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Abstract This article presents a simulation study for validation of an adaptation method-
ology for learning weights of a Hopfield neural network configured as a static optimizer. The
quadratic Liapunov function associated with the Hopfield network dynamics is leveraged
to map the set of constraints associated with a static optimization problem. This approach
leads to a set of constraint-specific penalty or weighting coefficients whose values need to be
defined. The methodology leverages a learning-based approach to define values of constraint
weighting coefficients through adaptation. These values are in turn used to compute values of
network weights, effectively eliminating the guesswork in defining weight values for a given
static optimization problem, which has been a long-standing challenge in artificial neural
networks. The simulation study is performed using the Traveling Salesman problem from
the domain of combinatorial optimization. Simulation results indicate that the adaptation
procedure is able to guide the Hopfield network towards solutions of the problem starting
with random values for weights and constraint weighting coefficients. At the conclusion of
the adaptation phase, the Hopfield network acquires weight values which readily position the
network to search for local minimum solutions. The demonstrated successful application of
the adaptation procedure eliminates the need to guess or predetermine the values for weights
of the Hopfield network.
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2 G. Serpen

1 Introduction

Static optimization and more specifically the combinatorial optimization has been subject to
rigorous empirical studies in numerous domains including hard and soft sciences, engineer-
ing, economics, business, and finance to list a few during the past decades particularly after the
widespread emergence of mainframe computing in early 1970s. Most notable solutions lev-
eraged direct search techniques in graph theory, heuristic search in artificial intelligence, and
dynamic programming in operations research among others. Reasonably large-scale problem
instances were successfully addressed for near-optimal solutions by these algorithms even
though in some cases computational complexity, i.e. both spatial and temporal, turned out
to be prohibitive for a real time context. Artificial neural network based optimizers on the
other hand might be positioned to address this very same challenge; scalability with respect
to real time computation requirements as the problem size increases to real life dimensions.
This premise is based on the fact that neural network optimizers do offer the prospect of
hardware realization upon appropriate technological advances and accordingly are poised to
fully leverage the massive parallelism inherent to neural optimization algorithms. If in fact
adequate technological advances can be realized, then the neural optimizers can compute
solutions of hard optimization problems practically in constant time regardless of the prob-
lem size. This premise is inherently lacking in non-neural approaches: no other non-neural
algorithm appears to offer an ability to leverage such a massive degree of parallelism so that
it can be promising for a real time context.

The artificial neural network literature offers an array of neural optimization algorithms
some of which are well positioned for real-time solutions of static optimization problems
[1,2]. The Hopfield network [3] and its stochastic or chaotic derivatives are prominent static
optimizers for addressing unconstrained, linear, quadratic programming, linear complemen-
tarity, discrete and combinatorial optimization problems. The Hopfield network, the most
basic recurrent architecture for optimization, is a fundamental building block in this venue,
is subject to substantial current interest [4,5], and is considered as an important continuous-
time computation paradigm [6]. It employs a gradient descent search mechanism and its
computational promise is to find a locally optimum solution. On the other hand its stochastic
or chaotic derivatives, Boltzman machine with simulated annealing, mean field annealing
network, and the chaotic Hopfield network [7], can compute near optimal solutions.

Recent theoretical developments exposed the computational power of the Hopfield net-
work and the findings are very promising: a Hopfield network subject to certain mild condi-
tions appears to be equivalent to a Turing machine as well as being able to address the NP-hard
“minimum energy” problem in polynomial time [8–10]. This development establishing the
continuous Hopfield network as a universal computing machine only adds to the excitement
towards fully leveraging its computational promise. This might also explain the widespread
ongoing interest among theoretical and applied researchers on the Hopfield network the-
ory and its applications as indicated by the recent literature although not so many real-life
applications of the Hopfield network appear to have been reported to date. A quick search
on only two of the many citation databases, PapersFirst� and ArticleFirst�, suggested that
there were over 800 papers, where the search query employed the two keywords “Hopfield”
and “optimization” for the article title field since 2000. A good many of these articles were
applications of the Hopfield network to static optimization problems in a surprising array
of fields encompassing social sciences, economics, finance, business, geography, image and
vision, forestry sciences, engineering, sciences, geography, as well as traditional artificial
intelligence and operations research among those to name.
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Hopfield Network as Static Optimizer 3

