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Abstract This paper develops a semi-supervised learning algorithm called convolutional
deep networks (CDN), to address the image classification problem with deep learning. First,
we construct the previous several hidden layers using convolutional restricted Boltzmann
machines, which can reduce the dimension and abstract the information of the images effec-
tively. Second, we construct the following hidden layers using restricted Boltzmann machines,
which can abstract the information of images quickly. Third, the constructed deep architec-
ture is fine-tuned by gradient-descent based supervised learning with an exponential loss
function. CDN can reduce the dimension and abstract the information of the images at the
same time efficiently. More importantly, the abstraction and classification procedure of CDN
use the same deep architecture to optimize the same parameter in different steps continu-
ously, which can improve the learning ability effectively. We did several experiments on
two standard image datasets, and show that CDN are competitive with both representative
semi-supervised classifiers and existing deep learning techniques.

Keywords Semi-supervised learning · Deep learning · Convolutional neural networks ·
Visual data classification

1 Introduction

Recently, more and more people use digital photography technology, huge image collections
are available through the Internet, which create a need for image processing [14]. For the wide
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18 S. Zhou et al.

application prospect, much effort has been directed towards recognizing objects and classi-
fying images [4]. However, in real-world applications, it is often the case that the labeled data
are difficult, expensive, or time consuming to obtain [1], while abundant of unlabeled data
are available. To address this problem, semi-supervised learning, which uses large amount
of unlabeled data together with labeled data to build better learners, has attracted more and
more attention [17].

Most semi-supervised methods use shallow architecture to model the problem [16].
Recently, several methods have been proposed based on deep architecture, which is expected
to perform well in semi-supervised learning. Weston et al. leverage shallow algorithms to
deep architectures and yield competitive performance in semi-supervised learning task [16].
Deep belief networks (DBN) is a representative deep learning algorithm, which is a directed
belief nets with many hidden layers constructed by restricted Boltzmann machines (RBM),
and refined by a gradient-descent based supervised learning [7,8]. The two-stage construc-
tion of DBN makes it natural to semi-supervised learning. DBN-rNCA [15], which combines
the DBN and neighborhood component analysis (NCA) techniques, also demonstrates the
good performance for classification task via semi-supervised learning. Liu et al. propose a
novel semi-supervised classifier called discriminative deep belief networks (DDBN), which
utilizes a new deep architecture to integrate the abstraction ability of DBN and discriminative
ability of backpropagation strategy [13].

Convolutional neural networks (CNN) are specifically designed to deal with the variability
of two dimensional shapes, represent one of the early successes of deep learning [9]. Lecun
et al. compare various handwritten character recognition methods on a standard handwritten
digit recognition task, and shown CNN outperforms all other techniques [10]. Desjardins
and Bengio adapt RBM to operate in a convolutional manner, and show that the convolu-
tional restricted Boltzmann machines (CRBM) are more efficient than standard RBM [3].
Lee et al. present the convolutional deep belief network (CDBN), a hierarchical generative
model scales to realistic image sizes [11]. CDBN is constructed by CRBM layer by layer,
and the representation is subsampled by probabilistic max-pooling in every layer, which can
extract the features of images with unsupervised learning effectively, then the features can
be classified by support vector machines (SVM).

In this paper, we propose a semi-supervised classifier called convolutional deep networks
(CDN) based on two representative deep architecture CNN and DBN. CDN is constructed
by greedy layer-wise unsupervised learning, the bottom layers are constructed by CRBM,
and the upper layers are constructed by RBM, then the whole constructed deep architecture
is fine tuned by a gradient-descent based supervised learning based on an exponential loss
function.

The remainder of this paper is organized as follows. In Sect. 2, we introduce our
semi-supervised learning method CDN in details. Section 3 shows the empirical valida-
tion of CDN by comparing its classification performance with previous semi-supervised
learning methods and deep learning methods on image datasets. The paper is closed with
conclusion.

2 Convolutional Deep Networks

In this part, we propose a semi-supervised learning algorithm, convolutional deep networks
(CDN) based on the representative deep architecture CNN and DBN for image classification.
We formulate the problem in Sect. 2.1 and provide the solution via deep architecture in Sect.
2.2. Section 2.3 discusses greedy layer-wise unsupervised learning with CRBM and RBM
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Convolutional Deep Networks 19

separately. Section 2.4 provides gradient descent supervised learning with an exponential
loss function. Section 2.5 introduces training and test procedure of CDN.

