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Abstract In this paper, a new feature extraction algorithm is developed based on canonical
correlation analysis (CCA), called Local Discrimination CCA (LDCCA). The method con-
siders a combination of local properties and discrimination between different classes. Not
only the correlations between sample pairs but also the correlations between samples and their
local neighborhoods are taken into consideration in LDCCA. Effective class separation is
achieved by maximizing local within-class correlations and minimizing local between-class
correlations simultaneously. Besides, a kernel version of LDCCA (KLDCCA) is proposed
to cope with nonlinear problems in experiments. The experimental results on an artificial
dataset, multiple feature databases and face databases including ORL, Yale, AR validate the
effectiveness of the proposed methods.

Keywords Canonical correlation analysis · Feature extraction · Local discrimination ·
Dimensionality reduction

1 Introduction

Canonical correlation analysis (CCA [1]), just like Principal component analysis (PCA [2]),
is an effective feature extraction method for dimensionality reduction and data visualiza-
tion. PCA is a single-modal method, which deals with data samples obtained from a single
information channel or view. In contrast, CCA is typically used for multi-view data samples,
which are obtained either from various information sources, e.g. sound and image, or from
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2 Y. Peng et al.

different features measured from a single source. In the past decades, CCA and its variants
have been successfully used in many research areas such as facial expression recognition [3],
image analysis [4], position estimation of robots [5], parameter estimation of posture [6],
data regression analysis [7], image texture analysis [8], image retrieval [9], content based
text mining [10] and asymptotic convergence of the functions [11]. Given a data set with two
views X and Y , the goal of CCA is to seek a set of basis vector pairs which would maximize
the correlation of the two views when been projected into lower dimensional space.

CCA is a linear dimensionality reduction method. However, there are many nonlinear rela-
tionships between features in practice. There will be under-fitting phenomenon when learning
with CCA under a nonlinear circumstance. To solve the problem, several approaches have
been proposed, e.g. kernel based methods [6,12], approaches with neural networks [13], and
locality based ones [14–17]. With the help of well-known “kernel trick”, KCCA first maps
the data into higher dimensional space (referred as feature space) through implicit nonlinear
mappings: φ : x → φ (x) and ϕ : y → ϕ (y), then linear CCA is performed in the feature
space [6,12]. Thus, a nonlinear problem in the original space is converted into a linear one
in the feature space by doing this. KCCA helps to reveal the nonlinear relationships hidden
behind original data. However, like many other kernel methods, one disadvantage of KCCA
is the choice of appropriate kernels and kernel parameters [8,16], which is still an ‘open prob-
lem’. Neural networks based nonlinear CCA suffers from some intrinsic limitations such as
long-time training, slow convergence and local minima [13].

In recent years, locality-preserving methods have achieved a remarkable flourish in dimen-
sionality reduction research. Typical methods include local principal component analysis
[14], locally linear embedding (LLE) [15], Isomap [16], and locality preserving projection
(LPP [17]), etc. All above locality based approaches share such a character that they preserve
the local structure information in original data and thus can discover the low dimensional
manifold structure embedded in the original high dimensional space. More recently, local-
ity preserving CCA (LPCCA) is proposed to incorporate local structure information into
CCA [18]. LPCCA investigates canonical correlation problem in a small neighborhood by
decomposing the global nonlinear problem into many local linear ones first, then getting the
sum of these sub-problems. Consequently, in each small neighborhood field the problem can
be solved by linear CCA and the global problem then could be solved by optimizing the
combination of these local sub-problems. Nevertheless, CCA and LPCCA only concern the
correlation between sample pairs and they are not designed to utilize the class information
of samples that is essential for classification. More recently, Farquhar et al. [12] propose
SVM-2K, which combines KCCA and the support vector machine (SVM) classifier into a
single optimization problem and thus guarantees that the directions obtained by KCCA will
be best suited to the classification task. Besides, Sun et al. [28] propose discriminant CCA
and performed supervised feature extracting through combining two view by CCA for multi-
modal recognition. In this paper, we propose a new CCA model with local discrimination
(called LDCCA), which introduces the class information of samples to classical CCA and
consider the local correlations of the within-class sets and the between-class sets. Moreover,
we extend LDCCA to kernel version (KLDCCA) to extract nonlinear features effectively. We
expect that features extracted by LDCCA and KLDCCA would maximize the within-class
correlation and minimize between-class correlation simultaneously.

