
Neural Process Lett (2008) 28:81–95
DOI 10.1007/s11063-008-9083-z

Universal Approximation and QoS Violation Application
of Extreme Learning Machine

Lei Chen · LiFeng Zhou · Hung Keng Pung

Published online: 29 August 2008
© Springer Science+Business Media, LLC. 2008

Abstract Neural networks have been successfully applied to many applications due to
their approximation capability. However, complicated network structures and algorithms
will lead to computational and time-consuming burdens. In order to satisfy demanding real-
time requirements, many fast learning algorithms were explored in the past. Recently, a fast
algorithm, Extreme Learning Machine (ELM) (Huang et al. 70:489–501, 2006) was pro-
posed. Unlike conventional algorithms whose neurons need to be tuned, the input-to-hidden
neurons of ELM are randomly generated. Though a large number of experimental results
have shown that input-to-hidden neurons need not be tuned, there lacks a rigorous proof
whether ELM possesses the universal approximation capability. In this paper, based on the
universal approximation property of an orthonormal method, we firstly illustrate the equiv-
alent relationship between ELM and the orthonormal method, and further prove that neural
networks with ELM are also universal approximations. We also successfully apply ELM to
the identification of QoS violation in the multimedia transmission.

Keywords Feedforward neural network · Universal approximation · Radial basis
function (RBF) · Extreme learning machine (ELM) · Randomhidden neurons · QoS

1 Introduction

In past decades feedforward neural networks (FNNs) have been investigated extensively from
both theoretical and applied aspects. Because of their approximation capability [2–4], neural
networks have been successfully applied to many real applications. One of neural network
advantages is that they can learn the interrelations of all factors from the observed data
automatically. However, such a high artificial intelligence (AI) also brings the extremely
computational burden, which may not satisfy the real-time requirement. Meanwhile the
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real-time support is a common requirement in many practical applications. Designing a
FNN to achieve a better generalization performance with fast training speed is always a
challenging topic in neural networks.

Recently, an effective and non-iterative technique, ELM, has been proposed in [1]. The
basic principle of ELM is to randomly generate hidden neurons (the input-to-hidden param-
eters are generated based on some continuous distribution probabilities) and analytically
determine the hidden-to-output weights of neural networks one time. Due to the random
character of hidden neurons, ELM has been proven to be an effective method to make neural
networks achieve a better generalization performance at a fast learning speed. Though many
experimental results show that the input-to-hidden neurons do not need to be adjusted at
all, so far there lacks a rigorous theoretical justification whether neural networks with ELM
process the universal approximation capability.

In order to solve the question, we firstly refer to the universal approximation of a Gram-
Schmidt orthonormal neural network. The orthonormal network was first proposed in [5],
where hidden kernel neurons are transformed into an orthonormal set of neurons by using
Gram-Schmidt orthonormalization. After this transformation, FNNs do not recomputate the
already existing weights of hidden neurons, which can remarkably reduce the computing
time. Based on the universal approximation of the orthonormal network, we firstly illustrate
the equivalent relationship between ELM and the orthonormal network, thus we can naturally
obtain the conclusion: neural networks with ELM are also universal approximation. In order
to verify the equivalent relationship, several benchmarking regression simulations support
our conclusion. Moreover, in this paper we successfully apply ELM to the identification of
QoS violations in multimedia network transmission to replace conventional rule-base meth-
ods. A violation possibly occurs at runtime due to fluctuating resource availabilities, which
could adversely affect the performance of multimedia applications. A simple way to detect
a violation is to employ rules with thresholds set for a few key parameters. However, such a
common method is not effective identifying a violation if multiple environment variables are
involved. In view of this, we classify and identify a QoS violation through analyzing a vector
of flow statistics and application QoS metrics by using ELM and the orthonormal neural net-
works. The experimental results of the two algorithms enjoy the advantage of both real-time
processing and high classification accuracy in the same precision, which also supports our
conclusions with respect to the approximation analysis.

