
Neural Process Lett (2013) 37:377–392
DOI 10.1007/s11063-012-9253-x

PCA-ELM: A Robust and Pruned Extreme Learning
Machine Approach Based on Principal Component
Analysis

A. Castaño · F. Fernández-Navarro ·
C. Hervás-Martínez

Published online: 7 November 2012
© Springer Science+Business Media New York 2012

Abstract It is well-known that single-hidden-layer feedforward networks (SLFNs) with
additive models are universal approximators. However the training of these models was
slow until the birth of extreme learning machine (ELM) “Huang et al. Neurocomputing
70(1–3):489–501 (2006)” and its later improvements. Before ELM, the faster algorithms for
efficiently training SLFNs were gradient based ones which need to be applied iteratively
until a proper model is obtained. This slow convergence implies that SLFNs are not used as
widely as they could be, even taking into consideration their overall good performances. The
ELM allowed SLFNs to become a suitable option to classify a great number of patterns in a
short time. Up to now, the hidden nodes were randomly initiated and tuned (though not in all
approaches). This paper proposes a deterministic algorithm to initiate any hidden node with
an additive activation function to be trained with ELM. Our algorithm uses the information
retrieved from principal components analysis to fit the hidden nodes. This approach consid-
erably decreases computational cost compared to later ELM improvements and overcomes
their performance.

Keywords Principal component analysis · Extreme learning machine · Classification

A. Castaño
Department of Informatics, University of Pinar del Río, Pinar del Río, Cuba
e-mail: adiel@info.upr.edu.cu

F. Fernández-Navarro (B)
Advanced Concepts Team-European Space Research and Technology Centre (ESTEC),
European Space Agency (ESA), Noordwijk, The Netherlands
e-mail: i22fenaf@uco.es; francisco.fernandez.navarro@esa.int

C. Hervás-Martínez
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
e-mail: chervas@uco.es

123

378 A. Castaño et al.

1 Introduction

According to the estimation of Jaeger [15], 95 % of the literature on artificial neural net-
works (ANNs) is mainly about single-hidden-layer feedforward networks (SLFNs). SLFNs
have no side or back connections to connect two nodes. Since the SLFNs were designed, a
great number of training techniques have been proposed to fit their parameters and structure.
A well known architecture is the multilayer perceptron (MLP) which consists of sigmoid
nodes. This MLP is generally trained with the back propagation algorithm (BP).

This common architecture can be trained by various algorithms. The most common algo-
rithms can be classified as being based on gradients and heuristics. These algorithms have
common characteristics: difficulty in handling large amounts of data and slow convergence
under these circumstances. These characteristics imply that the construction of the SLFNs
is often quite slow. The slow building of SLFNs comes from the numerous parameters to
be adjusted by means of slow algorithms which must be repeated many times to reach a
suitable model. For this reason, the SLFNs tend not to be used as widely as they could be,
even considering their overall good performance. To tackle this problem Huang et al. [13]
propose an algorithm to determine the parameters of the SLFNs, called the extreme learning
machine (ELM). This algorithm reduces the traditional computational time required to train
a SLFN by gradient-based approaches. ELM divides the training procedure into two steps: a
random configuration of the hidden layer and a linear combination fitting using the Moore-
Penrose generalized inverse matrix. As can be observed, this algorithm is really fast and its
performance is validated [13].

After the introduction of ELM, some approaches have been implemented to improve
the performance of the original version. These approaches address the problem of selecting
the number of hidden nodes and the fast fitting of hidden node parameters. To select the
number of hidden nodes, different growing and/or pruning techniques have been proposed.
Huang et al. [10] defines two variants of incremental extreme learning machine (I-ELM)
[5,11], where the hidden nodes are added incrementally until they reach a certain error in
the residuals. On the other hand, Miche et al. [18] proposes the optimally-pruned extreme
learning machine (OP-ELM) which randomly initializes the hidden node weight, and ranks
the resultant features from applying hidden node transformations on the training set.

Until now ELM approaches have attempted to avoid the problems introduced by the
random ‘fitting’ of hidden nodes and the fixed number of initial nodes. Guided by these recent
approaches we propose a robust principal component analysis ELM (PCA-ELM) algorithm.
Our algorithm is suitable to train any SLFN with hidden nodes that presents linear activation
functions. Our proposal estimates the hidden node parameters with the information retrieved
from PCA on the training dataset. The output node parameters are determined analytically
using the Moore-Penrose generalized inverse.

This paper differs from previous ones because:

– The number of hidden nodes and their weights are deterministically determined taking
into consideration the information retrieved from a PCA analysis of the training set.

– The proposed algorithm is not an application of original ELM over the covariates obtained
from a PCA analysis, as was proposed in [16].

The paper is organized as follows: a background of ELM is given in Sect. 2. The meth-
odology to optimize the ANN parameters based on ELM and PCA is presented in Sect. 3.
Section 4 explains the experiments that have been carried out. Finally, Sect. 5 summarises
the conclusions of our work.

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 379

2 Background of Extreme Learning Machine

Extreme learning machine (ELM) is an efficient algorithm that determines the output weights
of a SLFN using an analytical solution instead of the standard gradient descent algorithm
[14]. Neural networks have been used to solve classification problems in several domains
ranging from computer vision to bioinformatics.

Traditionally, for a SLFN, all the parameters (weights and biases) for the different layers
need to be tuned/learned and there is dependency among the different layers. The gradient
descent algorithm is slow and has a high chance of converging to a local minima, and to
achieve good generalization performance several iterative steps are necessary.

