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Abstract Linear principal component analysis (PCA) can be extended to a nonlinear PCA
by using artificial neural networks. But the benefit of curved components requires a careful
control of the model complexity. Moreover, standard techniques for model selection, includ-
ing cross-validation and more generally the use of an independent test set, fail when applied
to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents
a new approach for validating the complexity of nonlinear PCA models by using the error
in missing data estimation as a criterion for model selection. It is motivated by the idea that
only the model of optimal complexity is able to predict missing values with the highest accu-
racy. While standard test set validation usually favours over-fitted nonlinear PCA models,
the proposed model validation approach correctly selects the optimal model complexity.
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1 Introduction

Nonlinear principal component analysis [1–3] is a nonlinear generalization of standard prin-
cipal component analysis (PCA). While PCA is restricted to linear components, nonlinear
PCA generalizes the principal components from straight lines to curves and hence describes
the inherent structure of the data by curved subspaces. Detecting and describing nonlinear
structures is especially important for analysing time series. Nonlinear PCA is therefore fre-
quently used to investigate the dynamics of different natural processes [4–6]. But validating
the model complexity of nonlinear PCA is a difficult task [7]. Over-fitting can be caused by
the often limited number of available samples; moreover, in nonlinear PCA over-fitting can
also occur by the intrinsic geometry of the data, as shown in Fig. 5, which cannot be solved
by increasing the number of samples. A good control of the complexity of the nonlinear
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PCA model is required. We have to find the optimal flexibility of the curved components. A
component with too little flexibility, an almost linear component, cannot follow the complex
curved trajectory of real data. By contrast, a too flexible component fits non-relevant noise
of the data (over-fitting) and hence gives a poor approximation of the original process, as
illustrated in Fig. 1a. The objective is to find a model whose complexity is neither too small
nor too large.

Even though the term nonlinear PCA (NLPCA) is often referred to the auto-associative
neural network approach, there are many other methods which visualise data and extract com-
ponents in a nonlinear manner [8]. Locally linear embedding (LLE) [9,10] and Isomap [11]
visualise high dimensional data by projecting (embedding) them into a two or three-dimen-
sional space. Principal curves [12] and self organising maps (SOM) [13] describe data by
nonlinear curves and nonlinear planes up to two dimensions. Kernel PCA [14] as a kernel
approach can be used to visualise data and for noise reduction [15]. In [16] linear subspaces
of PCA are replaced by manifolds and in [17] a neural network approach is used for nonlinear
mapping. This work is focused on the auto-associative neural network approach to nonlinear
PCA and its model validation problem.

For supervised methods, a standard validation technique is cross-validation. But even
though the neural network architecture used is supervised, the nonlinear PCA itself is an
unsupervised method that requires validating techniques different from those used for super-
vised methods. A common approach for validating unsupervised methods is to validate
the robustness of the components under moderate modifications of the original data set,
e.g., by using resampling bootstrap [18] or by corrupting the data with a small amount of
Gaussian noise [19]. In both techniques, the motivation is that reliable components should
be robust and stable against small random modification of the data. In principle, these
techniques could be adapted to nonlinear methods. But there would be the difficulty of
measuring the robustness of nonlinear components. Robustness of linear components is
measured by comparing their directions under slightly different conditions (resampled data
sets or different noise-injections). But since comparing the curvature of nonlinear com-
ponents is no trivial task, nonlinear methods require other techniques for model valida-
tion.

In a similar neural network based nonlinear PCA model, termed nonlinear factor anal-
ysis (NFA) [20], a Bayesian framework is used in which the weights and inputs are
described by posterior probability distributions which leads to a good regularisation. While
in such Bayesian learning the inputs (components) are explicitly modelled by Gaussian
distributions, the maximum likelihood approach in this work attempts to find a single

 over−fitting
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 over−fitted curve
test error = 0.0230

 b
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test error = 0.0663

 c

Fig. 1 The problem of mis-validation of nonlinear PCA by using a test data set. Ten training samples were
generated from a quadratic function (dotted line) plus noise. a A nonlinear PCA model of too high complexity
leads to an overfitted component (solid curve). But validating this over-fitted model with an independent test
data set (b) gives a better (smaller) test error than using the original model from which the data were generated
(c)
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set of values for the network weights and inputs. A weight-decay regulariser is used
to control the model complexity. There are several attempts to the model selection in
the auto-associative nonlinear PCA. Some are based on a criterion of how good the
local neighbour relation is preserved by the nonlinear PCA transformation [21]. In [22],
a nearest neighbour inconsistency term that penalises complex models is added to the
error function, but standard test set validation is used for model pre-selection. In [23]
an alternative network architecture is proposed to solve the problems of over-fitting and
non-uniqueness of nonlinear PCA solutions. Here we consider a natural approach that
validates the model by its own ability to estimate missing data. Such missing data vali-
dation is used, e.g., for validating linear PCA models [24], and for comparing probabilistic
nonlinear PCA models based on Gaussian processes [25]. Here, the missing data valida-
tion approach is adapted to validate the auto-associative neural network based nonlinear
PCA.

