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Abstract Ordinal regression is to predict categories of ordinal scale and it has wide appli-
cations in many domains where the human evaluation plays a major role. So far several algo-
rithms have been proposed to tackle ordinal regression problems from a machine learning
perspective. However, most of these algorithms only seek one direction where the projected
samples are well ranked. So a common shortcoming of these algorithms is that only one
dimension in the sample space is used, which would definitely lose some useful information
in its orthogonal subspaces. In this paper, we propose a novel ordinal regression strategy
which consists of two stages: firstly orthogonal feature vectors are extracted and then these
projector vectors are combined to learn an ordinal regression rule. Compared with previ-
ous ordinal regression methods, the proposed strategy can extract multiple features from the
original data space. So the performance of ordinal regression could be improved because
more information of the data is used. The experimental results on both benchmark and real
datasets proves the performance of the proposed method.
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1 Introduction

Ordinal regression is to predict categories of ordinal scale and it shows resemblance to both
regression and classification because labels are discrete and ordinal. In practice, ordinal labels
typically correspond to linguistic terms such as ‘very bad’, ‘bad’, ‘average’, ‘good’, ‘very
good’, expressing a difference in correctness, quality, beauty or any other characteristics of the
analyzed objects. So far ordinal regression has been widely applied in information retrieval,
collaborative filtering, medicine, psychology and other domains where human-generated data
play an important role.

Some algorithms have been proposed to tackle ordinal regression problems from a machine
learning perspective. Kramer et al. [1] investigated the use of a regression tree learner by
mapping the ordinal scale to numeric values. However, a problem with this approach is that
there might be no principled way of devising an appropriate mapping function since the
true metric distances between the ordinal scales are unknown in most cases. Herbrich et al.
[2] made a theoretical study on ordinal regression and applied the principle of structural risk
minimization to ordinal regression. Crammer and Singer [3] generalized the online perceptron
algorithm with multiple thresholds to seek the direction and thresholds for ordinal regression.
Shashua and Levin [4] proposed two large margin principles, namely, fixed margin principle
and sum of margins principle, to handle the direction and multiple thresholds. Chu and Keerthi
[5] improved the methods of [4] and proposed two support vector ordinal regression methods
by optimizing multiple thresholds to define parallel discriminant hyperplanes: one by adding
the ordering of the thresholds as a constraint to the original optimization problem and the
other by considering the training samples from all the ranks to determine each threshold. Lin
and Lin [6] presented a reduction framework from ordinal regression to binary classification
based on extended examples. They also showed that their framework provides a unified view
for several existing ordinal regression algorithms. Cardoso and Costa [7] transformed the
ordinal regression problem to a standard two-class problem by using the data replication
method. They also instantiated this method in two important machine learning algorithms:
support vector machines and neural networks. Liu et al. proposed to apply manifold learning
on ordinal regression to uncover the embedded nonlinear structure of the dataset. They
also introduced the multilinear extension of the proposed algorithm to support the ordinal
regression of high order data like images [8]. To track feature selection problems needed
in ordinal regression, Baccianella et al. presented four feature selection metrics specifically
devised for ordinal regression. The proposed feature selection methods were tested two
datasets of product review data [9].

It should be noticed that the above algorithms only seek one projection where the sam-
ples are projected to a line. This can be viewed as a feature extraction step which only one
feature is selected. However, one feature is often insufficient for achieving the best perfor-
mance. This is because some useful features fail to be extracted. So for some complex ordinal
regression problems, extracting only one feature may result in a loss of useful discriminant
information because there are still useful information remaining in the orthogonal subspace
of the extracted feature. On the other hand, although several supervised feature extraction
methods, such as linear discriminant analysis (LDA), maximum margin criterion (MMC)
[10–14], can extract multiple features, these methods can be only used for solving classi-
fication problems and fail to extract features for ordinal regression problems. In Xia et al.
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[15], have proposed an algorithm framework for ordinal regression that recursively extracts
features from the decreasing subspace and learned a ranking rule from the examples repre-
sented by the new features. However, they used regression methods on ordinal regression
and the main research of this paper is to find a feature extractor rather than a solution to
ordinal regression. So how to obtain multiple projection vectors and correspondingly extract
multiple features is still open.