The ELM scheme proposed by Huang et al. [13] overcomes these problems by randomly
assigning weights to the input layers and analytically computing the weights for the output
layer using a simple generalized inverse operation. The ELM framework has shown compa-
rable classification performance, improved model representation (less complexity) and faster
run times in comparison to support vector machines [23] for the microarray classification
problem [24].

Suppose that there are n training patterns (xi , ti), i = 1, 2, . . . , n, where xi =
(xi1, xi2, . . . , xik)

T and ti = (ti1, ti2, . . . , ti J)T are the i-th input pattern and its target,
respectively. Let us denote that wl = (wl1, wl2, . . . , wlk)

T is the weight vector connecting
the input units to the l-th hidden unit, l = 1, . . . , m, and β j = (β

j
1 , β

j
2 , . . . , β

j
m)T is the

weight vector connecting the hidden nodes to the j-th output node. The main goal of the
training process is to determine the optimized parameters: wl , and β j , so that they minimize
the squared error (SE) function defined by:

SE =
n∑

i=1

J∑

f =1

(oi f − ti f)
2, (1)

where oi f is the estimated output corresponding to the i-th input pattern and the f -th class,
which is defined as:

oi f =
m∑

l=1

β
f

l φ(xi ; wl), i = 1, 2, . . . , n (2)

where φ(x) is the activation function.
The minimization process of squared error function in the ELM is performed by using a

linear system:
Hβ = T, (3)

where H is known as the hidden layer output matrix of the SLFN and defined as:

H = (h1, h2, . . . , hm)

=
⎛

⎝
φ1(x1; w1) . . . φm(x1; wm)

.

φ1(xn; w1) . . . φm(xn; wm)

⎞

⎠

n×m

, (4)

T = (t1, t2, . . . , tn)T
n×J , (5)

and
β = (β1,β2, . . . ,β J)m×J . (6)

The ELM learning algorithm proceeds by choosing an activation function φ(x) and the
number of hidden nodes/neurons m. In the first step, arbitrary weights are assigned to the

123

380 A. Castaño et al.

input weight vectors wl . The matrix H is then computed and the output weights β are deter-
mined as β̂ = H†T where H† is the Moore-Penrose generalized inverse of the hidden layer
output matrix H.

The Moore-Penrose based solution for β is shown to be one of the least-square solutions
of the general linear system Hβ = T, and thus can achieve the smallest training error (and
not get stuck in local minima as the gradient descent algorithms). It was also shown that
the solution is unique, has the smallest norm of weights and hence, good generalization
performance [13,3].

Hence, the ELM algorithm for SLFNs can be summarized in these steps: Given a training
set (xi , ti), i = 1, 2, . . . , n, activation function φ(x) and m hidden neurons:

1. Assign arbitrary input weights wl , l = 1, . . . , m
2. Calculate the hidden layer output matrix H.

3. Calculate the output weights β:β̂ = H†T.

where H, β and T are as defined before.
The universal approximation capability of ELM has been showed in [10,8,9]. Further-

more, Huang et al. [12] has proved the classification capability of ELM. In fact, Huang et al.
[12] shows that ELM generally outperforms SVM in different type of problems.

Recently, pruning-based ELM approaches have been proposed to address the architectural
design of the ELM classifier network, since too few/many hidden nodes employed would lead
to underfitting/overfitting issues in pattern classification. In [19], the pruned-ELM (P-ELM)
algorithm is proposed for designing the ELM classifier network. P-ELM uses statistical meth-
ods to measure the relevance of hidden nodes. Beginning from an initially large number of
hidden nodes, irrelevant nodes are then pruned by considering their relevance to the class
labels.

Another pruning-based ELM approach is the optimally pruned extreme learning machine
(OP-ELM) methodology, proposed by Mich et al. [17]. In the OP-ELM methodology, the
network is first created using the ELM method, and then, the most relevant nodes are selected
using least angle regression (LARS) ranking of the nodes. Finally, the selection of the final
model structure is achieved through leave-one-out validation in the last step of OP-ELM that
selects the number of neurons.

3 Description of the Methodology

The PCA-ELM is made up of the four main steps summarized in Fig. 1.

3.1 Principal Component Analysis

In the context of high dimensionality (curse of dimensionality), the aim of PCA is to reduce
the dimensionality of the data while retaining as much as possible of the variation present
in the original dataset. PCA allows us to compute a linear transformation that maps data
from a high dimensional space to a lower dimensional space. In order to preserve as much
information as possible, the following expression has to be minimized:

Fig. 1 The four steps of the PCA-ELM algorithm

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 381

−1 0 1−4 −3 −2 −1 0

−1.5

−1

−0.5

0

0.5

1

−4

−3

−2

−1

0

Fig. 2 Data representation of two clusters which boundary points overlaps when they projects in the two axis.

minimize‖x − x‖ (7)

The PCA method has a geometrical interpretation since PCA projects the data along the
directions where the data varies the most. These directions are determined by the eigenvec-
tors of the covariance matrix corresponding to the largest eigenvalues, and the magnitude of
the eigenvalues corresponds to the variance of the data along the eigenvector directions. The
main properties of PCA are:

– The new variables are uncorrelated.
– The covariance matrix represents only second order statistics among the vector values.
– Since the new variables are linear combinations of the original variables, it is usually

difficult to interpret their meaning.

It is important to note that PCA also has some assumptions:

– Linearity: patterns are assumed to be linear combinations of some basis. There exist
non-linear methods such as kernel PCA that solve that assumption [21].