2 The Test Set Validation Problem

To validate supervised methods, the standard approach is to use an independent test set for
controlling the complexity of the model. This can be done either by using a new data set,
or when the number of samples is limited, by performing cross-validation by repeatedly
splitting the original data into a training and test set. The idea is that only the model, which
best represents the underlying process, can provide optimal results on new, for the model
previously unknown, data. But test set validation only works well when there exist a clear
target value (e.g., class labels) as in supervised methods, it fails on unsupervised methods.
In the same way that a test data set cannot be used to validate the optimal number of com-
ponents in standard linear PCA, test data also cannot be used to validate the curvature of
components in nonlinear PCA [7]. Even though nonlinear PCA can be performed by using a
supervised neural network architecture, it is still an unsupervised method and hence should
not be validated by using cross-validation. With increasing complexity, nonlinear PCA is
able to provide a curved component with better data space coverage. Thus, also test data can
be projected onto the (over-fitted) curve by a decreased distance and hence give an incor-
rect small error. This effect is illustrated in Fig. 1 using 10 training and 200 test samples
generated from a quadratic function plus Gaussian noise of standard deviation σ = 0.4.
The mean square error (MSE) is given by the mean of the squared distances E =‖x̂ − x‖2

between the data points x and their projections x̂ onto the curve. The over-fitted and the
well-fitted or ideal model are compared by using the same test data set. It turns out that the
test error of the true original model (Fig. 1c) is almost three times larger than the test error
of the overly complex model (Fig. 1b), which over-fits the data. Test set validation clearly
favours the over-fitted model over the correct model, and hence fails to validate nonlinear
PCA.

To understand this contradiction, we have to distinguish between an error in supervised
learning and the fulfilment of specific criteria in unsupervised learning. Test set validation
works well for supervised methods because we measure the error as the difference from a
known target (e.g., class labels). Since in unsupervised methods the target (e.g., the correct
component) is unknown, we optimize a specific criterion. In nonlinear PCA the criterion is to
project the data by the shortest distance onto a curve. But a more complex over-fitted curve
covers more data space and hence can also achieve a smaller error on test data than the true
original curve.
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Fig. 2 The standard auto-associative neural network for nonlinear PCA. The network output x̂ is required to
approximate the input x. Illustrated is a 3-4-1-4-3 network architecture. Three-dimensional samples x are com-
pressed to one component value z in the middle by the extraction part. The inverse generation part reconstructs
x̂ from z. The sample x̂ is a noise-reduced representation of x, located on the component curve

3 The Nonlinear PCA Model

Nonlinear PCA (NLPCA) can be performed by using a multi-layer perceptron (MLP) of
an auto-associative topology, also known as auto-encoder, replicator network, bottleneck, or
sand-glass type network, see Fig. 2.

The auto-associative network performs an identity mapping. The output x̂ is forced to
approximate the input x by minimising the squared reconstruction error E =‖ x̂ − x ‖2. The
network can be considered as consisting of two parts: the first part represents the extraction
function �extr : X → Z, whereas the second part represents the inverse function, the gen-
eration or reconstruction function �gen : Z → X̂ . A hidden layer in each part enables the
network to perform nonlinear mapping functions. By using additional units in the compo-
nent layer in the middle, the network can be extended to extract more than one component.
Ordered components can be achieved by using a hierarchical nonlinear PCA [26].

For the proposed validation approach, we have to adapt nonlinear PCA to be able to esti-
mate missing data. This can be done by using an inverse nonlinear PCA model [27] which
optimises the generation function by using only the second part of the auto-associative neural
network. Since the extraction mapping X → Z is lost, we have to estimate both the weights
w and also the inputs z which represent the values of the nonlinear component. Both w and
z can optimised simultaneously to minimise the reconstruction error, as shown in [27].