2.1 Problem Formulation

Let X be a set of images, each image composed of D × D pixels, which can be written as:

X =
[
x1, x2, . . . , xL+T

]
(1)

where x is a D × D pixels image. L is the number of labeled images, T is the number of
unlabeled images.

Let Y be a set of labels correspond to L labeled images and is denoted as:

YL =
[
y1, y2, . . . , yL

]
(2)

where y is a vector with C units, C is the number of classes.

y j =
{

1 if x ∈ j th class
−1 if x /∈ j th class

(3)

We intend to seek the mapping function X → Y using the L labeled data and T unlabeled
data. After training, we can determine y using the mapping function when a new sample x
comes.

2.2 Architecture of CDN

The architecture of CDN can be seen in Fig. 1, which is a fully interconnected directed belief
nets with one input layer h0, N hidden layers h1, h2, . . . , hN , and one label layer at the top.
The input layer h0 has D × D units, equal to the number of pixels of sample image x. The
hidden layer has M layers constructed by 2 dimensional CRBM and N − M layers con-
structed by RBM. The label layer has C units, equal to the number of classes. The seeking of
the mapping function X → Y, here, is transformed to the problem of finding the parameter
space W = {w1, w2, . . . , wN } for the deep architecture.

The training of the CDN can be divided into two stages:

1. CDN is constructed by greedy layer-wise unsupervised learning using CRBM and RBM
as building blocks.

2. CDN is optimized by an exponential loss function through back propagation supervised
learning.

2.3 Unsupervised Learning

As shown in Fig. 1, we construct CDN layer by layer using CRBM and RBM. The archi-
tecture of CRBM can be seen in Fig. 2, which is a two-layer recurrent neural network in
which stochastic inputs groups are connected to stochastic outputs groups using symmetri-
cally weighted connections. The top layer represents a vector of stochastic hidden feature hk

and the bottom layer represents a vector of visible data hk−1, k = 1, . . . , M . The kth layer
consists of Gk groups, each group consists of Dk × Dk units. The dimension of each group
is reduced through subsampling with mean method, after subsampling, each group consists
of D̂k × D̂k units, resulting in Gk × D̂k × D̂k hidden units. The input layer h0 is consists
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Fig. 1 Architecture of CDN
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of one group and D × D units, which represent one input image. wk is the symmetric inter-
action term connecting corresponding groups between data hk−1 and feature hk . However,
the weights of CRBM between the hidden and visible groups are shared among all locations
[11], and the calculation is operated in a convolutional manner [3].
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We define the energy of the state (hk−1, hk) as:

E
(

hk−1, hk; θ
)

= −
Gk−1∑
s=1

Gk∑
t=1

(w̃k
st ∗ hk−1

s ) · hk
t

−
Gk−1∑
s=1

bk−1
s

D̂k−1∑
u=1

hk−1
s −

Gk∑
t=1

ck
t

Dk∑
v=1

hk
t (4)

where θ = (w, b, c) are the model parameters: wk
st is a filter between unit s in the layer

hk−1 and unit t in the layer hk , k = 1, . . . , M . The dimension of the filter wk
st is equal to

(D̂k−1 − Dk + 1)× (D̂k−1 − Dk + 1). bk−1
s is the sth bias of layer hk−1 and ck

t is the t th bias
of layer hk . A tilde above an array (w̃) denote flipping the array, ∗ denote valid convolution,
and · denote element-wise product followed by summation, i.e., A · B = tr AT B [11].

The joint and conditional probability distribution are defined as follows:

P
(

hk−1; θ
)

= 1

Z (θ)

∑

hk

exp
(
−E

(
hk−1, hk; θ

))
(5)

Z (θ) =
∑

hk−1

∑

hk

exp
(
−E

(
hk−1, hk; θ

))
(6)

where Z (θ) denotes the normalizing constant.
The probability of turning on unit v in group t is a logistic function of the states of hk−1

and wk
st :

p
(

hk
t,v = 1|hk−1

)
= sigm

(
ck

t +
(∑

s

w̃k
st ∗ hk−1

s

)

v

)
(7)