In our previous work, we have proposed a novel Kernel discriminant algorithm for ordi-
nal regression (KDLOR) and its performance has been proved by experimental results
[16]. This algorithm, however, can only find one projection and thus only one feature can
be obtained. Based on the principle of KDLOR, we propose a novel ordinal regression
method by constructing and combining orthogonal projection vectors for ordinal regres-
sion in this paper. The proposed algorithm framework consist of two phases: recursively
constructing projection vectors from orthogonal subspaces and combining these vectors
to form a ranking rule. In the first phase, the projection vectors will be obtained recur-
sively, step by step. At each step when a new projection vector is obtained, the next opti-
mal projection vector are searched from the orthogonal subspaces of the obtained projec-
tion vectors. In the second phase, by the use of different combination strategy, the deci-
sion rule of each projection vector is combined to form the final decision. In comparison
with other ordinal regression algorithms, the proposed algorithm can extract multiple fea-
tures from the original training data. So the performance of the ordinal regression could
be improved because more information of the training data is used. The experiments on
both benchmark datasets and real datasets show the efficient and efficiency of the proposed
method.

The idea of combination of orthogonal directions for large margin classifiers such as
support vector machine have been proposed for several years and its performance have been
proved by several papers [15,17,18]. This idea is based the fact that one single direction of
maximum margin would not suffice for all classification problems. Therefore, it is desirable
to eliminate this constraint completely if possible such that classifies can make full use of
the multidimensional maximum margin. It is for the motivation of both of dimensionality
reduction and accuracy improvement that we wish to suggest a recursive procedure for
extracting multilevel margin features, recursive ordinal regression, which constitutes the
main contribution of this letter. Our main idea is recursively deriving new maximum margin
features by discarding all the information represented by the old maximum margin features.
With the proposed method, a completely orthogonal basis of feature subspace spanned by the
training samples can be derived, which is different with previous proposed ordinal regression
methods.

The rest paper is organized as follows. Section 1 introduces the basics of LDA and KDLOR.
Section 2 elaborates our proposed method. Section 3 presents experiments and results, and
Section 4 concludes the paper. In this section we will introduce the basics of linear discrim-
inant analysis algorithm and Kernel discriminant algorithm for ordinal regression.

1.1 Kernel Discriminant Analysis

Let (xi , yi ) ∈ Rl × R, i = 1, . . . , N be a set of training samples where xi ∈ Rl denotes
inputs, yi ∈ {1, 2, ..., K } denotes the corresponding class labels, N is the sample size and K
is the number of classes. The samples from the i-th class is denoted as Xi . The objective of
LDA is to find a linear projection from which different classes can be separately well. For
the convenience of discussion, we define respectively a between-class scatter matrix and a
within-class scatter matrix as follows:

123



142 B.-Y. Sun et al.

Sw = 1

N

K∑

k=1

∑

x∈Xk

(x − mk)(x − mk)
T (1)

Sb = 1

N

K∑

k=1

Nk(mk − m)(mk − m)T (2)

where mk = 1
Nk

∑
x∈Xk

x denotes the mean vector of samples of the k-th class, Nk is the

sample size of k-th class and m = 1
N

∑N
i=1 xi stands for the mean vector of all samples.

The corresponding separability can be measured by two criteria, distances between projected
means of classes (the larger, the better) and variances of data objects in every class on the
projected direction (the smaller, the better). The objectives can be achieved by maximizing
the following Rayleigh coefficient:

J (w) = arg min
w

wT Sww
wT Sbw

. (3)

The optimal solution to the optimization problem in (3) can be obtained by solving a gener-
alized eigenvalue problem. In order to solve nonlinear discrimination problems, the kernel
based idea, originally applied in support vector machine (SVM) [19], Kernel principal com-
ponent analysis (KPCA) [20] and other kernel based algorithms can be adopted to extend
LDA to its kernel version. For details, please refer to [10,21].

1.2 Kernel Discriminant Analysis for Ordinal Regression

Now we consider an ordinal regression problem with K ordered classes and denote these
classes as consecutive integers Y = {1, 2, . . . , K } to keep the known rank information. The
basic task here can be informally described as finding a projection where the ordinal infor-
mation of classes can be preserved. To solve this problem, the formulation of the proposed
method can be written as:

min J (w, ρ) = wT · Sw · w − C · ρ (4)

s.t. wT · (mk+1 − mk) ≥ ρ, k = 1, 2, . . . , K − 1

where C is a penalty coefficient. This model tries to minimize the variances of the data for
the same classes while simultaneously extending the difference between the projected means
between two neighboring classes. If ρ > 0, then the projected means of all classes can be
sorted in accord with their rank.