The complexity of a model can be controlled by a weight-decay penalty term [28] added
to the error function Etotal = E + ν

(∑
i w2

i

)
, w are the network weights. By varying the

coefficient ν, the impact of the weight-decay term can be changed and hence we modify the
complexity of the model which defines the flexibility of the component curves in nonlinear
PCA.

4 The Missing Data Validation Approach

Since classical test set validation fails to select the optimal nonlinear PCA model, as illus-
trated in Fig. 1, I propose to evaluate the complexity of a model by using the error in missing
data estimation as the criterion for model selection. This requires to adapt nonlinear PCA
for missing data as done in the inverse nonlinear PCA model [27]. The following model

123



Validation of Nonlinear PCA 25

selection procedure can be used to find the optimal weight-decay complexity parameter ν of
the nonlinear PCA model:

(1) Choose a specific complexity parameter ν.
(2) Apply inverse nonlinear PCA to a training data set.
(3) Validate the nonlinear PCA model by its performance on missing data estimation of

an independent test set in which one or more elements xn
i of a sample xn are randomly

rejected. The mean of the squared errors en
i =‖ x̂n

i − xn
i ‖2 between the randomly

removed values xn
i and their estimations x̂n

i by the nonlinear PCA model is used as the
validation or generalization error.

Applied to a range of different weight-decay complexity parameters ν, the optimal model
complexity ν is given by the lowest missing value estimation error. To get a more robust
result, for each complexity setting, nonlinear PCA can be repeatedly applied by using differ-
ent weight-initializations of the neural network. The median can then be used for validation
as shown in the following examples.

5 Validation Examples

The first example of a nonlinear data set shows that model validation based on missing data
estimation performance provides a clear optimum of the complexity parameter. The second
example demonstrates that the proposed validation ensures that nonlinear PCA does not
describe data in a nonlinear way when the inherent data structure is, in fact, linear.

5.1 Helix Data

The nonlinear data set consist of data x = (x1, x2, x3)
T that lie on a one-dimensional mani-

fold, a helical loop, embedded in three dimensions, plus Gaussian noise η of standard devi-
ation σ = 0.4 , as illustrated in Fig. 3. The samples x were generated from a uniformly
distributed factor t over the range [−0.8,0.8], t represents the angle:

x1 = sin(π t) + η

x2 = cos(π t) + η

x3 = t + η

Nonlinear PCA is applied by using a 1-10-3 network architecture optimized in 5,000 iterations
by using the conjugate gradient descent algorithm [29].

To evaluate different weight-decay complexity parameters ν, nonlinear PCA is applied
to 20 complete samples generated from the helical loop function and validated by using
a missing data set of 1,000 incomplete samples in which randomly one value of the three
dimensions is rejected per sample and can be easily estimated from the other two dimensions
when the nonlinear component has the correct helical curve. For comparison with standard
test set validation, the same 1,000 (complete) samples are used. This is repeatedly done
100 times for each model complexity with newly generated data each time. The median
of missing data estimation over all 100 runs is finally taken to validate a specific model
complexity.

Figure 4 shows the results of comparing the proposed model selection approach with stan-
dard test set validation. It turns out that only the missing data approach is able to show a clear
minimum in the performance curve. Test set validation, by contrast, shows a small error even
for very complex (over-fitted) models. This is contrary to our experience with supervised
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Fig. 3 Helical data set. Data are generated from a one dimensional helical loop embedded in three dimensions
and additive Gaussian noise. The nonlinear component is plotted as a red line. Red circles show the projections
of the data (blue dots) onto the curve. (Color figure online)
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Fig. 4 Model selection. Missing data estimation is compared with standard test set validation by using the
helical data set (Fig. 3). A nonlinear PCA network model of low complexity which is almost linear (le f t)
results in a high error as expected for both the training and the test data. Only the missing data approach shows
the expected increase in validation error for over-fitted models (right)

learning, where the test error becomes large again when the model over-fits. Thus, test set
validation cannot be used to determine the optimal model complexity of unsupervised meth-
ods. In contrast, the missing value validation approach shows that the optimal complexity
setting of the weight-decay coefficient is in the range 0.01 < ν < 0.0001.
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5.2 Linear Data