– Principal components with larger associated variances represent interesting structures,
while those with lower variances represent noise.

– The principal components are orthogonal. It makes PCA soluble using linear algebra
decomposition techniques (like the singular value decomposition (SVD) technique).

The original ELM algorithm indicates and validates the use of neural networks with sig-
moid nodes in a unique and randomly fitted hidden layer. This layer transforms the feature
space into a new one. PCA is an orthogonal transformation of initial axis into new ones
maximizing the variance. To analyze the PCA, two well defined clusters are presented in
a 2D space Figure (Fig. 2). As can be observed, the two clusters represent two classes in
a classification problem, where the patterns located near the boundaries of the two clusters
overlap in their projections over the two axis.

This initial axis may be rotated by means of PCA, obtaining the two new clusters repre-
sented in figure (Fig. 3). The new clusters obtained after the axis rotation do not overlap their

123

382 A. Castaño et al.

0 1 2 30 1 2 3

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Fig. 3 Data representation after axis rotation produced by PCA over the data of the two clusters

projections in the X-axis. Considering this, the sigmoid node weights may be initialized with
the coefficients of the principal components. An important aspect that must be taken into
consideration is that variables are initially scaled due to the difficulty that PCA experiences
when handling variables with different scales.

Finally, the PCA algorithm can be summarized in these general steps:
1. Pre-treatment of data: scaling.
2. Determination of covariance matrix.
3. Determination of eigenvalues and eigenvectors of covariance matrix (eigenvalue decom-

position).
4. Determination of scores: the scores are the data formed by transforming the original data

into the space of the principal components..

3.2 Selection of the Number of Hidden Nodes

Hidden nodes in a SLFN transform feature space into another feature space. The original
ELM defines the number of nodes as a parameter to be defined. Recent improvements such
as OP-ELM suggest the use of methods that rank features (LARS) to define the order of
importance of nodes and to remove (pruning) nodes in order of importance. Others increase
the number of hidden nodes until reaching a stop criteria (ex. residual error reduction). Our
algorithm sets the maximum number of hidden nodes by determining the amount of prin-
cipal components (orthogonal vectors) necessary to explain the 90 % of the variance in the
data.

A comparison with ELM state-of-the-art algorithms indicates that the complexity of the
models we obtain is significantly simpler than all models obtained by other algorithms. This
deterministic technique to set the number of hidden nodes causes the complexity of the model
built on a given dataset to remain constant. This feature is not present in the rest of the ELM
algorithms because these algorithms consider the random initialization of hidden nodes.

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 383

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sigmoidal Function

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hard−Limit Transfer Function

(b)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine Function

(c)

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

Exponential Function

(d)

Fig. 4 Graph of the different activation functions used for comparison purposes

3.3 Non-Linear Transformation

Well-known sigmoid nodes are composed of a linear activation function and a sigmoid trans-
fer function. However there are different node types that share the same linear activation
function which can be initiated using the PCA approach described in Subsect. 3. Because of
this, any node that is compounded by a linear combination as the activation function may be
taken into consideration as a suitable choice to be used in the hidden layer of SLFNs trained
with ELM methodology. Some of the most common nodes with a linear activation function
are mentioned in continuation:

– Sigmoidal function (Sig) (Fig. 4a). In this context, Sigmoidal function refers to the special
case of the logistic function, defined by the formula:

sig(n) = 1

1 + exp(−n)
(8)

– Hard-limit transfer function (Hardlim) (Fig. 4b). This transfer function returns zero if
the argument of the function is less than zero and returns one if the argument is greater
than or equal to zero. Hardlim is defined as follows:

hardlim(n) = 1 if n ≥ 0;= 0, otherwise (9)

– Sine (Sine) (Fig. 4c). This transfer function returns zero if the argument is near the 2Kπ

123

384 A. Castaño et al.

– Product unit (PU) (Fig. 4d). This transfer function is a multiplicative model represented
as:

PU (n) = xw1
1 × xw2

2 × · · · × xwn
n = ew1×log(x1)+w2×log(x2)+···+wn×log(xn) (10)

As can be observed an a priori modification of input space, applying log function to
the entire training and testing datasets, makes it possible to define an equivalent node
formulated as a exponential function.

3.4 Estimation of the Output Weight Vector

Finally, the estimation of output layer weights is done as proposed by Huang et al. [13], by
solving the linear system Hβ = T using the the Moore-Penrose generalized inverse. The
characteristics of the procedure were previously detailed in Sect. 2.

3.5 Discussion about the Advantages of the PCA-ELM

An analysis of the algorithm being proposed highlights some advantages with respect to pre-
vious approaches, beginning with the elimination of the random initiation of hidden nodes.
Indeed, up to now, the ELM algorithms initiate the weights of hidden nodes with random
values (tuned in certain approaches), but the proposed methodology fits the coefficients using
a deterministic and fast method (PCA). This implies that the algorithm does not present a
respective high standard deviation of its performance and model complexity as OP-ELM and
other algorithms do.

Another critical aspect of ELM algorithms is the selection of the number of hidden nodes.
Our approach determines the amount of nodes needed using the information retrieved from
the explained variance of the principal components calculated. On the other hand, the algo-
rithms that prune the initial model present a difficulty: that the techniques to select the nodes
to be pruned (ex. leave-one out) produce an excessive computational cost with respect to our
algorithm, although some pruning algorithms need to rank the nodes with feature rankers.
These algorithms produce an ordered list of nodes, the same as our algorithm, but the compu-
tational cost of good rankers is much lower than the calculation of explained variance (used
by our algorithm).