For nonlinear cases, we can make the following assumption:

w =
N∑

i=1

βiφ(xi ), βi ∈ R, (5)

and the original optimization problem (4) can be turned into the following problem:

min J (β, ρ) = βT · H · β − C · ρ (6)

s.t. βT · (Mk+1 − Mk) ≥ ρ, k = 1, . . . , K − 1

where (Mk) j = 1
Nk

∑
x∈Xk

φ(x j ) · φ(x), H = ∑K
k=1 Pk(I − 1Nk )PT

k , Pk is a N × Nk

matrix with (Pk)i, j = φ(xi ) · φ(x j ), x j ∈ Xk , I is the identity matrix and 1Nk is the matrix
with all entries 1/Nk . Then by using Mercer kernels with a set of functions of s(xi , x j ) =
φ(xi ) · φ(x j ), the problem (6) can be solved analogously to the problem in the linear cases.
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2 Re-Weighting Orthogonal Discriminant Analysis for Ordinal Regression

In this section, we first describe an algorithm for extracting orthogonal discriminant vectors
for improved ordinal regression performance. Then two efficient methods are proposed to
combine these obtained discriminant vectors.

2.1 Orthogonal Discriminant Analysis for Ordinal Regression

In pattern classification, the orthogonality of discriminant vectors is a favorable property and
this property has been used to extent classical Fisher discriminant analysis [17,18]. With
these methods, a set of orthogonal discriminant vectors is computed based on a generalized
optimization criterion. In the following we will describe how to extract orthogonal vectors
based on Fisher Discriminant ordinal regression methods.
The proposed algorithm searches the orthogonal discriminant vectors based KDLOR crite-
rion, i.e., the projection vector should not only preserve the ordinal information of classes,
but also maximize the minimal distance between mean vectors of different classes. The first
discriminant vector W1 can be obtained through (4) directly. The next discriminant vector
must minimize the KDLOR criterion, and simultaneously satisfies the orthogonal property. In
general, the p + 1 discrimination vector can be obtained through the following optimization
problem:

min J (wp+1, ρp+1) = wT
p+1 · Sw · wp+1 − C · ρp+1 (7)

s.t. wT
p+1 · (mk+1 − mk) ≥ ρp+1, k = 1, 2, . . . , K − 1

wp+1 · w j = 0, j = 1, 2, . . . , p

In nonlinear cases, we have the following assumption:

wp =
N∑

i=1

β
p
i φ(xi ), βi ∈ R, (8)

and the original optimization problem (7) can be turned into the following problem:

min J (βp+1, ρp+1) = βT
p+1 · H · βp+1 − C · ρp+1 (9)

s.t. βT
p+1 · (Mk+1 − Mk) ≥ ρp+1, k = 1, . . . , K − 1

βT
p+1 · Q · β j = 0, j = 1, 2, . . . , p

where Q is a matrix with Qi, j = φ(xi ) · φ(x j ).
To solve (9), we can define the following Lagrangian equation:

J (βp+1, ρp+1, αp+1, α
′
p+1) = βT

p+1 · H · βp+1 − C · ρp+1

−
K−1∑

k=1

αk
p+1

{
βT

p+1 · (Mk+1 − Mk) − ρp+1

}
(10)

−
p∑

j=1

α
′ j
p+1 · βp+1 · Q · β j
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with Lagrange multipliers αk
p+1 ≥ 0 and α

′k
p+1 ∈ R. To derive the Lagrange multipliers from

(10), we can do the following differentiation:

∂L

∂βp+1
= 0 ⇒ βp+1 = 1

2
H−1

⎧
⎨

⎩

K−1∑

k=1

αk
p+1 · (Mk+1 − Mk)

p∑

j=1

α
′ j
p+1 · QT β j

⎫
⎬

⎭ ; (11)

∂L

∂ρp+1
= 0 ⇒

K−1∑

k=1

αk
p+1 = C. (12)

Using (11) and (12), the corresponding optimization problem can be turned into

min f (αp+1, α
′
p+1) =

⎧
⎨

⎩

K−1∑

k=1

αk
p+1 · (Mk+1 − Mk)

T +
p∑

j=1

α
′ j
p+1 · βT

j Q

⎫
⎬

⎭ · H−1

×
⎧
⎨

⎩

K−1∑

k=1

αk
p+1 · (Mk+1 − Mk) +

p∑

j=1

α
′ j
p+1 · QT β j

⎫
⎬

⎭ (13)

s.t. αk
p+1 ≥ 0, k = 1, . . . , K − 1;

K−1∑

k=1

αk
p+1 = C.