Nonlinear PCA can also be used to answer the question of whether high-dimensional obser-
vations are driven by an unimodal or a multimodal process, e.g., in atmospheric science for
analysing the El Niño-Southern Oscillation [30]. But applying nonlinear PCA can be mis-
leading if the model complexity is insufficiently controlled: multimodality can be incorrectly
detected in data that are inherently unimodal, as pointed out by Christiansen [7]. Figure 5c, d
illustrates that if the model complexity is too high, even linear data is described by nonlinear
components. Therefore, to obtain the right description of the data, controlling the model
complexity is very important. Figure 5 shows the validation error curves of the standard test
set and the proposed missing data validation for different model complexities. The median
of 500 differently initialized 1-4-2 networks is plotted. Again, it is shown that standard test
set validation fails in validating nonlinear PCA. With increasing model complexity, classi-
cal test set validation shows an decreasing error, and hence favours over-fitted models. By
contrast, the missing value estimation error shows correctly that the optimum would be a
strong penalty which gives a linear or even a point solution, thereby confirming the absence
of nonlinearity in the data. This is correct because the data consists, in principle, of Gaussian
noise centred at the point (0,0).

While test set validation favours over-fitted models which produce components that incor-
rectly show multimodal distributions, missing data validation confirms the unimodal charac-
teristics of the data. Nonlinear PCA in combination with missing data validation can therefore
be used to find out whether a high-dimensional data set is generated by a unimodal or a mul-
timodal process.

6 Test Set Versus Missing Data Approach

In standard test set validation, the nonlinear PCA model is trained using a training set X .
An independent test set Y is then used to compute a validation error as E =‖ ŷ − y ‖2,
where ŷ is the output of the nonlinear PCA given the test data y as the input. The test set
validation reconstructs the test data from the test data itself. The problem with this approach
is that increasingly complex functions can give approximately ŷ = y, thus favouring complex
models. While test set validation is a standard approach in supervised applications, in unsu-
pervised techniques it suffers from the lack of a known target (e.g., a class label). Highly
complex nonlinear PCA models, which over-fit the original training data, are in principle
also able to fit test data better than would be possible by the true original model. With higher
complexity, a model is able to describe a more complicated structure in the data space. Even
for new test samples, it is more likely to find a short projecting distance (error) onto a curve
which covers the data space almost complete than by a curve of moderate complexity (Fig. 1).
The problem is that we can project the data onto any position on the curve. There is no further
restriction in pure test set validation. In missing data estimation, by contrast, the required
position on the curve is fixed, given by the remaining available values of the same sample.
The artificially removed missing value of a test sample gives an exact target which have
to be predicted from the available values of the same test sample. While test set validation
predicts the test data from the test data itself, the missing data validation predicts removed
values from the remaining values of the same sample. Thus, we transform the unsupervised
validation problem into a kind of supervised validation problem.

123



28 M. Scholz

weight−decay: 1.0

 a

−0.5 0 0.5
0

20

40

unimodal component

weight−decay: 0.01

 b

−0.5 0 0.5
0

20

40

unimodal component

weight−decay: 0.001

 c

−1 0 1
0

20

40

60
bimodal component

weight−decay: 0.0001

 d

−1 0 1
0

100

200

300

multimodal component

1 0.1 0.01 0.001 0.0001
0

0.2

0.4

0.6

0.8

1

weight−decay (model complexity)

va
lid

at
io

n 
er

ro
r

 Validation

missing data estimation error

test error

train error

Fig. 5 Nonlinear PCA is applied to data of a two-dimensional Gaussian distribution. c, d Over-fitted models.
b A weight-decay of 0.01 forces nonlinear PCA to describe the data by a linear component. a An even stronger
penalty of 1.0 forces a single point solution. Below Only the missing data approach shows that it would be
best to impose a very strong penalty that forces the network into a linear solution

7 Conclusion

In this paper, the missing data validation approach to model selection is proposed to be
applied to the auto-associative neural network based nonlinear PCA. The idea behind this
approach is that the true generalization error in unsupervised methods is given by a missing
value estimation error and not by the classical test set error. The proposed missing value
validation approach can therefore be seen as an adaptation of the standard test set validation
so as to be applicable to unsupervised methods. The absence of a target value in unsupervised
methods is replaced by using artificially removed missing values as expected target values
that have to be predicted from the remaining values of the same sample. It can be shown that
standard test set validation clearly fails to validate nonlinear PCA. In contrast, the proposed
missing data validation approach was able to validate correctly the model complexity.

Availability of Software

A MATLAB® implementation of nonlinear PCA including the inverse model for estimating
missing data is available at: http://www.NLPCA.org/matlab.html.
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An example of how to apply the proposed validation approach can be found at: http://
www.NLPCA.org/validation.html.
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