application

The real-world time series used in the implementation is the amount of carbon dioxide
measured monthly in Ankara capitol of Turkey (ANSO) between March 1995 and April
2006. The graph of time series data of the amount of CO2 in Ankara is given in Fig. 3.
This time series has both trend and seasonal components and its period is 12. The first 124
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Fig. 3 The time series data of the amount of SO2 in Ankara
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Table 1 The obtained forecasting results for ANSO data

Test
data

SARIMA WMES MLP-
ANN

RBF-
ANN

E-ANN MNM-
ANN

MS-
ANN

L&NL-
ANN

RMNM-
ANN

MSE 92.6387 50.4980 13.9891 106.4797 13.4821 40.2006 9.1010 12.7263 8.6289

MAPE 0.2336 0.2204 0.0995 0.3248 0.0990 0.1822 0.0887 0.0944 0.0761
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Fig. 4 The line graph of proposed method forecasts and test data of ANSO

observations are used for training and the last 10 observations are used for test set. In addition
to the proposed approach, seasonal autoregressive integrated moving average (SARIMA),
Winter’s multiplicative exponential smoothing (WMES), MLP-ANN, radial bases function
ANN (RBF-ANN), E-ANN, MNM-ANN, MS-ANN and L&NL-ANN methods are also
used to analyze ANSO data. For the test set, mean square error (MSE) and mean absolute
percentage error (MAPE) values produced by all methods are summarized in Table 1. MAPE
is calculated by formula (14).

M AP E = 1

n

n∑

t=1

∣∣∣∣
Desiredt − Outputt

Desiredt

∣∣∣∣ (14)

In the training process of L&NL-ANN, MS-ANN and proposed RMNM-ANN model,
the parameters of the PSO are determined as follows:

(
c1i , c1 f

) = (2, 3),
(
c2i , c2 f

) =
(2, 3), (w1, w2) = (1, 2), pn = 30, and maxt = 1000. For the proposed RMNM-ANN
model, the best result was obtained when p = 3 and q = 13. To determine the best values of
p and q , trial and error method was employed. According to Table 1, it is clearly seen that
the best results in terms of both performance measures were obtained when the proposed
RMNM-ANN model was used. The line graph of proposed method forecasts and test data is
given in Fig. 4.

Secondly, Australian beer consumption ([13], p. 84) between 1956 Q1 and 1994 Q1 is used
to examine performance of proposed method. The last 16 observations of the time series were
used for test set. Australian beer consumption was forecasted by using SARIMA, WMES,
FFANN, RBF, L&NL-ANN, E-ANN, MS-ANN, MNM-ANN and proposed RMNM-ANN.
All obtained forecasting results for Australian beer consumption are summarized in Table 2.
The best result was obtained from proposed method when model orders are p = 5 and q = 8.

The line graph of proposed method forecasts and test data is given in Fig. 5.
Finally, the MLP-ANN, MNM-ANN and RMNM-ANN were compared by using statis-

tical techniques. Three methods are applied 30 times for two real life time series by using
random initial weights. The RMSE values for test data of ANSO and Australian beer con-
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Table 2 The obtained forecasting results for Australian beer consumption

Test
data

SARIMA WMES MLP-
ANN

RBF L&NL-
ANN

E-ANN MS-
ANN

RMNM-
ANN

RMSE 47.0367 53.3295 24.1052 41.7000 18.7888 22.6581 22.1700 17.8573

MAPE 0.0949 0.1072 0.0476 0.0686 0.0357 0.0436 0.0393 0.0329
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Fig. 5 The line graph of proposed method forecasts and test data of Australian beer consumption

Table 3 Descriptive statistics for
ANSO data

MLP-ANN MNM-ANN RMNM-ANN

Mean 8.5062 7.6979 5.6520

SD 1.4720 1.2852 1.0611

Table 4 ANOVA table for ANSO data

Source Sum of squares Freedom degree Mean of squares F stat. P > F

Columns 129.8482 2 64.9241 39.3932 6.59E−13

Error 143.3848 87 1.6481

Total 273.2331 89

sumption data were obtained. The obtained results were compared by using one way ANOVA
method. The obtained results for ANSO data are summarized in Tables 3 and 4. In Table 3,
it is given that the mean and standard deviation of RMSE values which are obtained from
best architectures of MLP-ANN, MNM-ANN and RMNM-ANN methods. When Table 3 is
examined, the proposed method has the smallest mean and standard deviation.

In Table 4, one way ANOVA results are summarized. According to ANOVA results,
there is statistically significant difference between RMSE values of LP-ANN, MNM-ANN
and RNM-ANN methods. When multiple comparisons LSD tests are applied for data, it is
concluded that RNM-ANN method has smaller mean than the other methods.

Similar statistical methods were applied for Australian beer consumption data. The
obtained results are summarized in Tables 5 and 6. Similar results are obtained from Aus-
tralian beer consumption data. RMNM-ANN is better than MNM-ANN and MLP-ANN.
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Table 5 Descriptive statistics for
Australian beer consumption data

MLP-ANN MNM-ANN RMNM-ANN

Mean 26.4579 24.4132 24.3598

SD 1.6953 1.3955 1.8070

Table 6 ANOVA table for Australian beer consumption data

Source Sum of squares Freedom degree Mean of squares F stat. P > F

Columns 85.8512 2 42.9256 20.4545 5.23E−08

Error 182.5769 87 2.0986

Total 268.4281 89

4 Conclusion

Although ANN models for non-linear time series use lagged variables of time series, they do
not take lagged variables of error into account. Some hybrid approaches in the literature use
lagged variables of error but these lagged variables are obtained from other approaches such
as Box–Jenkins models. A new recurrent ANN model based on multiplicative neuron model
is suggested in this study. The proposed RMNM-ANN model can produce lagged variables
of error and use them as inputs because of the recurrent feedback structure it has. Also, unlike
the most of the other ANN models, it does not the problem of determination of the number of
neurons in hidden layer. Since it has only one neuron in hidden layer, it can reach results with
less parameter. When the proposed RMNM-ANN model is applied, parameters needed to be
determined are the number of lagged variables for time series and error. These parameters
were determined using trial and error method in this study. The proposed model was applied
to two real-world time series and the obtained results are compared to results produced by
other methods available in the literature. It was observed that the proposed model produced
the most accurate forecasts. In future studies, to determine the parameters of RMNM-ANN
model, different systematic approaches can be utilized instead of trial and error method.
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