4 Experiments

The methodology proposed was applied to fifteen datasets taken from the UCI repository [1].
The datasets selected include binary problems and multi-class problems and present different
numbers of instances, features and classes. The datasets with their corresponding partitions
have been included on a public website1.

In the first subsection, a description of the datasets and the experimental configuration
is given. Then, the proposed method is compared to different basis functions, in order to
determine the best performing basis function for the PCA-ELM methodology. Finally, there
is a presentation of the proposed model compared to other ELM approaches with different
basis functions in the hidden layer.

1 http://www.uco.es/grupos/ayrna/index.php?lang=en (“Datasets” section)

123

http://www.uco.es/grupos/ayrna/index.php?lang=en

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 385

4.1 Experimental Design

The proposed method (PCA-ELM) is compared to other ELM algorithms using different
ANN models. In particular, our proposal is compared to:

– The original extreme learning machine (ELM) [13]. Two different basis functions have
been employed for the ELM algorithm: Sigmoidal (ELM (Sig)) and the radial basis
function (ELM (RBF)). In the ELM (RBF) algorithm, the centers have been taken ran-
domly from the data points and the widths randomly drawn between percertile 20 % and
percentile 80 % of the distance distribution of the input space, as suggested in [17].
The main difference between ELM (RBF) and ELM with the Radbas basis function is
that Radbas applies a standard lineal combination of input variables and the connections
between the input and hidden layers, and ELM (RBF) measures the distance of each
pattern to its centroid, weighting the final output by its radius.
The only remaining parameter in this process is the number of nodes (m) in the hidden
layer. In the experiments, the m value for ELM (Sig) and ELM (RBF) was experimentally
determined by a cross validation procedure applied to the training set, using the values
{10, 20, . . . , 20}.

– The optimally pruned extreme learning machine (OP-ELM) [17]. Two different basis
functions have been employed for the OP-ELM algorithm: the sigmoidal (OP-ELM
(Sig)) and the radial basis function (OP-ELM (RBF)). In the OP-ELM (RBF), the values
of the centers and widths were initialized in the same way as in the ELM (RBF) algorithm.
The number of nodes (m) in the hidden layer in the OP-ELM algorithm is set at 100,
since this algorithm prunes the useless neurons from the hidden layer.

– The evolutionary extreme learning machine (E-ELM) [25,2,20] improves the original
ELM by using a differential evolution (DE) algorithm. Differential evolution was pro-
posed by Storn and Price [22] and it is known as one of the most efficient evolutionary
algorithms. The E-ELM uses DE to select the input weights between input and hidden
layers and the Moore-Penrose generalized inverse to analytically determine the output
weights between hidden and output layers.
In the same way as in the ELM algorithm, the most critical parameter in the E-ELM algo-
rithm is the number of the hidden nodes, m. The number of hidden nodes was also adjusted
in a similar way, gradually increasing its value by an interval of 10 ({10, 20, . . . , 100}) and
then selecting the nearly optimal number of nodes based on a cross-validation method.
In order to achieve good performance results, the population of the E-ELM is set at
100 individuals to obtain better diversity in the population. Similarly, the maximum
number of generations is set at 50. The E-ELM algorithm has been implemented using
the Sigmoidal unit as the basis function in the hidden layer.

The experimental design was conducted using a holdout cross validation procedure with
3/4 · n instances for the training dataset and n/4 instances for the generalization set. To eval-
uate the stability of the methods, the ELM approaches were run 30 times for each problem.
The performance of each model was evaluated using the correct classification rate (C) in the
generalisation set, the number of hidden nodes (N H N), and the average time needed to train
the model at each iteration, measured in seconds (T).

Furthermore, a simple linear rescaling of the input variables was carried out over the inter-
val [−1, 1] for PCA-ELM (Sig), PCA-ELM (Sine), PCA-ELM (Hardlim) and in the interval
[1, 2] for PCA-ELM (PU), with X∗

i being the transformed variables. Finally, all the simula-
tions were carried out in the MATLAB 2009 (R2009a) environment running in an Intel Core

123

386 A. Castaño et al.

i5, 2.27 GHZ CPU. The source code in MATLAB of the PCA-ELM methodology is freely
available upon request to the authors.

4.2 Selection of the Best Performing Basis Function

The aim of this subsection is to determine the best performing non-linear transformation of the
principal components. As discussed above, four non-linear transformations have been con-
sidered in this study: sigmoidal transformation (PCA-ELM (Sig), product unit transformation
(PCA-ELM (PU)), sine transformation (PCA-ELM (Sine)) and a sub-function transformation
(PCA-ELM (Hardlim)). Table 1 summarizes the results obtained by the PCA-ELM algorithm
using different basis functions. Based on the mean CG, the ranking of each method in each
dataset (R = 1 for the best performing method and R = 4 for the worst one) is obtained and
the mean accuracy (CG) and the mean ranking (RCG) are also included in Table 1. From a
quantitative point of view, it can be concluded that the PCA-ELM (Sig) method obtained the
best results for eleven datasets in CG. Furthermore, the PCA-ELM (Sig) method yields the
best mean (CG = 80.632%) and ranking (RCG = 1.333) in CG. The results of T and N H N

Table 1 Statistical results of the PCA-ELM algorithm using different basis functions

Method (CG (%))