The rest of this paper is organized as follows. In Sect. 2, linear CCA is briefly described.
Section 3 derives the proposed LDCCA and gives the corresponding pseudo-code description.
In Sect. 4, we present the generalization of LDCCA through kernelization. The experimental
results are given in Sect. 5. At last, we conclude this paper in Sect. 6.
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A New CCA Algorithm with Local Discrimination 3

2 Canonical Correlation Analysis

Given a set of pair-wise samples {(xi , yi )}n
i=1 ∈ Rp × Rq , where {xi }n

i=1 and {yi }n
i=1 are

obtained from different information channels. Suppose that X = [x1, . . . , xn] ∈ R
p×n and

Y = [y1, . . . , yn] ∈ R
q×n , the aim of CCA is to find two sets of basis vectors ωx ∈ Rp and

ωy ∈ Rq for X and Y , respectively to maximize the correlation coefficient between ωT
x X

and ωT
y Y . The process is formularized as follows:

ρ = max
ωx , ωy

ωT
x Cxyωy√(

ωT
x Cxxωx

) (
ωT

y Cyyωy

) (1)

where Cxx = E
[
xxT

] = X X T , Cyy = E
[
yyT

] = Y Y T , and Cxy = E
[
xyT

] = XY T .
The solution of CCA can be obtained by computing a generalized eigenvalue decomposition
problem. More details about derivation and solution of CCA can be found in [9].

3 Local Discriminative Canonical Correlation Analysis

In order to improve the performance of CCA in classification tasks, we incorporate the idea
of local discriminant analysis into CCA, which is referred to as LDCCA. The standard CCA
optimization problem is slightly modified so that the cross-covariance matrix (between the
two views) Cxy in Eq. 1 is replaced by a term C̃xy which takes class information into account.
It is defined as the sum of local within class covariance matrices penalized by the sum of
local between class covariance matrices. It implies that samples nearby in the original space
should be close together in the feature space. The idea of locality is defined in terms of k
nearest neighborhood (k-NN).

Given n pairs of samples {(xi , yi )}n
i=1 ∈ Rp × Rq , the aim of LDCCA is to find a set

of directions ωx ∈ Rp and ωx ∈ Rq to maximize the correlation coefficient of within-class
k-NN sample features and minimize the correlation of between-class k-NN sample features.
The objective function of LDCCA can be formularized as follows:

ρ = max
ωT

x Cxyωy√(
ωT

x C̃xxωx

) (
ωT

y Cyyωy

) (2)

where C̃xy = Cω−ηCb. Cω denotes local within-class covariance matrix and Cb denotes local
between-class covariance matrix, η is a balancing factor, which makes a trade-off between
Cω and Cb. Cω and Cb are defined as:

Cω =
n∑

i=1

∑
xk∈N I (xi ),yk∈N I (yi )

xi yT
k + xk yT

i

Cb =
n∑

i=1

∑
xk∈N E (xi ),yk∈N E (yi )

xi yT
k + xk yT

i (3)

Here, N I (xi ) denotes within-class k nearest neighborhoods of xi,, N E (xi ) denotes between-
class k nearest neighborhoods of xi,. In other words, N I (xi ) represents the set of points which
are the most similar with xi, in the same class, while N E (xi ) represents the set of points which
are the most similar with xi, in different classes. We use the standard Euclidean distance to
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4 Y. Peng et al.