This paper is organized as follows. Section 2 provides some preliminaries, such as inner
products and symbols of a standard SLFN, which are required for the analysis in the fol-
lowing sections. In order to prove the approximation of ELM, we also need to show the
universal approximation of Gram-Schmidt orthonormal neural networks in this section.
Section 3 details our main result: the universal approximation of ELM, and their performance
evaluation is presented in Sect. 4. Discussions and conclusions are given in Sect. 5.

2 Preliminaries

Before we discuss our main results, we need to introduce some terminologies and background
information.

2.1 Extreme Learning Machine (ELM)

The output of an standard single hidden layer feedforward network (SLFN) with L hidden
neurons can be represented by fL = ∑L

i=1 βi g(ai , bi , x), where ai and bi are the learning
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parameters of hidden neurons and βi is the weight connecting the i-th hidden neuron to the
output neurons; g(ai , bi , x) is the output of the i-th hidden neuron with respect to the input x.
Seen from the viewpoint of network architecture, two main SLFN network architectures have
been investigated, additive neurons and kernel neurons. For the additive neurons, the activa-
tion function g(x): R → R takes the form g(ai , bi , x) = g(ai · x + bi ), where ai ∈ Rn is the
weight vector connecting the input layer to the i-th hidden neuron, and bi ∈ R is the bias of
the i-th hidden neuron; ai ·x denotes the inner product of vectors ai and x in Rn . For the kernel
neurons, the activation function g(x) : R → R takes the form g(ai , bi , x) = g(bi‖x − ai‖),
where ai ∈ Rn is the center of the i-th RBF neuron and bi ∈ R+ is the impact of the i-th
RBF neuron. R+ indicates the set of all positive real value.

For a series of N arbitrary distinct training samples (xi , ti ), i = 1, . . . , N , where xi =
[xi1, . . . , xin]T ∈ Rn is an input vector and ti = [ti1, . . . , tim]T ∈ Rm is a target vector.
A standard SLFN with L hidden neurons with activation function g(x) can be expressed as

L∑

i=1

βi g(ai , bi , x j ) = o j , j = 1, . . . , N ,

where o j is the actual output of SLFN.
A standard SLFN with L hidden neurons can learn N arbitrary distinct samples (xi , ti ),

i = 1, . . . , N , with zeroerror means that there exist parameters ai and bi , for i = 1, . . . , L ,
such that

N∑

i=1

‖oi − ti‖ = 0.

Thus our ideal objective is to find proper parameters ai and bi such that

L∑

i=1

βi g(ai , bi , x j ) = t j , j = 1, . . . , N ,

The above N equations can be expressed as

Hβ = T (1)

where β = [β1, . . . , βL ]T , T = [t1, . . . , tN ]T and

H =
⎡

⎢
⎣

g(a1, b1, x1) · · · g(aL , bL , x1)
...

. . .
...

g(a1, b1, xN ) · · · g(aL , bL , xN )

⎤

⎥
⎦

N×L

(2)

where the matrix H is called as the hidden layer matrix of the SLFN.

Lemma 2.1 [1] Given a standard SLFN with N hidden neurons and the activation function
g: R → R, which is infinitely differentiable in any interval, for N arbitrary distinct samples
(xi , ti ), where xi ∈ Rd and ti ∈ Rm, for ai and bi randomly chosen from any intervals
of Rd and R, respectively, according to any continuous probability distribution, then with
probability one, the hidden layer output matrix H of the SLFN is invertible and ‖Hβ−T‖ = 0.

Lemma 2.1 illustrates that when the number of neurons L is equal to the number of samples
N , neural networks can precisely express observed samples. However, the number of hidden
neurons is normally much less than the number of distinct training samples, i.e., L � N .
It means that H is a nonsquare matrix. Huang further pointed out that neural networks
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with randomly generating {ai , bi } and determining βi by generalized inverse β = H†T can
approach training target with small errors, where H† is the Moore-Penrose generalized inverse
of the matrix H. The fast learning algorithm is also called as Extreme Learning Machine
(ELM) [6].

2.2 Universal Approximation of Orthonormal Networks

Due to the random character of {ai , bi }L
i=1, ELM has been proven to be an effective method

to make neural networks achieve a better generalization performance at an extremely fast
learning speed. Up till now, there is no proof that neural networks by ELM with randomly
generated hidden neurons can have universal approximation capability. In order to prove the
universal approximation of ELM, we firstly need to prove the approximation capability of
an orthonormal network.