The probability of turning on unit u in group s is a logistic function of the states of hk and
wk

st :

p
(

hk−1
s,u = 1|hk

)
= sigm

(
bk−1

s +
(∑

t

wk
st � hk

t

)

u

)
(8)

where the logistic function is:

sigm (η) = 1/(1 + e−η) (9)

A star � denote full convolution.
The derivative of the log-likelihood with respect to the model parameter wk can be obtained

by the CD method [5,6]:

∂ log p(hk−1)

∂ wk
st

=
〈
hk−1

s hk
t

〉
P0

−
〈
hk−1

s hk
t

〉
PM

(10)

where 〈·〉P0 denotes an expectation with respect to the data distribution and 〈·〉PM
denotes

a distribution of samples from running the Gibbs sampler initialized at the data, for M full
steps.

The detail introduction of RBM can be seen in Hinton et al. [8].
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2.4 Supervised Learning

In CDN, we construct the deep architecture using all labeled images with unlabeled images
by inputting them one by one from layer h0. The deep architecture is constructed layer by
layer from bottom to top, and each time, the parameter wk is trained by the calculated data
in the k − 1th layer.

According to the wk calculated by CRBM and RBM, the layer hk, k = 1, . . . , M can be
got as following when a sample x inputs from layer h0:

hk
t (x) = sigm

⎛
⎝ck

t +
Gk−1∑
s=1

w̃k
st ∗ hk−1

s (x)

⎞
⎠ , t = 1, . . . , Gk (11)

Then CDN subsampling hk
t (x) with mean method in every nonoverlapping 2 × 2 neighbor-

hood, which result in half the number of rows and columns for every group of hk(x).
When k = M + 1, . . . , N − 1, the layer hk can be represented as:

hk
t (x) = sigm

(
ck

t +
Dk−1∑
s=1

wk
st h

k−1
s (x)

)
, t = 1, . . . , Dk (12)

The parameter wN is initialized randomly, just as backpropagation algorithm.

hN
t (x) = cN

t +
G N−1×DN−1∑

s=1

wN
st hN−1

s (x), t = 1, . . . , DN (13)

After greedy layer-wise unsupervised learning, hN (x) is the representation of x. Then
we use L labeled images to refine the parameter space W = {w1, w2, . . . , wN } for better
discriminative ability. This task can be formulated as an optimization problem:

arg min
w1,w2,...,wN

f
(

hN
(

XL
)

, YL
)

(14)

where

f
(

hN
(

XL
)

, YL
)

=
L∑

i=1

C∑
j=1

T
(

hN
j

(
xi

)
yi

j

)
(15)

and the loss function is defined as

T (r) = exp(−r) (16)

We use gradient-descent through the whole CDN to refine the weight space. In the super-
vised learning stage, the stochastic activities are replaced by deterministic, real valued prob-
abilities.

2.5 Classification Using CDN

The training procedure of CDN is given in Algorithm 1. For the training of CDN architecture,
the parameters are random initialized with normal distribution. All the reviews in the dataset
are used to train the CDN with unsupervised learning. The number of units D1, . . . , DN in
hidden layer, the number of groups G M , . . . , G N in convolutional layer, and the number of
epochs Q are set manually based on the dimension of the input data and the size of dataset.
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Algorithm 1: Algorithm of CDN

Input: data X, YL

number of units in every hidden layer D1 . . . DN
number of groups in every convolutional hidden layer G M . . . G N
number of layers N ; number of epochs Q; number of iterations I
number of labeled data L; number of unlabeled data T
hidden layer h1, . . . , hM ; convolutional hidden layer hM+1, . . . , hN−1

parameter space W = {w1, . . . , wN }; biases b, c; momentum ϑ and learning rate η

Output: deep architecture with parameter space W
for i = 1; i ≤ I do

1. Greedy layer-wise unsupervised learning
for k = 1; k ≤ N − 1 do

for q = 1; q ≤ Q do
for r = 1; r ≤ L + T do

Calculate the non-linear positive and negative phase:
if k ≤ M then

Normal calculation according to RBM.
else

Convolutional calculation according to Eq. 7 and Eq. 8.
end
Update the weights and biases:

wk
st = ϑwk

st + η

(〈
hk−1

s, r hk
t, r

〉
P0

−
〈
hk−1

s, r hk
t, r

〉
P1

)

end
end

end
2. Supervised learning based on gradient descent

arg min
W

L∑
i=1

C∑
j=1

exp(−hN (xi
j )yi

j )

end

After training, we can use the Eq. 17 to determine the label of the new data.

arg
j

max hN (x) (17)

where j is the coordinate of the vector hN (x) with maximum value.