Sig PU Sine Hardlim

Hepatitis 79.487 79.487 82.051 76.923

Heart 77.941 55.882 77.941 79.411

Haberman 76.315 42.105 73.684 73.684

Card 90.017 43.930 83.237 80.346

German 76.000 58.400 72.400 70.800

Gene 86.976 51.702 50.189 68.600

Lymph 81.081 32.432 78.378 75.675

E. coli 87.882 42.352 89.411 74.117

Yeast 51.482 7.277 52.830 36.927

PostOp 81.818 72.737 68.181 72.727

BreastW 93.714 65.71 91.428 89.714

Ionos 86.363 36.363 77.272 79.545

Vote 92.885 61.467 62.385 89.908

Diabetes 72.875 67.708 71.354 67.187

Breast 74.647 70.422 64.788 64.788

CG(%) 80.632 52.530 73.035 73.356

RCG 1.333 3.533 2.366 2.766

Bonferroni–Dunn test

C Dα=0.1= 1.003, C Dα=0.05= 1.128

CD – 2.200• 1.033◦ 1.433•
The best result is in bold face
Mean and standard deviation (SD) of the accuracy in the generalization set (CG (%)), mean accuracy
(CG (%)), mean accuracy ranking (RCG), critical difference (CD) values and differences of rankings of
the Bonferroni–Dunn tests in CG with α = 0.05 (PCA-ELM (Sig) is the control method)
•, ◦: Statistically difference with α = 0.05 (•) and α = 0.1 (◦)

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 387

for each basis function and each dataset have not been included in Table 1 since the results
of the different basis functions for one dataset are the same in T and N H N .

To determine the statistical significance of the rank differences observed for each method
in different datasets, a non-parametric Friedman test [6] has been carried out with the rank-
ing of CG of the best models as the test variables. The test shows that the effect of the
method used for classification is statistically significant at a significance level of 5 %, as
the confidence interval is C0 = (0, F0.05 = 2.80) and the F-distribution statistical values
are F∗ = 14.20 /∈ C0 for CG. Consequently, we reject the null-hypothesis stating that all
algorithms perform equally in mean ranking.

Based on this rejection, the Bonferroni–Dunn post-hoc test is used to compare all the
classifiers to a given classifier, the control methods. This test considers that the performance
of any two classifiers is deemed significantly different if their mean ranks differ by at least
the critical difference (C D):

C D = q

√
K (K + 1)

6D
, (11)

where K and D are the number of classifiers and datasets, and the q value is derived from
the studentized range statistic divided by

√
2 [4,7]. This test can be computed using Eq. (11)

with appropriate adjusted values of q [7].
The results of the Bonferroni–Dunn and Nemenyi tests for α = 0.10 and α = 0.05 using

CG as the test variable can be seen in Table 1. From the results of these tests, it can be con-
cluded that PCA-ELM (Sig) obtains a significantly better CG ranking than all the remaining
method for α = 0.10. Therefore, the Sigmoidal basis function (PCA-ELM (Sig)) is the most
suitable approach for the classification task (considering the datasets selected).

As can be observed, the performance of PU models is clearly inferior when compared to
others. The most intuitive cause is that PU behaves well for correlated variables and the PCA
produce uncorrelated covariates.

4.3 Comparison to Other Related Extreme Learning Approaches

This section focuses on the PCA-ELM (Sig) method, as it is the best in terms of CG among
the different PCA-ELM approaches proposed in this paper. In order to complete the exper-
imental section, this method has been compared to other ELM techniques for classification
given in Sect. 4.1.

Tables 2, 3 and 4 present the results obtained with the different ELM techniques, and the
result obtained by the PCA-ELM (Sig) method for CG, N H N and T . The mean accuracy,
number of hidden nodes and training time (CG, N H N and T) and the mean ranking (RCG ,
RN H N and RT) are also included in Tables 2, 3 and 4.

From the analysis of the results, it can be concluded (taking CG into account) from a
descriptive point of view that the PCA-ELM (Sig) method obtains the best result for nine
datasets and the E-ELM method yields the highest performance for three datasets. Further-
more, the PCA-ELM (Sig) method obtains the best mean ranking (RCG = 2.533), followed
by the OP-ELM (RBF) method (RCG = 3.060), and reports the highest mean accuracy
(CG = 80.632 %), followed by the OP-ELM (RBF) method (CG = 80.365 %).

Using N H N as the variable test, a descriptive analysis of the results leads to the following
remarks: the PCA-ELM (Sig) method obtains the best result for nine out of fifteen datasets,
the second best results for two other datasets, and the best mean N H N and mean ranking
(N H N = 16.800 and RN H N = 1.666).

123

388 A. Castaño et al.

Ta
bl

e
2

St
at

is
tic

al
re

su
lts

of
th

e
E

L
M

al
go

ri
th

m
us

in
g

di
ff

er
en

tb
as

is
fu

nc
tio

ns
an

d
m

et
ho

do
lo

gi
es

M
et

ho
d

(C
G

(%
))

E
L

M
(S

ig
)

E
L

M
(R

B
F)

O
P-

E
L

M
(S

ig
)

O
P-

E
L

M
(R

B
F)

E
-E

L
M

PC
A

-E
L

M
(S

ig
)

H
ep

at
iti

s
76

.6
66

±
3.

77
0

77
.4

35
±

3.
39

3
76

.9
23

±
5.

03
9

76
.7

26
±

1.
87

2
77

.4
50

±
5.

09
9

79
.4

87

H
ea

rt
76

.9
60

±
2.

89
7

77
.1

56
±

1.
88

1
77

.4
02

±
3.

48
6

77
.0

39
±

0.
85

7
77

.2
47

±
2.

81
2

77
.9

41

H
ab

er
m

an
72

.5
87

±
1.