Assuming the training samples generated with uniform probability distribution and all the
functions belong to the space L2. Similar to [5, p. 1179], the inner product of two functions
is defined as

〈u(x), v(x)〉 =
N∑

i=1

u(xi )v(xi ) (3)

where N is the number of training samples. Here we should note that the above inner product
expression is based on the statistics, which can be approximation by the interpolation. In fact,
when the number of training data is large enough, the inner product can be easily deduced
by using the limitation theory. Thus without loss of generality, we denote the inner product
by using the interpolation in this paper.

We say that the nonzero vectors e1, . . . , en are orthogonal if 〈ei , e j 〉 = 0, for i �= j and
orthonormal if 〈ei , ei 〉 = 1. In fact, for any linearly independent sequence {g1(x), . . . , gL(x)}
in Hilbert space, we can construct an orthonormal basis {e1, e2, . . . , eL } by some orthonormal
transformations, such as the Gram-Schmidt process [7, pp. 167–168].

Next we will introduce how to use Gram-Schmidt orthonormalization to construct net-
works. According to ELM, we should find proper parameters such that

β1g1(xi ) + · · · + βL gL(xi ) = f (xi ), i = 1, . . . , N (4)

where f (xi ) = ti and g j (xi ) = g(a j , b j , xi ) for j = 1, . . . , L . The function f (x) can be
regarded as the target function to be approximated by neural networks.

Multiplying Eq. 4 by g j (xi ), we have

β1g1(xi )g j (xi ) + · · · + βL gL(xi )g j (xi ) = f (xi )g j (xi ), i = 1, . . . , N , j = 1, . . . , L

(5)

Calculating the sum of {xi }N
i=1 in the above L equations, we have

β1

N∑

i=1

g1(xi )g j (xi ) + · · · + βL

N∑

i=1

gL(xi )g j (xi ) =
N∑

i=1

f (xi )g j (xi ), j = 1, . . . , L (6)

Following Eqs. 3 and 6 can be rewritten as

β1〈g1(x), g j (x)〉 + · · · + βL 〈gL(x), g j (x)〉 = 〈 f (x), g j (x)〉, j = 1, . . . , L (7)

The above L equations can be rewritten as

H̃β = T̃
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where

T̃ =
⎛

⎜
⎝

〈 f (x), g1(x)〉
...

〈 f (x), gL(x)〉

⎞

⎟
⎠

and

H̃ =
⎡

⎢
⎣

〈g1(x), g1(x)〉 · · · 〈gL(x), g1(x)〉
...

. . .
...

〈g1(x), gL (x)〉 · · · 〈gL(x), gL(x)〉

⎤

⎥
⎦

L×L

where H̃ is named as the inner product hidden layer matrix. If {gk(x)}L
k=1 are orthonormal

each other, the solutions of above equations can be calculated as βk = 〈 f (x), gk(x)〉 =∑N
i=1 ti gk(xi ). However, as Kaminski and Strumillo [5] has pointed out, {gk(x)}L

k=1 are not
orthonormal each other normally. Hence similar to [5], we apply the standard Gram-Schmidt
orthonormalization to transform {g1(x), g2(x), . . . , gL(x)} into an orthonormal set of basis
functions {u1(x), u2(x), . . . , uL(x)}, i.e.,

[u1(x), u2(x), . . . , uL(x)] = [g1(x), g2(x), . . . , gL(x)] · V (8)

where V is an upper triangular matrix whose detailed expression can be found in [5, p. 1182].
We denote ‖ f ‖2 = 〈 f, f 〉. For any f and {ek}∞k=1 in Hilbert space H, the identity

‖ f ‖2 =
∞∑

j=1

|ak |2, where ak = 〈 f, ek〉,

which is called Parseval identity, holds if and only if {ek}∞k=1 is also an orthonormal basis
[7, p. 166]. Based on Parseval identity, we can easily obtain the following approximation
property of the orthonormal basis:

Theorem 2.1 For any f ∈ H, suppose e1, e2, . . . is an orthonormal basis in H, then

‖ f −
L∑

j=1

〈 f, e j 〉e j‖ → 0, asL → ∞.