Table 1 The Algorithm of LDCCA

Input: Training data matrix X =[x1 . . . xn ]∈Rp×n , Y = [y1 . . . yn ] ∈ Rq×n , parameters k, η and d

Output: Projection vectors Wx = [
ωx1 . . . ωxd

]
and Wy = [

ωy1 . . . ωyd
]

Step 1: Compute local covariance matrices Cω and Cb according to Eq. (3)

Step 2: Get covariance matrices C̃xy = Cω − ηCb, Cxx = X X T , Cyy = Y Y T ;

Step 3: Compute matrix H = C−1/2
xx C̃xyC−1/2

yy ;

Step 4: Perform SVD decomposition H = U DV T ;

Step 5: Choose
[
U1 . . . Ud

]
and

[
V1 . . . Vd

]
, d < n;

Step 6: Obtain Wx = C−1/2
xx

[
U1 . . . Ud

]
, Wy = C−1/2

yy
[
V1 . . . Vd

]
;

measure the similarity between data points. Note that both x and y have been centralized.
Similar to CCA, the solution of LDCCA can also be obtained by computing a generalized
engenvalue decomposition problem, and “Appendix” gives the detailed derivation of the
solution. The pseudo-code of LDCCA algorithm is summarized in Table 1.

After obtaining eigenvectors Wx , Wy corresponding to d generalized eigenvalues λi ,

i = 1 . . . d . For any sample xi,yi , we can extract features as follows:

(a)W T
x x + W T

y Y

(b)

[
W T

x x
W T

y y

] (4)

where Wx = [ωx1 . . . ωxd ] ∈ R p×d , Wy = [
ωy1 . . . ωyd

] ∈ Rq×d , d < min (p, q) The
two feature combination methods in Eq.(4) are referred to as parallel combination and serial
combination [19], denoted as PR1 and PR2, respectively, throughout this paper. With the
fused features, we can classify them using any classifier. In this paper, we use the nearest
neighbor classifier.

4 A Generalization of LDCCA via Kernelization

Kernelization is an effective method when processing nonlinear problems, and various kernel
based learning methods, such as KCCA [6], KPCA [20], KICA [21], have been proposed.
Kernel methods enable us to work within higher dimensional feature spaces by defining
weight vectors implicitly as linear combinations of the training examples. For example,
when using the Gaussian kernel, this even makes it practical to learn in infinite dimensional
spaces. There are also other kernels on a range of different data types such as the string
kernels for text, graph kernels for graphs [22]. In this section, we will extend LDCCA to its
kernel version (KLDCCA).

Given n samples {(xi , yi )}n
i=1 ∈ Rp × Rq , let X = [x1 . . . xn] and Y = [y1 . . . yn], and

we suppose that all samples have been centralized. The solution vector of LDCCA can be ex-
pressed as ωx = Xα and ωy = Yβ, where the components of α and β denote linear combina-
tion coefficients. Assume the nonlinear mapping φ : x → φ (x) and ϕ : y → ϕ (y), which map
samples into feature space, let φ (X) = [φ (x1) . . . φ (xn)] and ϕ (Y ) = [ϕ (y1) . . . ϕ (yn)],
which are data matrices in feature space. We assume that the sample means are equal to
zeros for simplicity, i.e. φ (x) = 1

n

∑n
i=1 φ (xi ) = 0 and ϕ (y) = 1

n

∑n
i=1 ϕ (yi ) = 0. Be-

cause KLDCCA is in essence performing LDCCA in feature space, the solution vector of
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A New CCA Algorithm with Local Discrimination 5

KLDCCA ωφ and ωφ can be expressed by linear combination of samples {φ (xi )}n
i=1 and

{ϕ (yi )}n
i=1, i.e. ωφ = φ (X) α and ωϕ = ϕ (Y ) β. The objective function of KLDCCA is to

optimize

ρ = max
ωx , ωy

αT Kxyβ√(
αT Kxxα

) (
βT Kyyβ

) (5)

where,

Kxx =
(
φ (X)T φ (X)

) (
φ (X)T φ (X)

)
= Kx Kx

Kyy =
(
ϕ (Y )T ϕ (Y )

) (
ϕ (Y )T ϕ (Y )

)
= Ky Ky (6)