Hopfield network offers a true “real-time” optimization algorithm for computation of a
local optimum solution of a static optimization problem assuming a hardware-centric imple-
mentation that takes advantage of the high-degree of inherent parallelism. The promise is a
quick and local optimum solution, and scalability of the computation time with the increase
in the size of the problem [1]. Although theoretically very promising, in practice the Hop-
field neural network paradigm has been suffering from a number of important shortcomings.
Hopfield network in its basic form fails to compute at times feasible or valid solutions for
particularly large-scale static optimization problems. This shortcoming appears to be tied to
the presence of stable equilibrium (or fixed) points in the state space of network dynamics as
attractors which are not solutions of a particular optimization problem (i.e. infeasible solution
points). Weights of the network dynamics play an important role in determining the stable
equilibrium points and are typically defined through heuristics or empirical means in the
basic form of the Hopfield network. The issue was addressed with partial success through
stability-theoretic procedures to determine bounds on adaptable parameters, mainly con-
straint weighting coefficients, modifications to the network dynamics and the error equation
among other countless fixes [11–14]. It was demonstrated that the techniques that precom-
pute the values of weights fail to guide the Hopfield network dynamics towards feasible
solutions for those problems for which only a small fraction of the stable equilibrium points
are solutions [15]. A second and perhaps equally no less important weakness associated with
Hopfield network algorithm was that the computational power was constrained to finding
locally optimal solutions on the average by the virtue of employing a gradient descent search
mechanism. This shortcoming has been addressed through stochastic or chaotic enhance-
ments at the expense of relatively large computational cost or partial serialization [7].

Recently, a theoretical framework for an adaptive Hopfield network that attains its weight
vector through training for a given static optimization problem was proposed [16]. However,
the training has to be performed in an extremely high dimensional weight space, i.e. O

(
N 4

)

dimensions for an N -vertex graph search problem, i.e. a 500-vertex graph would require
62,500,000,000 weights or, more precisely, half of this number if symmetry of the weight
matrix is considered. It is well-known in machine learning that too many freely-adjustable
parameters lead to a model that is ordinarily too complex [17]. Regularization techniques
are often employed to reduce the number of freely adjustable parameters to facilitate a desir-
able learning profile [18–20]. Also the issue of ill-conditioning is of concern for the case of
gradient-descent based algorithms since the direction for most efficient descent is much more
difficult to determine, as a consequence of the high dimensionality of the surface [21].

Noting one peculiar aspect of Hopfield networks, this paper proposes that one is not forced
to perform the adaptation in the original weight space. Instead, the training or learning can be
performed in the comparably very low dimensional constraint weighting coefficient space,
since it is possible to compute all the entries in a weight matrix once the constraint weighting
coefficient values are known for a Hopfield network [22]. The study reported herein aims
to empirically test and validate this conjecture to establish feasibility of and to finalize the
implementation aspects of such an adaptation algorithm.

This paper presents a simulation study on learning-based adaptation of the Hopfield net-
work as a static combinatorial optimizer in the constraint weighting coefficient space: the
goal is determining the values of weights that will guide the network towards a local optimum
solution for a given optimization problem. Initially, underlying principles of the theoretical
and mathematical framework are discussed. Specifically, the classical Hopfield network, the
computational procedure that determines values of weights given constraint weighting coef-
ficients, the adaptation scheme which entails the gradient descent in the constraint weighting
coefficient space, and the configuration of Hopfield network dynamics for static optimization
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4 G. Serpen

are discussed. All this is followed by the simulation study based on a combinatorial optimi-
zation problem (the traveling salesman), analysis of the findings, and the conclusions.

2 Hopfield Network and Adaptation

2.1 Hopfield Network

A Hopfield network is a nonlinear dynamical system [3], whereby the definition of the con-
tinuous Hopfield network is as follows. Let zi represent a node output and zi ∈ [0, 1] with
i = 1, 2, . . . , K , where K is the number of network nodes. Then,

E = −1

2

K∑

i=1

K∑

j=1

wi j zi z j+ 1

λ

K∑

i=1

zi∫

0

f −1(z)dz −
K∑

i=1

bi zi (1a)

is a Liapunov function for the system of equations defined by

dui (t)

dt
= −ui (t) +

K∑

j=1

wi j z j (t) + bi and zi = f (ui ), (1b)

where wi j is the weight between nodes zi and z j subject to wi j = w j i , bi is the external input
for node zi , and f (·) is a nonlinearity, typically the sigmoid function with steepness defined
by a parameter λ. Note that the second term in the Liapunov function vanishes for very large
positive values of the parameter λ for cases where the activation function is a sigmoid.