The above optimization problem is a convex quadratic programming (QP) one with linear
constraints. To solve this problem, a variety of methods, such as interior point, active set and
conjugate gradient methods can be used. The procedure of the whole algorithm is as outlined
in Algorithm 1 below.

Algorithm 1:
1: Input:
2: Given training dataset {X, Y }; the number of projection vector P
3: For i = 1 to P , do:
4: if i = 1, get w1, ρ1 through (6), else, get wi , ρi through (13);
5: end for;
7: Outputs: w1, w2, . . . , wP .

Although it is still open to determine the value of P , We noticed that the solution can be
reached quickly and generally the value of P needed not to be very large. In our experi-
ments, we set P = 10 and it caused little deviation to results. So compared to ensemble
learning methods, such as Bagging, which need to train dozens of base regression models,
the computational cost of the proposed method is lower.

2.2 Solving the Small Sample Size Problems

In fact, generally, the dimensionality of data is larger than the sample size, which is the
case for many high-dimensional and low sample size data. In these cases Sw is singular and
it is generally known as small sample size (SSS) problem. Recently, the SSS problem has
been extensively addressed in classical LDA, and many solutions have been proposed. A
simple method to address the SSS problem is by performing PCA projection to reduce the
dimension of the feature space and make Sw nonsingular. However, there are two problems
for this solution:
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1. The accuracy depends very much on the dimension of the reduced PCA subspaces and how
to determine the optimal dimension of this subspace remains largely an open problem;

2. Some useful information for LDA may be compromised in the intermediate PCA stage.

A more efficient method to solve this problem is to adopt a regularization method. This is to
add a constant u > 0 to the diagonal elements of Sw as Sw = Sw +uI , where I is an identity
matrix [22,23]. The optimum value of u can be estimated through a cross validation method.

2.3 Decision Combination for Orthogonal Discriminant Ordinal Regression

After obtaining αp, α
′
p , the optimal direction wp can be calculated by substituting αp, α

′
p

into (8) and (11). When only one direction w is obtained, the rank of an unseen input vector
x can be predicted by the following decision rule:

f (x) = min
k∈{1,...,K }{k : w · x − bk < 0} (14)

where bk is defined as bk = w(mi+1 + mi )/2 or bk = w(Nk+1mk+1 + Nkmk)/(Nk+1 +
Nk). However, when there are several direction available, we should first calculate b j ={
b j

1 , b j
2 , . . . , b j

k

}T
for each w j using (14) and then combine them to form the final decision.

In the following we will provide two combination methods.

2.3.1 Majority Voting Method

Majority voting is the simplest method for combining directions. Suppose we have p direc-
tions w j , j = 1, . . . , p and corresponding b j . For each direction, we can calculate f j (x) of
a sample X using (14). Let nr = #{ f j (x) = r}, i.e., the number of directions whose decision
are known to be r . Then the final rank of x can be determined by

f (x) = arg max
r

nr (15)

2.3.2 Weighted Average Method

Majority voting assumes all directions having the same importance in its combined decision
making. For a specific ordinal regression problem, however, this assumption is not always
valid. In practice, different directions may have different efficiencies and an important issue
in the decision combination is how to derive a weighted scheme to balance the relative impor-
tance of different directions. This can be achieved by a weighted method, i.e., associating
larger weights with more efficient projection vectors and smaller weights with less important
ones. In the following we will describe how to obtain the weights of different directions. The
weighted average methods is to associate weight ω j to w j and the rank of x can be predicted
as the following:

f (x) = min
k∈{1,...,K }

⎧
⎨

⎩k :
p∑

j=1

ω j

(
w j · x − b j

k

)
< 0

⎫
⎬

⎭ (16)

where ω j , j = 1, . . . , p satisfy both (17) and (18)

0 ≤ ω j ≤ 1 (17)
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p∑

j=1

ω j = 1 (18)