Kxy = Kω − ηKb, η is a balancing factor, Kω is local within-class kernel matrix and Kb is
local between-class kernel matrix which are defined as follows:

Kω =
n∑

i=1

∑
xk∈N I (xi ),yk∈N I (yi )

φ (xi )
T φ (xi ) ϕ (yk)

T ϕ (yi ) + φ (xi )
T φ (xk) ϕ (yi )

T ϕ (yi )

=
n∑

i=1

∑
xk∈N I (xi ),yk∈N I (yi )

(Kx )i i
(
Ky

)
ki + (Kx )ik

(
Ky

)
i i

Kb =
n∑

i=1

∑
xk∈N E (xi ),yk∈N E (yi )

φ (xi )
T φ (xi ) ϕ (yk)

T ϕ (yi ) + φ (xi )
T φ (xk) ϕ (yi )

T ϕ (yi )

=
n∑

i=1

∑
xk∈N E (xi ),yk∈N E (yi )

(Kx )i i
(
Ky

)
ki + (Kx )ik

(
Ky

)
i i (7)

Here, the definitions of N I (xi ) and N E (xi ) are the same as in LDCCA. That is, we still
find k nearest neighbors in original space rather than in the kernel-induced feature space.
Kx (·, ·) and Ky (·, ·) are kernel functions, (Kx )i j = Kx

(
xi , x j

)
and

(
Ky

)
i j = Ky

(
yi , y j

)
.

The solution of Eq. 5 is similar to those in CCA and LDCCA. We omit it here due to space
limit.

After getting generalized eigenvectors (αi , βi ) ∈ Rn × Rn , we can get Wϕ and Wϕ as
follows:

Wφ = [
ωφ1 . . . ωφd

] = φ (X) [α1 . . . αd ]

Wϕ = [
ωϕ1 . . . ωϕd

] = ϕ (Y ) [β1 . . . βd ] (8)

For each example (x, y), we can extract features as follows:

W T
φ φ (x) = [α1 . . . αd ]T [Kx (x1, x) . . . Kx (xn, x)]T ∈ Rd

W T
ϕ ϕ (y) = [β1 . . . βd ]T [

Ky (y1, y) . . . Ky (yn, y)
]T ∈ Rd (9)

With the features extracted by KLDCCA, we can then obtain the final representations
through aforementioned parallel combination (PC) and serial combination (SC), respectively,
(Eq. 4).
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5 Experiments

In this section, we evaluate the performances of the proposed LDCCA and KLDCCA algo-
rithms on several data sets. At first, we simply investigate the influences on classification
of features extracted by LDCCA and KLDCCA on an artificial dataset. Then we discuss
their classification performances on Multiple Feature database. Finally, we apply LDCCA
and KLDCCA to face recognition on three face databases ORL1, Yale2 and AR3. We first
perform dimensionality reduction on all data sets using LDCCA and KLDCCA as well as
other related methods, CCA, PLS, LPCCA and KCCA. Then nearest neighborhood classifier
is employed to estimate the classification accuracies of different methods.

In kernel-based algorithms, an important parameter to determine is type of kernel and
its related parameters. We adopt the Gaussian kernel in our experiments, i.e. Kx (x1, x2) =
e−‖x1−x2‖2/2σ 2

x and Ky (y1, y2) = e−‖y1−y2‖2/2σ 2
y . Here, the kernel widths σ 2

x and σ 2
y are

chosen by searching the following parameter space:[
2−3, 2−2, 2−1, 20, 21, 22, 23] × σ 2

xo
and

[
2−3, 2−2, 2−1, 20, 21, 22, 23] × σ 2

yo
(10)

where σ 2
xo

and σ 2
yo

denotes the mean square distances of sample X and Y , which are defined
as

σ 2
xo

= 1

n (n − 1)

n∑
i=1

n∑
j=1

∥∥xi − x j
∥∥2

σ 2
yo

= 1

n (n − 1)

n∑
i=1

n∑
j=1

∥∥yi − y j
∥∥2 (11)

In order to control the relative contributions of Cω and Cb in LDCCA and KLD-
CCA, a balancing factor η is introduced, which is optimized by searching in the range
η ∈ [0.001, 0.01, 0.1, 1, 10, 100]. Besides, there are another important parameter k in
LPCCA, LDCCA and KLDCCA, i.e. the number of nearest neighbors, which will be searched
in the range from one to the number of training data. Furthermore, the effect of k will be
demonstrated in practice in Sect. 5.4.