The set of formulas given in Eq. 1b seek out through gradient descent a local minimum
of the quantity represented by Eq. 1a as dictated by the initial values of the neurons, neuron
update scheme (i.e. asynchronous versus synchronous) and order, and the basins of attractions
of stable equilibrium points in the state space of the network dynamics. It has been shown
that, for a large class of static optimization problems including those that are graph-theoretic,
many local minima in the Liapunov space may not be feasible solutions while those local
minima associated with feasible solutions are far from the optimal solution [14,15].

Learning through experience, i.e. prior mistakes or attempts, is the only feasible option for
Hopfield network as a static optimizer since no so-called training exemplars exist. Accord-
ingly, an adaptation scheme needs to look at prior unsuccessful attempts to extract and
integrate the associated experience into the network’s search algorithm. In other words, an
adaptation mechanism is needed that extracts the required information from previous unsuc-
cessful search attempts in order to incorporate it into the neural network dynamics so that
it is less likely for the Hopfield network to repeat the same failed search process or similar
ones. The adaptation methodology as detailed in the next sections follows this overall line of
reasoning to guide the Hopfield network towards feasible local minimum solutions of static
optimization problems. It also strives to scale with the size of the problem in the sense that
the applicability of adaptation procedure does not break down for larger problem instances.

2.2 Adaptation Scheme for Hopfield Network

A typical static optimization problem can be mapped to a single layer and often two-
dimensional neuron topology of the Hopfield network through empirical development of
an error function [3]. Each constraint of a static optimization problem can be mapped to
the network topology using an error term, formulated as either a quadratic or linear sum as
follows:
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Hopfield Network as Static Optimizer 5

Eϕ(z) = gα

K∑

i=1

K∑

j=1

dα
i jδ

α
i j zi z j or Eϕ(z) = gβ

K∑

i=1

δ
β
i zi for ϕ = 1, 2, . . . ,

∣
∣Sϕ

∣
∣ , (2a)

where

a. i �= j;
b. the set of constraints is given by Sϕ = {

C1, C2, . . . , Cϕ

}
with Sα and Sβ representing sets

of quadratic and linearly formulated constraints, respectively, Sϕ = Sα ∪ Sβ , Sα ∩ Sβ = φ

and
∣
∣Sϕ

∣
∣ = |Sα| + ∣

∣Sβ

∣
∣;

c. gϕ ∈ R+ if the hypothesis nodes zi and z j each represent for a constraint Cα in Sα are
mutually supporting and gϕ ∈ R− if the same hypotheses are mutually conflicting; the
term δα

i j is equal to 1 if the two hypotheses represented by nodes zi and z j are related
under the constraint Cα and is equal to 0 otherwise;

d. similarly, the term δ
β
i is equal to 1 or 0 to facilitate mapping of the constraint Cβ in Sβ to

the network topology;
e. and the dα

i j term is equal to 1 for all i and j under a hard constraint (which cannot be
violated by definition) and is a predefined cost for a soft constraint (which can be violated
in degrees), which is typically associated with a cost term in optimization problems.

In the case of a typical static optimization problem that has multiple constraints, the error
function can be defined as an algebraic sum of quadratic and linear error terms:

E(z, tk) = E1(z, tk) + E2(z, tk) + · · · + E|Sϕ|(z, tk)

= g1(tk)E ′
1(z, tk) + · · · + g|Sϕ|(tk)E ′|Sϕ|(z, tk), (2b)

where E ′
ϕ is the un-weighted error term, notably a scalar quantity readily computable through-

out the search process, associated with the constraint Cϕ for ϕ = 1, 2, . . . ,
∣∣Sϕ

∣∣ at discrete
time tk .