Now the key issue is how to derive the value of ω j . From (16) it can be seen that different
weights may result in different performance of the combined directions. The selection of
the weights should provide the combined combined directions with better performance on
infinite testing data, i.e., good generalization ability. To realize the above, we can build the
following problem:

min

⎧
⎨

⎩

p∑

j=1

ω2
j · w2

j + λ

(
N∑

i=1

(
ξ2

i + ξ ′2
i

)
)⎫

⎬

⎭ (19)

s.t.
p∑

j=1

ω j b
j
k−1 − ξi ≤

p∑

j=1

ω j w j · xi ≤
p∑

j=1

ω j b
j
k + ξ ′

i ,

∀xi , if yi = k, i = 1, . . . , n;′ ,
0 ≤ ω j ≤ 1′,

p∑

j=1

ω j = 1

where λ > 0 is a constant to control the tradeoff between the generalization
∑p

j=1 ω2
j · W2

j

and the error
∑N

i=1

(
ξ2

i + ξ ′2
i

)
. In nonlinear cases, by using (8), we can turn (19) as the

following:

min

⎧
⎨

⎩

p∑

j=1

ω2
j · α′

j · Q · α j + λ

(
N∑

i=1

(
ξ2

i + ξ ′2
i

)
)⎫

⎬

⎭ (20)

s.t.
p∑

j=1

ω j b
j
k−1 − ξi ≤

p∑

j=1

ω jα
′
j · Q:i ≤

p∑

j=1

ω j b
j
k + ξ ′

i ,
′ ,

∀xi , if yi = k, i = 1, . . . , n;′ ,
0 ≤ ω j ≤ 1′,

p∑

j=1

ω j = 1

where Q:i is the i-th column of Q. Both problem (19) and (20) are quadratic programming
problems and their global optimal value of ω can be computed easily. The value of λ can be
set via a cross-validation approach.

Now we present an analysis of the computational complexity above combination approach.
As mentioned in Sect. 2.1, the proposed combination method involves solving a QP problem.
The complexity of the proposed combination method is determined primarily by the QP
problem whose complexity is related mainly to the size of the Hessian matrix. However, the
complexity of the proposed combination method can be made smaller because the size of the
Hessian matrix, as explained below, can be reduced.
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In practice, the accuracy of each direction is not bad. Thus, many of the training data can
be predicted correctly by the individual directions; for all the p directions which can predict
the rank of the training data correctly, the following relation should hold:

b j
k−1 ≤ w j · xi ≤ b j

k , ∀Xi , if yi = k, i = 1, . . . , n; (21)

From (17) and (18), it can be seen that for all the training data satisfying (21), the following
inequality should always hold:

p∑

j=1

ω j b
j
k−1 ≤

p∑

j=1

ω j w j · xi ≤
p∑

j=1

ω j b
j
k , (22)

∀xi , if yi = k, i = 1, . . . , n;
So while applying the combination method, we can ignore all the training data satisfying
condition (21) in solving the QP problem (20). In this way, many of the training data can be
excluded; so the size of the Hessian matrix of the QP problem can be reduced considerably.
Thus, the complexity of our combination method could be made smaller significantly.

3 Experimental Results

To evaluate the performance of the proposed method, we performed a set of experiments with
both benchmark datasets and real ordinal regression datasets. We compared the proposed
methods, namely, majority voting ordinal regression (MJ-OR) and weighted average ordinal
regression (WA-OR) against kernel discriminant learning for ordinal regression (KDLOR),
on these benchmark datasets. The following Gaussian kernel was used in our experiments:

s(x, y) = exp

(
−‖x − y‖2

σ 2

)
. (23)

A Bagging method [24], which trains a number of base KDLOR from a different bootstrap
sample, was also used and its performance was compared. In this paper we randomly select
about half samples from full training dataset for 30 times and the final ordinal regression
decision is reached based on the vote of the obtained 30 component regression models. The
ten-fold cross validation was used to determine parameters μ, σ , C and λ. Two evaluation
metrics are considered to quantify the accuracy of predicted ordinal scales {ŷ1, ŷ2, . . . , ŷN }
with respect to true targets {y1, y2, . . . , yN }. The tolerance error ε of algorithm 1 is set to
0.01 and the maximal number of iteration T is set to 5.