In our experiments, two-fold cross-validation is performed to find the optimal values of
the above parameters in their respective ranges. However, it’s worthy of noting that if we
jointly optimize those parameters together, there will produce a huge search space, where
finding the optimal values will be very time-consuming. So we optimize those parameters
independently, i.e. in a ‘one-by-one’ manner.

For all methods, after obtaining eigenvectors ωxi and ωyi , we choose d eigenvectors cor-
responding to the d largest eigenvalues whose sum dividing the total eigenvalues is no less
than a predefined threshold θ . We set θ = 0.95 in all experiments.

5.1 Toy Problem

In order to intuitively review the trait on data visualization of LDCCA and KLDCCA, we
consider a two-class classification problem used in [19], which contain 150 two-dimen-
sional samples with two views X = [X1, X2] and Y = [Y1, Y2], where Xi and Yi denote

1 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
3 http://cobweb.ecn.purdue.edu/~aleix_face_DB.html.
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A New CCA Algorithm with Local Discrimination 7

Fig. 1 Toy problems. a The data distribution of two classes, sign +• denote the features according to samples
of the first and second class. b, c, d The distribution of the first pair of features extracted by CCA, LPCCA
and LDCCA, respectively

i th (i = 1, 2) class respectively, Xi follows the Gaussian distribution N
(
µi,

∑
i

)
, where

µ1 = [10.18, 0.66]T ,
∑
1

= [15, 3.75; 3.75, 15], µ2 = [5,−5]T ,
∑
2

= [1, 0; 1]. Sample

yi is obtained from transformation as follows: y = W T xi + εi , i = 1 . . . 150, where W =[
0.6,−√

1/2; 0.8,
√

1/2
]
, ε is additional Gaussian noise whose distribution follows Nµε

∑
ε

,

in which µε = [1, 1]T ,
∑
ε

= [0.01, 0; 0, 0.01]. So, xi and yi satisfy linear correlation rela-

tion in some degree. Figure 1a shows the distribution of the above data. Half of the data are
used for learning the projections, while the rest is for predicting.

In our experiment, we compare LDCCA and KLDCCA with CCA, KCCA and LPCCA.

Figure 1b–d shows the distribution of the first feature
(
ωT

x1 X, ωT
y1Y

)
extracted by CCA,

LPCCA and LDCCA, respectively. Figure 2a–b compare the result of KCCA with that of
KLDCCA. In LPCCA, the parameter k, i.e. the number of neighbors, is set to 100, while in
LDCCA and KLDCCA it is set to ten. Under those values, the above methods could achieve
approximately optimal result.

From the experimental results, we can see that:

(1) CCA has revealed the linear relationships of the original features, but there is severe
overlap between different classes (see Fig. 1b), which will result in poor classification
performance. In our experiment, its classification accuracy is only 0.6412. In LPCCA,
the overlap phenomena still exist in some degree (Fig. 1c) and the corresponding classi-
fication accuracy is 0.8680, superior to CCA;

(2) In LDCCA, two classes are separated well (Fig. 1d) and the corresponding classification
accuracy can reach 0.9870. Moreover, we can see from Fig. 2 the data features extracted
by KLDCCA are separated completely, and the corresponding classification accuracy
is perfect 100%. In contrast, there is still some overlap in KCCA whose accuracy is
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8 Y. Peng et al.

Fig. 2 Distribution of the first pair of features extracted by KCCA (a) and KLDCCA (b)

0.9512. The experimental results show that features extracted by LDCCA and KLDCCA
are more beneficial for classification than others.