01
4

69
.1

22
±

2.
46

1
69

.5
17

±
2.

80
9

72
.8

94
±

2.
50

6
73

.3
15

±
1.

73
2

76
.3

45

C
ar

d
87

. 3
41

±
2.

30
1

87
.4

77
±

0.
89

2
84

.7
20

±
1.

84
4

86
.8

97
±

3.
42

9
87

.5
27

±
1.

63
4

90
.0

17

G
er

m
an

72
.3

73
±

1.
55

9
74

.9
60

±
0.

94
7

72
.3

80
±

1.
95

5
74

.6
13

±
1.

40
4

71
.3

20
±

2.
72

9
76

.0
00

G
en

e
73

.8
92

±
1.

34
5

85
.4

39
±

1.
00

0
71

.9
29

±
1.

76
2

85
.5

69
±

1.
10

3
85

.8
51

±
1.

32
5

86
.9

76

Ly
m

ph
77

.9
27

±
5.

41
2

76
.2

34
±

1.
43

5
80

.0
00

±
3.

72
8

88
.1

08
±

3.
14

2
76

.3
16

±
6.

71
7

81
.0

81

E
.c

ol
i

86
.4

70
±

1.
47

8
85

.3
33

±
1.

18
9

83
.7

25
±

2.
07

4
85

.8
03

±
2.

37
1

84
.4

70
±

2.
13

0
87

.8
82

Y
ea

st
57

.1
24

±
0.

81
6

57
.2

03
±

0.
77

6
55

.7
14

±
1.

62
8

57
.5

56
±

0.
80

3
57

.9
96

±
1.

71
5

51
.4

82

Po
st

O
p

77
. 2

72
±

9.
39

9
75

.4
54

±
5.

97
3

68
.0

30
±

9.
87

8
78

.9
39

±
4.

21
7

73
.2

72
±

8.
24

3
81

.8
18

B
re

as
tW

95
.6

38
±

0.
84

2
95

.6
76

±
0.

38
7

96
.0

19
±

0.
62

7
95

.7
14

±
0.

66
6

94
.5

14
±

1.
11

7
93

.7
14

Io
no

s
87

.5
75

±
2.

76
6

89
.1

62
±

2.
21

4
88

.7
12

±
2.

99
8

89
.3

86
±

2.
43

0
89

.8
63

±
3.

16
0

86
.3

63

V
ot

e
93

.8
53

±
0.

68
7

93
.9

84
±

0.
75

1
92

.8
23

±
1.

32
6

94
.1

59
±

0.
70

1
94

.2
20

±
1.

62
1

92
.8

85

D
ia

be
te

s
74

.1
48

±
1.

36
6

74
.6

31
±

1.
30

1
72

.7
25

±
1.

53
2

74
.2

88
±

1.
23

4
72

.6
45

±
1.

75
6

72
.8

75

B
re

as
t

68
.0

28
±

1.
88

3
68

.0
14

±
2.

81
6

67
.8

40
±

1.
92

4
67

.7
93

±
1.

87
3

68
.9

15
±

2.
55

4
74

.6
47

C
G

(%
)

78
.5

23
79

.1
52

77
.2

30
80

.3
65

78
.9

94
80

.6
32

R
C

G
4.

13
3

3.
53

3
4.

53
3

3.
06

6
3.

20
0

2.
53

3

B
on

fe
rr

on
i–

D
un

n
te

st

C
D

α
=0

.1
=

1.
58

8,
C

D
α
=0

.0
5
=

1.
75

9

C
D

1.
60

0 ◦
1.

00
0

2.
00

0 •
0.

53
3

0.
66

6
–

T
he

be
st

re
su

lt
is

in
bo

ld
fa

ce
an

d
th

e
se

co
nd

be
st

re
su

lt
in

ita
lic

s
•,

◦:
St

at
is

tic
al

ly
di

ff
er

en
ce

w
ith

α
=

0.
05

(•)
an

d
α

=
0.

1
(◦)

M
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

(S
D

)
of

th
e

ac
cu

ra
cy

in
th

e
ge

ne
ra

lis
at

io
n

se
t(

C
G

(%
))

,m
ea

n
ac

cu
ra

cy
(C

G
(%

))
,m

ea
n

ac
cu

ra
cy

ra
nk

in
g

(R
C

G
)

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 389

Table 3 Statistical results of the ELM algorithm using different basis functions and methodologies

Method (N H N)

ELM (Sig) ELM (RBF) OP-ELM (Sig) OP-ELM (RBF) E-ELM PCA-ELM (Sig)