Equation 2b can be re-written in the following more explicit format (the discrete time
index is dropped from the notation for the sake of simplicity), which is defined to resemble
the generic template given by the Liapunov function in Eq. 1a:

E(z) = −1

2

|Sα |∑

α=1

gα

K∑

i=1

K∑

j=1

dα
i jδ

α
i j zi z j −

|Sβ |∑

β=1

gβ

K∑

i=1

δ
β
i zi . (3)

Upon comparison of this generic error function given by Eq. 3 with the Liapunov function
in Eq. 1a, weight and bias terms are defined in terms of constraint weighting coefficients as
follows:

wi j =
|Sα |∑

α=1

gαδα
i j d

α
i j and bi =

|Sβ |∑

β=1

gβδ
β
i for i, j = 1, 2, . . . , K . (4)

The Eq. 4 exposes a sole and explicit dependency of weights on constraint weighing coef-
ficients, and it may be feasible to exploit this unique relationship to facilitate adaptation
indirectly, i.e., weights are adapted through constraint weighting coefficients and not directly
in the weight space. An earlier attempt exactly did that by leveraging heuristics, i.e. increase
the magnitude of the constraint weighting coefficient if the associated constraint is violated
following a relaxation to a fixed point, to define values of constraint weighting coefficients
[23]. Another prior approach derived bounds on initial values of the constraint weighting
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6 G. Serpen

coefficients in Eq. 4 to induce solutions of a given static optimization problem as stable equi-
librium points in the state space of the Hopfield network dynamics [14,15]. It was also noted
in the same study that in many cases the set of solutions tended to become a much smaller
and proper subset of the set of all stable equilibrium points. This proved to be problematic
since the network will most likely converge to a fixed point that is not a solution (local or
otherwise) of the optimization problem under consideration. It is however possible to adapt
values of the constraint weighing coefficients in a more mathematically rigorous and sound
manner utilizing the procedure of gradient descent. One important aspect of the gradient
descent based search is that it can be repeatedly performed until the network dynamics locate
a feasible solution in an automated framework.

The main idea of adaptation is to perform gradient descent in the space of error versus con-
straint weighting coefficients to locate a local minimum. Consequently, the gradient descent
based update rule for adaptation of the constraint weighting coefficients is formulated as
follows:

gϕ (tk+1) = gϕ (tk) − µϕ

∂ E (z, tk)

∂gϕ (tk)
, (5)

where µϕ is the learning rate parameter that is a positive real number, gϕ (tk) is the constraint
weighting coefficient associated with the constraint Cϕ for ϕ = 1, 2, . . . ,

∣∣Sϕ

∣∣ at discrete
update time tk , and E (z, tk) is the value of error function at discrete time tk , and tk is the
discrete time instant representing the conclusion of k-th relaxation of the network dynamics
throughout an adaptation cycle.

Partial derivatives of the problem specific error function can easily be computed using
Eq. 2a as follows:

∂ E (z, tk)

∂gϕ(tk)
= E ′

ϕ (z, tk) for ϕ = 1, 2, . . . ,
∣∣Sϕ

∣∣ . (6)

As a result, update equations for constraint weighting coefficients become

gϕ (tk+1) = gϕ (tk) + µϕ E ′
ϕ (z, tk) for ϕ = 1, 2, . . . ,

∣∣Sϕ

∣∣ . (7)

It is relevant to note that the updates to the constraint weighting coefficients will always be
non-negative and hence, will increase only the magnitude of the coefficient for the constraint
that was violated [24].

A block diagram representation for the adaptation procedure is depicted in Fig. 1, where
the z (tk,∞) represents the value of output vector following relaxation to a fixed point at
the conclusion of the tk-th cycle. Following initialization of the node outputs and the con-
straint weighting coefficients, through which initial values of the weight matrix entries are
computed in accordance with the Eq. 4, the Hopfield network is let relax asynchronously
to a fixed point. Upon convergence to a fixed point that is not a locally optimum solution,
constraint weighting coefficients are updated through the Eq. 7. New values of weights are
computed using the most recently updated values of constraint weighting coefficients. Then,
the Hopfield network uses these new weight values to launch a new relaxation period, and
the search goes on until the first local optimum solution is found.