5.2 Multiple Feature Recognition Experiment

In this experiment, we choose Multiple Feature data set picked out from UCI machine learn-
ing repository, which consists of six sets of features of ten handwritten digits 0–9. Each class
has 200 examples, so the sample size is 2,000 in total. The six sets of features extracted
from multiple feature databases are flourier coefficient, contour correlation characteristics,
Karhunen-Loève expansion coefficient, pixel average, Zernike moment and morphological
characteristics. The name and the dimension of those features are (fou, 76), (fac, 216), (kar,
64), (pix, 240), (zer, 47) and (mor, 6).

We choose two sets of features at random as X set and Y set, so there will be fifteen(
C2

6 = 15
)

data combination modes. For each combination, we choose 100 samples in each
class for training randomly, the rest for testing. In this way, the number of training set and
testing set are all 1,000. Such random experiments are repeated 10 times independently,
and then we record the average recognition accuracy. We extract features by LDCCA and
KLDCCA as well as CCA, LPCCA and KCCA at first. Then we perform classification based
on the extracted features using nearest neighbor classifier. Table 2 gives the accuracies of
those methods as well as a recently proposed method SVM-2K, which integrate KCCA and
SVM in a single model [12]. In our experiments, we use the same procedure as in KLDCCA
to tune kernel parameters in SVM-2K. In LPCCA, LDCCA and KLDCCA, the optimal val-
ues for parameter k are chosen. From the table, we can see that in 15 combination modes,
the accuracy of LDCCA and KLDCCA are better than others in 12 combination modes. In
contrast, the LPCCA provides the best result only once, and SVM-2K provides the best result
twice. We also perform statistically significant tests on this database, and the results show
that in most cases our methods are significantly better than the other methods.

5.3 Face Recognition Experiments

In order to verify the performances of LDCCA and KLDCCA for face recognition, we do
experiments on three face databases including ORL, Yale and AR. First, we do dimension-
ality reduction on these face datasets, then perform classification using the nearest neighbor
classifier. We compare our methods with Eigenface [23], Fisherface [24], PLS [25], CCA
[26], KCCA, SVM-2K and LPCCA [18]. In CCA, KCCA, SVM-2K, LPCCA, LDCCA
and KLDCCA, Daubechies orthogonal wavelet transform are repeated for two times for
each image and the low frequency components are chosen as another dataset [26]. Before
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doing this, PCA is applied to the datasets to reduce dimensionality to avoid small sample
problem [26].

5.3.1 ORL Database

ORL dataset, also called AT & T face dataset, contains images of 40 person, and everyone
has ten images which are photographed in different time and illumination with different
facial expression (eye opening or not, smile or not) and facial detail (wear glasses or not).
The images are all sized 112 × 92 pixels with a 256-level gray scale, and the background is
uniform black.

For each person, five images are chosen randomly for training and the rest images for clas-
sification. So there are 200 training images and 200 testing images in total. The experiment
is repeated ten times and the average accuracy is recorded. Table 3 lists the accuracies of
different methods on ORL dataset. In PLS, CCA, KCCA, LPCCA, LDCCA and KLDCCA,
the parallel combination (PC) and the serial combination (SC) mode are all evaluated. In
LPCCA, LDCCA and KLDCCA, the optimal number of neighbor k is also listed in the table.
The table shows that LDCCA is comparable to PLS, KCCA and SVM-2K, and is significantly
better and CCA and LPCCA. On this database, KLDCCA achieves the highest accuracy.

5.3.2 Yale Database

Yale dataset contains 165 gray level images of 15 person, 11 images for each person, includ-
ing left/right/front illumination, wearing glasses or not, normal face, happiness, sadness,
sleepiness, surprise, blink and so on.

We crop the original image of Yale dataset into 100 × 100 size through manual calibrate
mode. For each individual, we choose six images for training and the rest images for clas-
sification. So there are 90 training samples and 75 testing samples in total. Similarly, the
experiment is repeated ten times and the average result is recorded finally. Table 4 gives
the accuracies of different methods on this database. In LPCCA, LDCCA and KLDCCA,
the optimal number of neighbor k are also listed in the table. From Table 4, we can see that
LDCCA achieves better result over other methods significantly. It’s also noteworthy that
both KCCA and KLDCCA are inferior to corresponding CCA and LDCCA on this database.