1. Mean absolute error (MAE): the average deviation of the prediction from the true rank
which is treated as consecutive integers, i.e. 1

N

∑N
i=1 |ŷi − yi |;

2. Mean zero-one error (MZE): the fraction of incorrect predictions.

3.1 Benchmark datasets

For the comparison purpose, we used the same datasets as in [5,6,16]. These five benchmark
datasets were generated by quantizing some metric regression data sets with K = 10. The
same training/test ratio was used and we averaged the results over 20 trials to fairly compare
our results with those of other algorithms. The test result is listed in Table 1. It can be seen
that generally the combination of several projections can achieve higher performance in

123



148 B.-Y. Sun et al.

Ta
bl

e
1

Te
st

re
su

lts
of

th
re

e
al

go
ri

th
m

s
on

fiv
e

da
ta

se
ts

D
at

as
et

s
M

ea
n

ze
ro

on
e

er
ro

r
M

ea
n

ab
so

lu
te

er
ro

r

K
D

L
O

R
M

J-
O

R
W

A
-O

R
B

ag
gi

ng
K

D
L

O
R

M
J-

O
R

W
A

-O
R

B
ag

gi
ng

Py
ri

m
id

in
es

0.
73

9
±

0.
05

0.
73

±
0.

02
5

0.
65

±
0.

04
5

0.
73

±
0.

03
1.

1
±

0.
1

1.
2

±
0.

04
0.

97
±

0.
05

1.
1

±
0.

01

M
ac

hi
ne

C
PU

0.
48

±
0.

01
0.

4
±

0.
04

0.
38

±
0.

02
0.

47
±

0.
02

0.
69

±
0.

01
5

0.
78

±
0.

2
0.

64
±

0.
09

0.
68

±
0.

02

B
os

to
n

0.
56

±
0.

02
0.

59
±

0.
03

0.
52

±
0.

08
0.

56
±

0.
01

0.
7

±
0.

03
5

0.
88

±
0.

03
0.

69
±

0.
09

0.
7

±
0.

02

A
ba

lo
ne

0.
74

±
0.

02
0.

74
±

0.
05

0.
74

±
0.

05
0.

74
±

0.
01

1.
4

±
0.

05
1.

6
±

0.
02

1.
3

±
0.

01
5

1.
38

±
0.

03

B
an

k
0.

74
±

0.
00

1
0.

74
5

±
0.

00
25

0.
75

±
0.

02
0.

74
2

±
0.

00
1

1.
45

±
0.

02
1.

56
±

0.
02

1.
56

±
0.

02
1.

42
±

0.
03

T
he

be
st

pe
rf

or
m

an
ce

of
ea

ch
da

ta
se

tf
or

di
ff

er
en

tm
et

ho
ds

is
in

bo
ld

123



Constructing and Combining Orthogonal Projection 149

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

Fig. 1 Class distribution for the 488 examples of the ESL data set

comparison with the performance achievable by a single projection. Moreover, the table also
shows that the weighted average method outperforms the majority voting method generally.
For few datasets, such as Bank, the single projection vector achieves the best performance.
The reason my be that sometime the use of several projection vectors may results in over-
fitting problems. So our future work will find an efficient method to determine the optimal
number of projection vectors.

3.2 Real Datasets

In this section, we continue the experimental study by applying the algorithms to three real
ordinal regression dataset, namely, ESL dataset, wine dataset and DLBCL dataset. The first
two datasets are available at the WEKA website1 and UCI Machine Learning Repository. 2

The last dataset can be found in [25].

3.2.1 ESL Dataset

The ESL data set contains 488 profiles of applicants for certain industrial jobs. Expert psy-
chologists of a recruiting company, based upon psychometric test results and interviews with
the candidates, determined the values of the input attributes. The output is the an overall
score corresponding to the degree of fitness of the candidate to this type of job. The number
of instances is 488 and the number of features is 4. The class distribution is shown as Fig. 1.

To investigate the influence of the number of training instances on different algorithms
relative performance, we repeated the experiments using different training set size. Figures
2 and 3 shows the mean zero-one error rate and mean absolute error rate of three algorithms
respectively when different number of data are used. The overall results suggest that the use
of multiple projections can improve the ordinal regression performance.

1 http://www.cs.waikato.ac.nz/ml/index.html.
2 http://www.ics.uci.edu/~mlearn/MLRepository.html.
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Fig. 2 M-Z-O Error rates of different algorithms for ESL dataset when different training set sizes are used
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Fig. 3 M-A Error rates of different algorithms for ESL dataset when different training set sizes are used set

3.2.2 Wine Dataset

The Wine datasets are related to predict human wine taste preferences on red and white
variants of the Portuguese ”Vinho Verde” wine. Since the red and white tastes are quite
different, the analysis is performed separately and two datasets were built with 1,599 red and
4,898 white examples. Each sample was characterized from 11 attribute, include fixed acidity,
volatile acidity and so on. The preferences of the samples were evaluated by a minimum of
three sensory assessors (using blind tastes), which graded the wine in a scale that ranges
from 0 (very bad) to 10 (excellent). The final sensory score is given by the median of these
evaluations. Figures 4 and 5 shows the class distribution of the examples of the red wine and
white wine respectively. It can be seen that the distribution of the differences is unbalanced,
which increase the difficulty of the ordinal regression problems.