Remark 1 In the classic textbooks of functional analysis, we can find similar theorem in one-
dimension space. In fact, the similar property can be extended into multi-dimension space
by using Parseval identity.

Theorem 2.2 For any bounded, integrable function g(ai , bi , x) ∈ L2, if it is an infinitely
differentiable additive function or kernel function, then neural networks by Gram-Schmidt
transformation are universal approximation.

Proof Lemma 2.1 illustrates that if activation function g(x) is infinitely differentiable, then
for almost all the parameters, the column vectors of H are linearly independent of each other.
In fact, the orthogonal or orthonormal relationship is a kind of the linear independence as
well. The linear independence of the column vectors in H leads to that the inner product of
the column vectors in H is not zero each other. Thus based on inner product definition (3)
and the orthogonal definition, we can conclude that gi (x)L

i=1 are linearly independent when
the column vectors of H are linearly independent each other.
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For any kernel function, the statements of the paper [5, p. 1179] illustrated that if centers
are arbitrary, the system (7) has an unique solution. Meantime, according to the statement of
Subsect. 2.2, we know that the linear system (4) is equivalent to the system (7), i.e.,

H†T = H̃−1T̃ (9)

In another word, the system (4) has also a unique solution. Therefore the corresponding
column vectors of matrix H are also linearly independent, which is consistent with Lemma
2.1, but the only difference is that we extend infinitely differentiable kernel functions to any
kind of kernel functions.

Summarizing the above statement, we have the following conclusion: for infinitely differ-
entiable additive function or any kernel function g(x), when ai and bi randomly chosen from
any intervals of Rd and R, {gk(x)}L

k=1 are linearly independent each other, where the linear
independence of {gk(x)}L

k=1 is judged by inner product expression (3) under the condition of
large enough training data.

Based on Eq. 8, we apply the Gram-Schmidt to transform {g1(x), . . . , gL(x)} into an
orthonormal set of basis functions {u1(x), u2(x), . . . , uL(x)}, i.e.,

[u1(x), u2(x), . . . , uL(x)] = [g1(x), g2(x), . . . , gL(x)] · V (10)

According to the orthonormal property of {ui }L
i=1 and Theorem 2.1, such weights {α}L

i=1
can ensure the approximation capability of neural networks, i.e.,

‖ f −
L∑

i=1

αi ui (x)‖ < ε, asL → ∞. (11)

where αi = 〈 f (x), ui (x)〉. 	


Remark 2 Here, Theorem 2.2 only mentions an orthonormal transformation. In fact, for other
orthonormal transformations, such as QR decomposition or singular value decomposition
(SVD), the universal approximation result is also correct. Theorem 2.2 explains why the
orthonormal neural networks proposed in [5] can achieve a good generalization performance.

3 Universal Approximation of ELM

In this section, capitalizing on the approximation property of orthonormal neural networks,
we will prove that neural networks with ELM are universal approximation.

Theorem 3.1 For any bounded, integrable function g(ai , bi , x) ∈ L2, neural networks con-
structed by ELM and with infinitely differentiable additive neurons or with any kernel neurons
in L2 are universal approximation.

Proof Based on Theorem 2.2, when the number of training data is large enough, we have:
for infinitely differentiable additive function or any kernel function g(x), when ai and bi ran-
domly chosen from any intervals of Rd and R, {gk(x)}L

k=1 are linearly independent each other.
Then based on Eq. 11 in Theorem 2.2, after Gram-Schmidt transformation, the new hidde-to-
output weights {αi }L

i=1 expressed as αi = 〈 f (x), ui (x)〉 can ensure universal approximation
of neural networks.
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We set β = H†T and

U =
⎡

⎢
⎣

u1(x1) · · · uL(x1)
...