Hepatitis 20 10 28.000 ± 19.546 6.500 ± 2.330 20 12

Heart 20 10 23.833 ± 11.867 6.666 ± 4.011 20 8

Haberman 20 30 17.000 ± 6.512 9.333 ± 5.832 20 3

Card 60 40 40.000 ± 7.543 33.166 ± 16.533 50 17

German 70 50 32.833 ± 6.908 27.166 ± 9.161 70 28

Gene 100 100 86.500 ± 3.256 93.666 ± 8.995 100 98

Lymph 50 60 34.666 ± 9.553 42.833 ± 19.550 40 17

E. coli 20 40 76.500 ± 13.655 71.000 ± 15.887 20 5

Yeast 50 60 92.833 ± 6.390 62.166 ± 10.392 60 7

PostOp 10 10 7.666 ± 5.280 5.000 ± 0.000 10 9

BreastW 20 10 22.166 ± 9.067 11.833 ± 8.952 20 5

Ionos 50 50 44.000 ± 9.040 44.833 ± 8.575 30 17

Vote 40 50 42.833 ± 9.067 27.500 ± 8.173 40 11

Diabetes 20 20 30.000 ± 11.596 23.666 ± 7.062 30 6

Breast 10 10 6.000 ± 5.477 6.500 ± 5.746 20 9

N H N 37.333 36.666 38.988 31.455 36.666 16.800

RN H N 4.333 4.166 3.933 2.600 4.300 1.666

Bonferroni–Dunn test

C Dα=0.1= 1.588, C Dα=0.05= 1.759

CD 2.666• 2.500• 2.266• 0.9333 2.633• –

The best result is in bold face and the second best result in italics
Mean and standard deviation (SD) of the number of hidden nodes (N H N), mean number of hidden nodes
(N H N), mean number of hidden nodes ranking (RN H N)
•, ◦: Statistically difference with α = 0.05 (•) and α = 0.1 (◦)

Taking T into account, the PCA-ELM (Sig) method obtains the best result for seven out
of fifteen datasets, and the second best results for eight other datasets. The reason for this
is that the PCA-ELM (Sig), in general, needs much fewer hidden nodes than the traditional
ELM approach. Thanks to this issue, the PCA-ELM (Sig) could even outperform the original
ELM method in efficiency.

Another aspect that is important to point out is that the PCA-ELM method (deterministic
method) is far more robust than other ELM approaches, which can be observed on analyzing
the values of standard deviation that different ELM approaches generated for each dataset.

It is necessary again to ascertain if there are differences in the mean ranking of CG,
N H N and T , so a procedure similar to that used in the previous subsection has been applied.
The non-parametric Friedman test shows that the effect of the method used for classifica-
tion is statistically significant at a significance level of 5 %, as the confidence interval is
C0 = (0, F0.05 = 2.34) and the F-distribution statistical values are F∗ = 2.534 /∈ C0 for
CG, F∗ = 7.562 /∈ C0 for N H N , and F∗ = 160.721 /∈ C0 for T . Consequently, we reject
the null-hypothesis stating that all algorithms perform equally in mean ranking.

On the basis of this rejection, the Bonferroni–Dunn post-hoc test is used to compare all
the methods to a given control method. The differences in rankings between the different

123

390 A. Castaño et al.

Table 4 Statistical results of the ELM algorithm using different basis functions and methodologies

Method (T)

ELM (Sig) ELM (RBF) OP-ELM (Sig) OP-ELM (RBF) E-ELM PCA-ELM
(Sig)

Hepatitis 0.002 ± 0.001 0.005 ± 0.003 0.244 ± 0.013 0.250 ± 0.015 6.346 ± 1.241 0.002

Heart 0.002 ± 0.001 0.011 ± 0.004 0.276 ± 0.028 0.272 ± 0.021 9.316 ± 1.060 0.001

Haberman 0.002 ± 0.002 0.013 ± 0.002 0.276 ± 0.035 0.261 ± 0.018 7.295 ± 1.653 0.001

Card 0.011 ± 0.001 0.074 ± 0.004 0.452 ± 0.062 0.458 ± 0.074 56.007 ± 8.327 0.014

German 0.018 ± 0.003 0.151 ± 0.007 0.570 ± 0.051 0.761 ± 0.067 84.483 ± 16.040 0.020

Gene 0.078 ± 0.002 1.203 ± 0.032 2.797 ± 0.078 3.493 ± 0.021 578.122 ± 66.898 0.168

Lymph 0.005 ± 0.002 0.007 ± 0.001 0.114 ± 0.080 0.126 ± 0.062 12.300 ± 1.892 0.009

E. coli 0.002 ± 0.002 0.018 ± 0.003 0.404 ± 0.042 0.402 ± 0.053 7.086 ± 0.308 0.002

Yeast 0.015 ± 0.004 0.234 ± 0.007 1.438 ± 0.063 1.692 ± 0.188 86.748 ± 18.812 0.003

PostOp 0.001 ± 0.001 0.001 ± 0.001 0.051 ± 0.002 0.056 ± 0.003 2.187 ± 0.334 0.002

BreastW 0.003 ± 0.003 0.039 ± 0.001 0.110 ± 0.010 0.174 ± 0.014 8.471 ± 1.412 0.002

Ionos 0.006 ± 0.001 0.025 ± 0.002 0.313 ± 0.042 0.303 ± 0.023 14.681 ± 3.124 0.005

Vote 0.005 ± 0.003 0.024 ± 0.008 0.337 ± 0.012 0.353 ± 0.047 23.046 ± 2.774 0.003

Diabetes 0.003 ± 0.002 0.062 ± 0.062 0.442 ± 0.015 0.496 ± 0.036 35.213 ± 7.984 0.002

Breast 0.002 ± 0.001 0.010 ± 0.004 0.290 ± 0.038 0.271 ± 0.023 7.794 ± 0.291 0.006

T 0.010 0.125 0.540 0.624 62.606 0.016

RT 1.566 2.833 4.333 4.666 6.000 1.600

Bonferroni–Dunn test

C Dα=0.1= 1.588, C Dα=0.05= 1.759

CD 0.033 1.233 2.733• 3.066• 4.400• -

The best result is in bold face and the second best result in italics
Mean and standard deviation (SD) of the training time (T), mean training time (T), mean training time
ranking (RT)
•, ◦: Statistically difference with α = 0.05 (•) and α = 0.1 (◦)

algorithms and the results of the Bonferroni–Dunn test for α = 0.1 and α = 0.05 can be seen
in Tables 2, 3 and 4, using the corresponding critical values. By using this test, it can be seen
that the PCA-ELM (Sig) method: significantly outperforms the ELM (Sig) and OP-ELM
(Sig) methods for α = 0.10 using CG as the test variable; outperforms the ELM (Sig), ELM
(RBF), OP-ELM (Sig), and E-ELM methods for α = 0.05, using N H N as the test variable;
and, finally, outperforms OP-ELM (Sig), OP-ELM (RBF) and E-ELM methods using T as
the test variable for α = 0.05, which justifies the proposal.