3 Experiments

3.1 Experimental Setup

We evaluate the performance of the proposed CDN method using two image classification
datasets. The first dataset is Caltech 101, a standard dataset for image classification, including
the images of 101 different objects, plus a background category [12]. The second dataset is
MNIST, a standard dataset for empirical validation of deep learning algorithms [15,16].

We compare the classification performance of CDN with four representative classifiers,
Transductive SVM (TSVM) [2], EmbedNN [16], DBN-rNCA [15], and DDBN. TSVM is
the semi-supervised version of SVM, EmbedNN is the semi-supervised version of NN with
deep architecture, and DBN-rNCA is the semi-supervised version of DBN. DDBN is a semi-
supervised learning method based on DBN proposed recently [13]. We repeat all experiments
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20 times on randomly selected labeled and unlabeled images, and report average and variance
of error rates.

3.2 Caltech 101 Dataset

We work on the subset of Caltech 101, which includes 2,935 images from the first five cate-
gories. We preprocess the images to the same size, every image include 20 × 20 pixels. The
CDN structure used in this experiment is 8-50-200-5, which represents the number of groups
in two convolutional hidden layers are 8 and 50, the number of units in one normal hidden
layer and output layer are 200 and 5 respectively.

We set the number of labeled images equal to 25, 50, 75, and compare the classification
error rate of different methods with these various numbers of labeled images respectively. As
shown in Figs. 3, 4 and 5, the performance of CDN is better than other classifiers. Although
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Fig. 3 Average and variance of error rates with 25 labeled data on Caltech 101
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Fig. 4 Average and variance of error rates with 50 labeled data on Caltech 101
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Fig. 5 Average and variance of error rates with 75 labeled data on Caltech 101
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Fig. 6 Average and variance of error rates with 20 labeled data on MNIST

a large number of different initializations, the results of CDN with same number of labeled
are same for 20 times running. Because of greedy layer-wise initialization, especially the
abstraction of CRBM.

3.3 MNIST Dataset

MNIST is a large handwritten digit database containing 70,000 images with 10 classes. In
this experiment, we use 100 labeled images and 70,000 unlabeled images for classification.
The CDN structure used in this experiment is 6-24-500-10, which represents the number of
groups in two convolutional hidden layers are 6 and 24, the number of units in one normal
hidden layer and output layer are 500 and 10 respectively.

We set the number of labeled images equal to 20, 50, 100 respectively, the rest images
are used as unlabeled data. Figures 6, 7 and 8 show the classification error rate of different
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Fig. 7 Average and variance of error rates with 50 labeled data on MNIST
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Fig. 8 Average and variance of error rates with 100 labeled data on MNIST

classifiers under different number of labeled images. For TSVM algorithm, the error rate is
16.81% when 100 labeled data and 2,000 unlabeled data are used [2]. However, due to the
high computation cost, the experiment on TSVM has not finished for several weeks running
when nearly 60,000 images are used as unlabeled data [13]. Through the table, we can see that
CDN demos competitive performance comparing with other representative semi-supervised
learning and deep learning methods.

4 Conclusions

In this paper, we propose a novel semi-supervised learning method, CDN, to address the
image classification problem with few labeled images and large amount of unlabeled images.
CDN seamlessly incorporate greedy layer-wise unsupervised learning method into the CNN
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architecture, and use CRBM to abstract the image information effectively. One promising
property of CDN is that it can effectively use the distribution of large amount of unlabeled
data, together with few label information in a unified framework. In particular, CDN can
greatly reduce the dimension of images through subsampling and abstracting the informa-
tion of images through the cooperation of CRBM and RBM. Then an exponential loss function
is used to refine the constructed deep architecture with few label information. Experiments
conducted on two image datasets demonstrate that CDN outperforms most state-of-the-art
semi-supervised learning algorithms on classification tasks. In future, we will continue to
optimize the classification performance of CDN, study the performance of CDN for super-
vised learning, and use it for video classification.
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