. . .
...

u1(xN ) · · · uL(xN )

⎤

⎥
⎦

N×L

According to Eq. 8, we have U = HV.
Based on (9), we have

α = Ũ−1T̃ = U†T = U†Hβ (12)

where refereing to the definition of H̃, Ũ is the inner product matrix of U.
Based on Eqs. 10–12, we have

‖ f (x) −
L∑

i=1

βi gi (x)‖ = ‖ f (x) − [g1(x), . . . , gL(x)]
⎡

⎢
⎣

β1
...

βL

⎤

⎥
⎦ ‖

= ‖ f − [u1(x), u2(x), · · · , uL(x)] V†β‖
= ‖ f − [u1(x), u2(x), · · · , uL(x)] V†H†Uα‖
= ‖ f − [u1(x), u2(x), · · · , uL(x)] α‖

= ‖ f −
L∑

i=1

αi ui (x)‖ → 0, L → ∞ (13)

The theorem is proved. 	


Remark 3 Such orthonormal neural networks have been proved to be able to achieve good
generalization performance at a fast speed [5]. However, the Eq. 13 in Theorem 3.1 states
an equivalent relationship between Gram-Schmidt transformation and ELM: the hidden-to-
out weights directly determined by the hidden layer matrix H is the same solution as the
hidden-to-out weights calculated by the orthonormal basis {ui (x)}L

i=1. Hence we can natu-
rally obtain the following conclusion that such orthonormal transformation is not necessary
for neural networks. The following simulation result comparison between ELM and the ortho-
normal neural networks based on benchmark regression and QoS classification applications
will support our conclusion.

Remark 4 Original ELM is only suitable for infinitely differentiable functions. Theorem 3.1
shows that ELM can be applied to any kernel function, which simultaneously enlarge the
scope of activation functions.

Remark 5 Unlike many classic approximation results, where hidden neurons must be calcu-
lated by a complicated process, Theorem 3.1 shows that neural networks with random hidden
neurons are also universal approximation. The universal approximation proof of neural net-
works trained by another random neuron algorithm can be found in the paper Huang et al.
[8], but the algorithm is a growing algorithm, which calculates hidden-to-output weights one
by one in an incremental way. However, ELM is a kind of batch learning algorithms, which
calculates all the hidden-to-output weights one time. Theorem 3.1 explains why ELM can
provide a good generalization performance.
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4 Performance Evaluation

In [1], authors have demonstrated that ELM can outperform many popular algorithms like
BP, SVM and other well-known algorithms in many cases, moreover the main purpose of
this paper is to illustrate the universal approximation of ELM and the equivalent relationship
between ELM and the orthonormal algorithms, thus we may only need to compare ELM
with the orthonormal methods in this paper. In this section, we will show that ELM and
Gram-Schmidt algorithms present the same performance in our experiments (Benchmarking
regression problems and QoS violation classification). The two learning procedures can be
summarized in the following steps:

Algorithm Given a training set ℵ = {(xi , ti )|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N } and L
hidden neurons

1) ELM

a) Assign random parameters ai and bi , for i = 1, . . . , L .
b) Calculate hidden layer matrix H.
c) Calculate the hidden-to-output weights by H†T.

2) Orthonormal Neural Networks

a) Assign random parameters ai and bi , for i = 1, . . . , L .
b) Calculate hidden layer matrix H.
c) After any orthonormal transformation, obtain orthonormal matrix U.
d) Calculate the hidden-to-output weights by αi = 〈 f (x), ui (x)〉, for i = 1, . . . , L .

All the benchmark regression problems are from UCI datasets [9]. For simplicity, all the
input data are normalized into the range [−1, 1] in our experiments. Neural networks with
ELM and with Gram-Schmidt are both assigned the same of number of hidden neurons, i.e.
30 neurons. All the simulations run in MATLAB 6.5 environment and the same PC with
Pentium 4 3.0 GHZ CPU and 1G RAM. The activation function used in our proposed algo-
rithms is a simple Gaussian kernel function g(x) = exp(−γ ‖x − µ‖2), the centers µi are
randomly chosen from the range [−1, 1] whereas the impact factor γ is chosen from the
range (0, 0.5).

4.1 Benchmarking with Regression Problem

Based on nine real world benchmark regression datasets, the performance comparisons
between ELM and Gram-Schmidt are given out. Table 1 shows the characteristics of these
regression datasets and the corresponding number of hidden neurons.