5 Conclusions

The proposed PCA-ELM algorithm is a fast and robust ELM-based algorithm. Our proposal
estimates the hidden node parameters with the information retrieved from PCA on the training
set while the output node parameters are determined using the Moore-Penrose generalized
inverse. Our algorithm was validated by experimentation using fifteen well-known datasets.
The results obtained were statistically compared using the Bonferroni–Dunn, Nemenyi and

123

PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach 391

Friedman tests. This statistical analysis indicates that our approach improves on previous
ones. The most important aspect introduced is the elimination of the random initiation of
hidden neurons.

Acknowledgements The authors would like to thank Dr. Huang GB who generously provided us with
the source code of the ELM–RBF. This work has been partially subsidized by the TIN2011-22794 pro-
ject of the Spanish Inter-Ministerial Commission of Science and Technology (MICYT), FEDER funds and
the P2011-TIC-7508 project of the “Junta de Andalucía” (Spain). This work has been partially subsidized
with the “Doctoral Training on Softcomputing” project subsidized by the Junta de Andalucía, the Ibero-
American University Postgraduate Association (AUIP) and the Ministry of Higher Education of the Republic of
Cuba.

References

1. Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/
MLRepository.html. Accessed 8 Sept 2007

2. Cao J, Lin Z, Huang G (2011) Composite function wavelet neural networks with differential evolution
and extreme learning machine. Neural Process Lett 33(3):251–265

3. Chen L, Zhou L, Pung HK (2008) Universal approximation and qos violation application of extreme
learning machine. Neural Process Lett 28(2):81–95

4. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–56
5. Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of

hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357
6. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann

Math Stat 11(1):86–92
7. Hochberg Y, Tamhane A (1987) Multiple comparison procedures. Wiley, New York
8. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):

3056–3062
9. Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neu-

rocomputing 71(16–18):3460–3468
10. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward

networks with random hidden nodes. IEEE Trans Neural Netw 17:4
11. Huang GB, Li MB, Chen L, Siew CK (2008) Incremental extreme learning machine with fully complex

hidden nodes. Neurocomputing 71(4–6):576–583
12. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass

classification. IEEE Trans Syst Man Cybern B 42(2):513–529
13. Huang GB, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing

70(1–3):489–501
14. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward

neural networks. IEEE Int Conf Neural Netw Conf Proc 2:985–990
15. Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. GMD

Rep 148:1435–2702
16. Kim J, Shin H, Lee Y, Lee M (2007) Algorithm for classifying arrhythmia using extreme learning machine

and principal component analysis. In: 29th Annual international conference of the IEEE, engineering in
medicine and biology society, 2007. EMBS, New York, pp 3257–3260

17. Mich Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme
learning machine. IEEE Trans Neural Netw 21(1):158–162

18. Miche Y, Sorjamaa A, Lendasse A (2008) Op-elm: theory, experiments and a toolbox. In: Artificial neural
networks—ICANN 2008, lecture notes in computer science, vol 5163. Springer, Berlin, pp 145–154

19. Rong HJ, Ong YS, Tan AH, Zhu Z (2008) A fast pruned-extreme learning machine for classification
problem. Neurocomputing 72(1–3):359–366

20. Sánchez-Monedero J, Gutiérrez PA, Fernández-Navarro F, Hervás-Martínez C (2011) Weighting effi-
cient accuracy and minimum sensitivity for evolving multi-class classifiers. Neural Process Lett 34(2):
101–116

21. Schlkopf B, Smola AJ, Müller KR (1999) Kernel principal component analysis. In: Advances in kernel
methods: support vector learning. MIT Press, Cambridge, pp 327–352

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

392 A. Castaño et al.

22. Storn R, Price K. (1997) Differential evolution: a fast and efficient heuristic for global optimization over
continuous spaces. J Glob Optim 11:341–359

23. Vapnik VN (1999) The nature of statistical learning theory. Springer, Berlin
24. Zhang R, Huang GB, Sundararajan N, Saratchandran P (2007) Multicategory classification using an

extreme learning machine for microarray gene expression cancer diagnosis. Comput Biol Bioinform
IEEE/ACM Trans 4(3):485–495

25. Zhu QY, Qin A, Suganthan P, Huang GB (2005) Evolutionary extreme learning machine. Pattern
Recognit 38(10):1759–1763

123

	PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach Based on Principal Component Analysis
	Abstract
	1 Introduction
	2 Background of Extreme Learning Machine
	3 Description of the Methodology
	3.1 Principal Component Analysis
	3.2 Selection of the Number of Hidden Nodes
	3.3 Non-Linear Transformation
	3.4 Estimation of the Output Weight Vector
	3.5 Discussion about the Advantages of the PCA-ELM

	4 Experiments
	4.1 Experimental Design
	4.2 Selection of the Best Performing Basis Function
	4.3 Comparison to Other Related Extreme Learning Approaches

	5 Conclusions
	Acknowledgements
	References