Table 3 Classification accuracy
on ORL database

Methods Classification accuracy

Eigenface 0.9312
Fisherface 0.9005

/ PR1 k PR2 k

PLS 0.9401 / 0.9398 /

CCA 0.9031 / 0.9011 /

KCCA 0.9485 / 0.9485 /

SVM-2K 0.967 / 0.9511 /

LPCCA 0.9035 198 0.9035 198

LDCCA 0.9475 4 0.9489 7

KLDCCA 0.9725 4 0.9555 4
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Table 4 Classification accuracy
on Yale database

Methods Classification accuracy

Eigenface 0.6925

Fisherface 0.9133

/ PR1 k PR2 k

PLS 0.7174 / 0.7174 /

CCA 0.8533 / 0.8533 /

KCCA 0.7483 / 0.7521 /

SVM_2K 0.8851 / 0.8851 /

LPCCA 0.7613 4 0.7653 3

LDCCA 0.9560 2 0.9560 2

KLDCCA 0.9333 4 0.7868 4

Table 5 Classification accuracy
on AR database

Methods Classification accuracy

Eigenface 0.7011

Fisherface 0.9644

/ PR1 k PR2 k

PLS 0.6671 / 0.6721 /

CCA 0.9100 / 0.9100 /

KCCA 0.8735 / 0.8854 /

SVM_2K 0.9412 / 0.9412 /

LPCCA 0.8463 342 0.8451 342

LDCCA 0.9746 6 0.9763 7

KLDCCA 0.9869 6 0.8889 7

We guess one possible reason may be that the size of the database is too small and thus those
kernel methods are prone to over-fitting due to the difficulty of kernel parameters tuning.

5.3.3 AR Database

AR dataset contains nearly 4,000 color images of 126 people (70 men and 56 women). Each
person has 26 images belonging to two groups, each of which has 13 images and the pho-
tographic time has 2 weeks interval. The two groups show, respectively, the variety of facial
expression, illumination or occlusion (sunglasses or shawl).

We randomly choose 50 people (30 men and 20 women), and do experiment with each per-
son’s 14 images which are no occlusion, thus, we have a face database with 700 images. After
clipping, scale tension, manual calibrating and so on, we dispose each image into 165 × 120
pixels. We randomly choose seven images for training and the other for identification, so we
have 350 training samples and 350 testing samples each time. The random experiments are
performed ten times and the average accuracy is shown in Table 5.

Table 5 gives the accuracies of different algorithms on AR database. In LPCCA, LDCCA
and KLDCCA, the optimal values of neighbor k are also listed in the table. From the table,
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12 Y. Peng et al.

Fig. 3 Classification accuracy under the variation of k on the combination of fou and mor (a) and on the
combination of mor and zer (b)

we can see that both LDCCA and KLDCCA achieve competitive results over other meth-
ods. Moreover, we notice that the optimal numbers of neighbors in LDCCA and KLDCCA
are much smaller than that in LPCCA. Finally as on the Yale database, KLDCCA under
serial combination and KCCA under both parallel and serial combinations show inferior
performances than LDCCA and CCA, respectively.