For each problem, 50 trials are done. As shown in Table 2, the two neural networks both
achieve good generalization performances with almost the same error level, which also ver-
ifies their equivalent relationship. Here, we should note that for the RMSE of some cases,
there may be small differences between the two algorithms. In fact, deficient training sam-
ples or incomplete distribution may lead to the imprecise expression of inner product in the
orthonormal neural networks. But for ELM, since the calculation of inner product is not
necessary, its computational errors are avoided, which is also an advantage of ELM. Since
the training data and testing data are randomly regenerated in every simulation trial, every
trial leads to different results for the same case. The corresponding deviation of the results
reflects the steady state of the corresponding algorithms. Table 2 shows the deviation of the
training error and testing error at the 30th neuron. Since the corresponding deviation results
are very small, it shows that our simulation results are very stable and repeatable.
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Table 1 Specification of nine
Benchmark Regression Datasets

Name No. of observations Attributes No. of neurons

Training data Testing data

Abalone 2,000 2,177 8 30
Ailerons 7,154 6,596 39 30
Airplane 450 500 9 30
Bank 4,500 3,692 8 30
Boston 250 256 13 30
California 8,000 12,640 8 30
Census 10,000 12,784 8 30
Delta 3,000 4,129 5 30
Ailerons
Delta 4,000 5,517 6 30
Elevators

Table 2 Comparison of Average Root Mean Square Error (Mean) and Devations (Dev)of Training Error and
Testing Error

Name ELM Gram-Schmidt

Training Testing Training Testing

Mean Dev Mean Dev Mean Dev Mean Dev

Abalone 0.0756 0.0008 0.0784 0.0027 0.0754 0.0010 0.0772 0.0022

Ailerons 0.0617 0.0053 0.0625 0.0053 0.0639 0.0053 0.0643 0.0047

Airplane 0.0444 0.0037 0.0481 0.0032 0.0447 0.0032 0.0491 0.0045

Bank 0.0593 0.0049 0.0603 0.0053 0.0627 0.0086 0.0629 0.0085

Boston 0.0923 0.0087 0.1095 0.0123 0.0909 0.0088 0.1117 0.0100

California 0.1367 0.0028 0.1377 0.0024 0.1368 0.0026 0.1383 0.0025

Census 0.0749 0.0019 0.0758 0.0015 0.0750 0.0021 0.0760 0.0022

Delta Ailerons 0.0456 0.0047 0.0469 0.0052 0.0444 0.0043 0.0450 0.0046

Delta Elevators 0.0596 0.0061 0.0604 0.0063 0.0600 0.0059 0.0606 0.0073

In order to verify our approximation theory, we also draw the training error and testing
error curves from the 5th neuron to the 80th neuron for Airplane case in Fig. 1a. As shown
in Fig. 1a, the neural networks achieve better generalization performance with the growth of
neurons, which also supports our universal approximation conclusion.

The mean training time of ELM and Gram-Schmidt neural networks with the 30th neuron
is illustrated in Table 3 as well. From Table 3, we know that neural networks without orthonor-
mal transformation take less training time than neural networks with orthonormal transfor-
mation. As shown in Fig. 1b, with the growth of neuron number, the difference between ELM
and Gram-Schmid neural networks becomes greater, which shows the efficiency of ELM.

4.2 QoS Violation

4.2.1 QoS Violation in Multimedia Transmission

An end-to-end multimedia transmission is subject to various runtime impairments such as
process failure, network congestion or link error. In view of this, a bundle of adaptation-
based QoS systems (hereinafter referred as adaptive QoS systems) have been designed,
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Fig. 1 Performance of the Airplane regression problem: (a) training and testing error curves with
Gaussian kernel neurons, (b) comparison of training time curves with Gaussian kernel neurons between
ELM and Gram-Schmidt networks

each of which tries to maintain runtime transmission quality through re-composition or
re-configuration of the end-to-end system. However, before any adaptation technique can be
invoked, it is essential to firstly identify the nature of a QoS violation for a correct solution.
An illustrating example is that the same external phenomenon of packet loss in wireless
communications can originate from various reasons (e.g., channel error or transmission con-
gestion). Without a clear knowledge of the cause of an observed violation, one may not be
able to apply correct remedies.