The proposed methodology herein to adapt the constraint weighting coefficients aims to
address a shortcoming of the Hopfield optimization algorithm. This shortcoming is associated
with the initialization/configuration phase while the Hopfield algorithm is being set up for
the specific static optimization problem. This adaptation process does not impact the gradient
search process implemented by the Hopfield network which is expected to compute locally
optimum solutions. Further improving the performance so that solutions approximating the
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Fig. 1 Adaptation in constraint weighting coefficient space

global optima are computed will require enhancements to the search process itself: these
could be in the form of stochastic (simulated annealing, mean field annealing, etc.) or chaotic
mechanisms being incorporated into the search process.

2.3 Configuration of Hopfield Network for Static Optimization

Solution of static optimization problems through the Hopfield network in most cases requires
a two-dimensional node array, i.e. searching for an optimal path in a graph with N vertices
would require N 2 nodes arranged in a two-dimensional N × N topology. The study presented
in this paper will leverage the well-known NP-complete benchmark problem, the Traveling
Salesman, from the combinatorial optimization domain. Given a list of N cities, the Traveling
Salesman problem (TSP) requires a visit to each city once while minimizing the total travel
distance. There are two problem constraints to satisfy: each city must be visited once, and
only once, and the total travel distance should be minimum. An N × N node array may be
employed as the network topology for this problem, where rows and columns represent the
cities and the visiting order, respectively. In this topology, any permutation matrix, i.e. each
column and row has exactly one node active, is a valid solution although most likely a locally
optimal one.

Consider the following error function proposed by Hopfield to map the TSP to the network
topology [3],

E(z) = −1

2
grow

N×N∑

i=1

N×N∑

j=1

δrow
i j zi z j − 1

2
gcol

N×N∑

i=1

N×N∑

j=1

δcol
i j zi z j − 1

2
gglo

(
N×N∑

i=1

zi − N

)2

−1

2
gdis

N×N∑

i=1

N×N∑

j=1

di jδ
dis
i j zi z j , (8)

where

δrow
i j = 1 if row(i) = row( j) or δrow

i j = 0, otherwise;
δcol

i j = 1 if col(i) = col( j) or δcol
i j = 0, otherwise;

δdis
i j = 1 if {|col(i) − col( j)| = 1 ∧ [row(i) �= row( j)]} or δdis

i j = 0, otherwise;
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8 G. Serpen

i �= j; grow, gcol , gdis, gglo ∈ R−, di j is the distance between cities row(i) and row( j), and
superscripts/subscripts row, col, glo, and dis stand for the so-called row, column, global, and
distance (inhibitory) constraints, respectively. Functions row(i) and row( j) return the row
and column location of nodes indexed by i and j , respectively. In Eq. 8, the first double-sum
term ensures that there is no more than one active neuron per row while the second double-
sum does the same for each column. The third error term encourages exactly N neurons to
be active for the N × N topology. The fourth term, a double sum, facilitates those solutions
with smaller distances to be preferred by the search algorithm.

Comparison of this error function in Eq. 8 with the generic Liapunov function of Eq. 1a
yields following definitions for the weight matrix entries and the external bias terms:

wi j = growδrow
i j + gcolδ

col
i j + gdisδ

dis
i j di j + gglo and

bi = 1

2
(1 − 2N ) gglo for i, j = 1, 2, . . . , N × N ; i �= j, (9)

where note that Sϕ = {
Crow, Ccol , Cdis, Cglo

}
, Sα = {Crow, Ccol , Cdis} and Sβ = {

Cglo
}
.

Equation 9 exposes the explicit relationship between the network weights and the constraint
weighting coefficients: it facilitates computation of weight values as a function of only the
constraint weighting coefficients. This observation forms the adequate basis for learning the
weights through constraint weighting coefficients since adaptation can be implemented in
the constraint weighting coefficient space, which is relatively very low dimensional (in gen-
eral), and weights may be recomputed each time these coefficients are updated.