5.4 Effect of Parameter k

One important parameter in LDCCA and KLDCCA, as well as LPCCA is the number of
neighbors used by k-NN. However, to the best of our knowledge, it’s challenging to deter-
mine the appropriate value of k in advance, so do in most locality based methods [15–17].
In our experiments, we determine the optimal value of the parameter by searching in the
range from one to the number of training samples. Figure 3 shows the effect of the number of
neighbors on those methods, LPCCA, LDCCA and KLDCCA. At first, features are extracted
using LPCCA, LDCCA and KLDCCA with different values of the parameter k. Then we per-
form classification based on the extracted features using nearest neighbor classifier. Figure 3
gives the corresponding classification accuracy under the combination of fou and mor, and
the combination of mor and zer, respectively. As before, the results of the two feature fusion
strategies are all included. From Fig. 3, we can see that the curves corresponding to LDCCA
and KLDCCA are much smoother than those of LPCCA. It implies that the performances
of LDCCA and KLDCCA are less sensitive to the selection of the parameter k than that of
LPCCA. Furthermore, it can be found from Fig. 3 and Tables 3–5 that the optimal values of
k in LDCCA and KLDCCA are much smaller than that in LPCCA in most cases. The reason
for that interesting phenomenon may be that LDCCA and KLDCCA do not find their neigh-
bors in the entire training set, but confine the search in specific classes. On the other hand,
LDCCA and KLDCCA aim at keeping the local discriminative information of data, while
LPCCA aims at keeping the local manifold structure of data. We guess that the latter may
need more neighbors than the former to achieve a satisfying performance. Our experiments
suggest that when choosing the optimal values of k for LDCCA and KLDCCA in practice,
we do not have to search the entire range from one to the number of training samples but
only need to investigate a small subset with smaller values. Thus, the computational cost can
be greatly reduced.

123



A New CCA Algorithm with Local Discrimination 13

6 Conclusion

In this paper, we propose a new CCA model with local discrimination, called LDCCA. Dif-
ferent from CCA, LDCCA considers not only the correlations between the sample pairs but
also the correlations between samples and their local neighborhoods. We design a new objec-
tive function in LDCCA by maximizing local within-class correlations and minimizing local
between-class correlations simultaneously. What is more, a kernel generalization of LDCCA
is also developed to cope with nonlinear problems. Extensive experiments on a series of
data sets show that the proposed methods including LDCCA and KLDCCA can effectively
improve the classification performance.

In KLDCCA, we find k nearest neighbors in original space rather than in the kernel-
induced feature space. It’s interesting to investigate whether we can further improve the
performances if we identify neighbors based on the kernel-induced distance metric. Besides,
in the current study the parameters in our methods are determined in a “one-by-one” manner,
and it would be better to jointly optimize them. So it is worth exploring effective and efficient
optimizing approaches in future work. Also, it’s interesting to further explore why LDCCA
needs smaller number of nearest neighbors than LPCCA. Finally, we plan to combine the
ideas of LDCCA and KLDCCA with multi-set CCA [27] for multi-modal problem in our
future work.

Acknowledgments The authors would like to thank the anonymous referees for their helpful comments
and suggestions to improve the presentation of this paper. This work is partly supported by National Science
Foundation of China under Grant Nos. 60875030 and 60603029.

Appendix : The Solution of LDCCA

The solution of LDCCA is equivalent to the optimal problem as follows:

max
ωx ,ωy

ωT
x C̃xyωy

s.t.ωT
x Cxxωx = 1, ωT

y CY Y ωY = 1 (A-1)

Similarly as in CCA [9], the LDCCA equation can be rewritten as:

C̃xyC−1
yy C̃yxωx = λ2Cxxωx

C̃yx C−1
xx C̃xyωy = λ2Cyyωy (A-2)

In this paper, we use singular value decomposition (SVD) to solve LDCCA equation fol-
lowing [28]. Let H = C−1/2

xx C̃xyC−1/2
yy , u = C1/2

xx ωx , v = C1/2
yy ωy, then Eq. A-2 can be

rewritten as:
{

H H T u = λ2u
H T Hv = λ2v

(A-3)

Let H = U DV T = ∑d
i=1 uiv

T
i be the SVD decomposition of matrix H , where the i-th

diagonal element of diagonal matrix D is just λi , ui and vi are respectively the i th row of
matrix U and V , corresponding to singular value λi , we have
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14 Y. Peng et al.

{
ωxi = C−1/2

xx ui

ωyi = C−1/2
yy vi

(A-4)

From Eq. A-4, we obtain the i th (i = 1 . . . d) pairs of basis vector of LDCCA.
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