A bundle of QoS adaptation techniques have been proposed for dealing with QoS detection
of applications [10,11]. An essential step before applying any effective adaptation solution is
to correctly identify a violation. For example, if a delay violation is caused by incapability of
receiving host to decode video frames, it makes no senses to re-allocate network resource for
a higher throughput. The detailed description of QoS violation analysis is out of the scope of
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Table 3 Comparison of Average
Mean Training Time for
Different Learning Algorithms

Name ELM (seconds) Gram-Schmidt (seconds)

Training time Training time

Abalone 0.0717 0.0942
Ailerons 0.4379 0.5656
Airplane 0.0159 0.0234
Bank 0.1203 0.1990
Boston 0.0087 0.0187
California 0.1932 0.3049
Census 0.2853 0.4280
Delta Ailerons 0.0669 0.0718
Delta Elevators 0.0927 0.1449

this paper and will be presented elsewhere. QoS violation classification problems have usu-
ally been implemented by using if-then rules. One advantage of rule based methods is that it
can provide real-time (online) response. However, most current work tackles QoS violations
through simple if-then rules, the performance of which is not convincing in practice. Defining
and managing those rules or clauses has proven to be a difficult and time consuming task.
Moreover, once rules are determined, they are difficult to change with respect to changes in
the operating environment. Hence for every new case, one needs to redesign its rules. Neural
networks can provide powerful high level artificial intelligence (AI) methods for classifica-
tion with good accuracy. However, this high level AI comes with a computational burden,
which leads to sluggish performance and hence is not acceptable for real-time applications.
Since ELM can provide good generalization performance within a fast response time, we
have successfully applied the fast learning algorithm to QoS violation detection, and showed
that neural networks can correctly differentiate a QoS violation through the monitored data.

4.2.2 Data Collection

We conduct our experiments through monitoring and collecting data from audio/video strea-
mings in our testbed. A stream sender (a desktop with Core 2 processor 2.13 GHz and 2 GB
RAM) delivers datato a stream receiver (a desktop with Pentium 4 processor 2 GHz and 1 GB
RAM). The sender and receiver are located in two sub-domains separated by a router running
Fedroa 6. Monitoring facilities are deployed in the end-to-end system to collect performance
data. A violation is asserted by observing application QoS while its type is identified through
classification.

We setup a testbed for experiments as shown in Fig. 2. Two groups of PCs are separated
by a router in between and forms two subnets. We deliver audio and video flows from the
stream sender to the stream receiver. The audio source outputs an audio flow of PCM format,
44,100 Hz and Stereo quality. It is transcoded into either G723/RTP or MPA/RTP format for
media streaming over the network. The video source outputs an video flow of format mpeg-1,
640×256 resolution and constant frame rate (30 fps). It is transcoded into either MPEG/RTP
or JPEG/RTP format for transmission. We write the A/V streaming application on J2SE 6
platform using JMF library.1 The RTP streaming between the sender and receiver uses UDP
as the transport layer protocol. Monitors are placed at both streaming sender and receiver to

1 http://www.java.sun.com/products/java-media/jmf/
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Fig. 2 Testbed environment

record end-to-end QoS. We use WinPcap2 library to capture incoming traffics on the NIC
of the receiver. We also integrate a frame rate monitor with the streaming application which
measures the velocity of video display. As explained, video frame rate is defined as the QoS
violation indicator with the delimiter set to 25 fps.

We first conduct a CPU violation test and collect corresponding violation data. A util-
ity program is designed which can occupy CPU time slices at several scales, e.g., minimal
(occupy 10–20% CPU time), medium (around 50%) or maximum (80–100%). By tuning
the ‘volume’ of the utility program at either the sender or receiver, a CPU violation can be
observed in the streaming application. Figure 3 shows change of application QoS (i.e., frame
rate) and flow descriptors in a 120-second test, where 3,690 video frames are transmitted
(Fig. 3a–c). The monitoring interval of application QoS is set to 2 s (Fig. 3d). In the first 60 s,
no external interference is injected and hence the video streaming presents satisfactory per-
formance. In the next 60 s, the CPU utility program is launched to contend with the streaming
application for CPU time slice. A few violations can thus be observed where frame rate falls
below a pre-defined level. Please note that the flow statistics (e.g., packet delay and jitter)
shown here is the relative one-way values due to the clock screw between the sender and
receiver.