We also repeated the experiments using different training set size on these two wine
datasets. Figures 6, 7, 8 and 9 show the experimental results of different algorithms when
different training set sizes are used for these two datasets respectively. Compared to the
performance of a single projection vector, the use of multiple projection vectors can decrease
both M-Z-O Error and M-A Error, which proved the efficient and efficiency of the proposed
method.
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Fig. 4 Class distribution for the 1,599 examples of the red wine data set
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Fig. 5 Class distribution for the 4,898 examples of the white wine data set

3.2.3 DLBCL Dataset

The DLBCL data set consists of measurements of 7, 399 genes from 240 patients. A survival
time was recorded for each patient, which ranges between 0 and 21.8 years. Among them,
138 patients were used for their exact survival time is known while others are censored.
We quantized the survival time into 4 scales by 4. Figure 10 shows the class distribution of
the examples. Table 2 shows the test result when different methods are used. It can be seen
that the strategy proposed in this paper can also improve the ordinal regression performance
for this high dimensional dataset. Compared with the Bagging method, although the MA
error of the proposed WA-OR algorithm is higher, its M-Z-O error is lower. So the com-
bination of different projection vectors can improve the ordinal regression performance in
most cases.
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Fig. 6 M-Z-O error rates of different algorithms for white wine dataset when different training set sizes are
used

0.1 0.2 0.3 0.4 0.5 0.6
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Training Set Size/Total Set Size

M
−

A
 E

rr
or

MJ−OR
WA−OR
KDLOR

Fig. 7 M-A error rates of different algorithms for white wine dataset when different training set sizes are
used
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Fig. 8 M-Z-O error rates of different algorithms for red wine dataset when different training set sizes are
used
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Fig. 9 M-A error rates of different algorithms for red wine dataset when different training set sizes are used
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Fig. 10 Class distribution for the 138 examples of the DLBCL data set

Table 2 Experimental results on
DLBCL dataset for different
methods

Method M-Z-O error M-A error

KDLOR 0.49 0.58

MJ-OR 0.46 0.55

WA-OR 0.44 0.54

Bagging 0.46 0.52

4 Conclusions

In this paper, we proposed a novel ordinal regression strategy by extracting and combining
orthogonal projection vectors. Traditional ordinal regression methods usually seek only one
projection vector; so their performance may be unsatisfactory in case of complex problems
because some useful information is lost in the sample space. On the other hand, although
several methods, such as LDA, MMC, can obtain multiple projection vectors and several
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features can be extracted, they do not handle ordinal classes. To address the above problems,
we generalized the KDLOR algorithm of our previous work to extract multiple projection
vectors, thus more than one feature can be obtained. The proposed algorithm is to first
extract a projection vector and then the next optimal vector is searched within the orthogonal
space of the obtained projection vector. We also developed two efficient strategy to combine
multiple projection vectors for improving the performance. In comparison with existing
ordinal regression methods, the proposed method can extract several projection vectors from
the original samples spaces and more information of the data could be used. Experimental
results on both benchmark datasets and real-world benchmark data sets demonstrate that the
proposed method could improve the performance of the ordinal regression. Designing a more
efficient algorithm for large and high dimensional datasets and how to determine the optimal
number of the extracted features remain our future study.

Acknowledgments The authors sincerely thank anonymous reviewers’ constructive comments. The work
of this paper has been supported by the Natural Science Foundation of China (Nos: 41101516 and 61203373),
Guangdong Natural Science Foundation (No. S2011010006120) and the Shenzhen Science and Technology
R & D funding Basic Research Program (No. JC201105190821A).