Similarly, we have designed a network congestion case. A traffic generator is programmed
which can generate noise traffic of either constant rate (emulate background traffics such as
constant rate ftp flows) or normal distribution (emulate the arriving traffic of a core Internet
router). The traffic generator is launched during streaming which delivery data to the traffic
receiver sitting on the other subnet. By outputting a large volume of traffic, the traffic gener-
ator creates a congestion link on the end-to-end path of the streaming application. Figure 4
shows the measured performance of the video stream in a 120-second test. In the first 60 s,
the traffic generator program yields a large volume traffic of normal distribution and leads
to the performance degradation of the video flow. Packet loss is observed during this period
which indicate the overflow of the router queue. The traffic generator is removed in the next

2 http://www.winpcap.org
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Fig. 3 Observation of end-to-end QoS w/ and w/o CPU contention

Fig. 4 Observation of end-to-end QoS w/ and w/o network congestion
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Table 4 Specification of QoS
violation datasets

a Three classes: Normal, CPU
and Congestion

Name No. of observations Attributes

Training data Testing data

QoS 4,000 3,524 3a

Fig. 5 Performance of the proposed ELM on QoS violation classification

Table 5 Classification accuracy for QoS violations

Name Training accuracy Testing accuracy Time (s) No. of neurons

Mean (%) Dev Mean (%) Dev

ELM 96.70 0.0030 96.54 0.0036 0.0714 30

Gram-Schmidt 96.72 0.0035 96.48 0.0029 0.2526 30

60 s testing. As can be seen from the last part of Fig. 4d, the video flow gradually restores its
quality, where frame rate varies within the acceptable range.

4.2.3 Performance Analysis

We use end-to-end flow descriptors such as packet delay, jitter and packet lost to distinguish
among a normal transmission, a CPU violation and a congestion violation. We collected 7,524
groups of data for all the three cases and randomly selected 4,000 groups as training data.
The rest are used as testing data. Table 4 gives the characteristics of QoS violation Datasets.

The activation function used in our proposed algorithms is a sigmoidal function g(x) =
1/(1 + e−x ) for additive neurons. The input weights ai and hidden biases bi are randomly
chosen from the range [−1, 1]. The experiment results are computed based on 50 trials. We
have gradually increased the number of neurons from 5 to 100 with the increscent pace of 5
in each round and measured corresponding classification accuracy. The data analysis results
are shown in Fig. 5. It shows that higher classification accuracy can be achieved with the
growth of neuron numbers, which also verifies our approximation conclusion.

Table 5 shows the training and testing RMSE of ELM and Gram-Schmidt orthonormal
neural networks with the 30th neuron. Seen from Table 5, the two neural networks both
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achieve good generalization performances with the same error level, which also supports our
equivalent relationship and universal approximation conclusions. From Table 5, ELM takes
less training time than the orthonormal method. Therefore ELM is a more effective method,
such an orthonormal transformation is not necessary.

5 Conclusion

In this paper, we systemically analyze two fast learning algorithms, which both have the
same property, i.e., the parameters of hidden neurons are random. Though many experimen-
tal results show that neural networks with ELM can achieve a good generalization perfor-
mance at a very fast speed, so far there lacks a strict theoretical justification whether they
are universal approximation. Here we first refer to the universal approximation of neural net-
works transformed by the orthonormal transformation, and then by illustrate the equivalent
relationship between ELM and the orthonormal networks, we successfully prove that neural
networks with ELM are also universal approximation. Without the need for orthonormal
transformation, ELM can achieve faster speed processing while yielding the same general-
ization performance. Simulation results based on benchmark regression and internet traffic
QoS violation classification support our theories.
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