References

1. Kramer S, Widmer G, Pfahringer B, DeGroeve M (2001) Prediction of ordinal classes using regression
trees. Fundamenta Informaticae 47(1–2):1–13

2. Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression. In:
Smola AJ, Bartlett PL, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT
Press, Cambridge, pp 115–132

3. Crammer K, Singer Y (2002) Pranking with ranking. In: Dietterich TG, Becker S, Ghahramani Z (eds)
Advances in neural information processing systems. MIT Press, Cambridge, pp 641–647

4. Shashua A, Levin A (2003) Ranking with large margin principle: two approaches. In: Becker S, Thrun
S, Obermayer K (eds) Advances in neural information processing systems. MIT Press, Cambridge,
pp 961–968

5. Chu W, Keerthi SS (2005) New approaches to support vector ordinal regression. In: Proceedings of the
22nd international conference on machine learning (ICML 2005). Omnipress, pp 145–152

6. Lin L, Lin H-T (2007) Ordinal regression by extended binary classification. In: Advances in neural
information processing systems 19: proceedings of the 2006 Conference (NIPS 2006). MIT Press,
pp 865–872

7. Cardoso JS, Pinto da Costa JF (2007) Learning to classify ordinal data: the data replication method. J
Mach Learn Res 8:1393–1429

8. Liu Y, Liu Y, Chan KCC (2011) Ordinal regression via manifold learning. In: Proceedings of 25th AAAI
conference on artificial Intelligence (AAAI11), pp 398–403

9. Baccianella S, Esuli A, SebastianiF F (2010) Feature selection for ordinal regression. In: Proceedings of
the 2010 ACM symposium on applied computing (SAC ’10). ACM, New York, pp 1748–1754

10. Bishop CM (2006) Pattern recognition and machine learning. Springer, Heidelberg
11. Duda RO, Hart PE, Stork D (2000) Pattern classification. Wiley, Chichester
12. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE

Trans Neural Netw 17(1):157–165
13. Min W, Lu K, He X (2004) Locality pursuit embedding. Pattern Recognit 37(4):781–788
14. Zhang T, Huang K, Li X, Yang J, Tao D (2010) Generalized discriminant analysis: a matrix exponential

approach. IEEE Trans Syst Man Cybern B 40(1):253–263
15. Xia F, Tao Q, Wang J, Zhang W (2007) Recursive feature extraction for ordinal regression. In: International

joint conference on neural networks (IJCNN’07), pp 78–83
16. Sun B-Y, Li J, Wu DD, Zhang X-M, Li W-B (2010) Kernel discriminant learning for ordinal regression.

IEEE Trans Knowl Data Eng 22(6):906–910
17. Ye J (2005) Characterization of a family of algorithms for generalized discriminant analysis on under-

sampled problems. J Mach Learn Res 6:4831502

123



Constructing and Combining Orthogonal Projection 155

18. Ji S, Ye J (2008) Generalized linear discriminant analysis: a unified framework and efficient model
selection. IEEE Trans Neural Netw 19(10):1768–1782

19. Vapnik V (1998) The nature of statistical learning theory. Wiley, New York
20. Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to Kernel-based learning

algorithms. IEEE Trans Neural Netw 12(2):181–201
21. Mika S (2002) Kernel fisher discriminants. PhD thesis, University of Technology, Berlin
22. Guo Y, Hastie T, Tibshirani R (2007) Regularized linear discriminant analysis and its application in

microarrays. Biostatistics 8(1):86–100
23. Kim H, Drake B, Park H (2006) Adaptive nonlinear discriminant analysis by regularized minimum squared

errors. IEEE Trans Knowl Data Eng 18(5):603–612
24. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
25. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink

HK, Smeland EB, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy
for diffuse large-B-cell lymphoma. N Engl J Med 346(25):1937–1947

123


	Constructing and Combining Orthogonal Projection Vectors for Ordinal Regression
	Abstract
	1 Introduction
	1.1 Kernel Discriminant Analysis
	1.2 Kernel Discriminant Analysis for Ordinal Regression

	2 Re-Weighting Orthogonal Discriminant Analysis for Ordinal Regression
	2.1 Orthogonal Discriminant Analysis for Ordinal Regression
	2.2 Solving the Small Sample Size Problems
	2.3 Decision Combination for Orthogonal Discriminant Ordinal Regression
	2.3.1 Majority Voting Method
	2.3.2 Weighted Average Method


	3 Experimental Results
	3.1 Benchmark datasets
	3.2 Real Datasets
	3.2.1 ESL Dataset
	3.2.2 Wine Dataset
	3.2.3 DLBCL Dataset


	4 Conclusions
	Acknowledgments
	References