3 Simulation Study

The simulation study aims to assess feasibility, performance, and scalability (i.e. utility as
the problem size increases) of the adaptation scheme for the Hopfield network dynamics
configured for static optimization. Simulation of Hopfield neural network dynamics requires
derivation of discrete-time equations using the continuous dynamics given in Eq. 1b. The
specific form of discrete-time equation for the neuron dynamics will depend on the numeri-
cal integration method chosen. In this study, the discrete time equation, in one of its simpler
forms, is chosen in the following construction:

ui (tk+1) =
N×N∑

j=1

wi j z j (tk) + bi and

zi (tk+1) = f
[
ui (tk+1)

]
for i = 1, 2, . . . , N × N (10)

where N × N is the number of neurons in the Hopfield network, zi (tk) and ui (tk) are the
values of i-th neuron output and activation, respectively, at discrete time tk , wi j is the weight
between neurons zi and z j subject to wi j = w j i and wi i = 0, bi is the external bias input for
node zi , and f (·) is the activation function. Given that the application problem, the TSP, is
from the domain of combinatorial optimization, a unipolar binary-valued activation function
is adopted for computational cost concerns among others as it is much less costly to simulate
a binary threshold function versus a continuous sigmoid function.

In addressing static optimization problems, there are two operational modes for the Hop-
field network: adaptation (training or learning) and relaxation. Often these two modes are
coupled. Starting with initial conditions, network dynamics are relaxed to a fixed point, which
is not very likely to be a local minimum solution at least during initial trials. If the fixed point
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Hopfield Network as Static Optimizer 9

is not a solution, the network dynamics are subjected to adaptation (i.e. adjustable parameters
re-computed). Consequently, a new relaxation cycle is initiated, which is followed again by
an adaptation cycle if, in fact, the fixed point is not a locally optimal solution this time around
either, and so on.

Noting Eq. 2a, the process of mapping a given optimization problem to the two-
dimensional Hopfield network topology suggests if a constraint weighting coefficient is
a positive or negative real number, although the magnitude will not be known. Bounds can be
established on magnitudes to induce solutions as local minima often at the expense of many
more superfluous ones [15]. However, to assess the true inherent potential of the adaptation
algorithm, magnitudes of constraint weighting coefficients will initially be set to random
values in the interval [0.0,1.0]. Initial values of weights are then determined using initial
values of constraint weighting coefficients through the Eq. 9. Initial values of neuron out-
puts are typically randomly specified as is the update order for neurons during the course of
relaxation. Asynchronous update of neuron outputs, i.e. one neuron at a time, is desirable,
and adopted in this study, for convergence to a fixed point rather than a limit cycle. The latter
becomes a possibility for the case of synchronous update, i.e. multiple neurons updated at
any given time.

3.1 Adaptation Procedure

Adaptation in constraint weighting coefficient space is implemented through the basic gra-
dient descent approach articulated in Eqs. 5–8. The pseudocode pertaining to specifics of
implementation of adaptation is further detailed in Table 1.

3.2 Managing Computational Complexity of Simulation

Simulating the Hopfield network algorithm for large instances of optimization problems
poses overwhelming challenges in terms of the memory space that must be allocated for the
weight matrix, which is the highest-cost data structure. In general, it is well known that the
number of memory bytes required is on the order of O

(
N 4

)
for N -vertex graph search prob-

lems mapped to a Hopfield network topology. Searching a 1000-vertex graph would require
approximately 4×E+12 bytes of main memory storage to maintain weight matrix entries:
two assumptions prevail for this computation, which are that each weight matrix entry is
stored in a float type variable and a float type variable requires 4 bytes of storage space.
Reasoning along the same lines, a computing platform with on the order of a couple Giga
bytes of main memory, say a Windows™ XP machine, could accommodate up to 200-vertex
graph search problems, most likely at the expense of an excessive number of page faults.
Accordingly, we adopted the on-demand computation of weights (i.e. no weight matrix data
structure is created) for large-scale TSP instances, in this case more than 100 cities, in order
to circumvent the space-cost barrier posed by the creation of a weight matrix data structure
[22]. This unavoidable decision, reached at as a consequence of the context of computational
resources available to us, has severely limited our ability to perform as many large-scale
simulations as would be desirable.

3.3 Simulation Results

Assessing the performance of the adaptation scheme with respect to quality of solutions,
computational cost, and scalability (with respect to the applicability of adaptation proce-
dure for large city counts) is a fundamental objective of the simulation study. Measuring the
computational cost will be facilitated through the total number of network updates, i.e. one
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10 G. Serpen

Table 1 Pseudocode for Adaptation of Hopfield Dynamics in Constraint Weighting Coefficient Space

Initialization

Initialize Hopfield network constraint weighting coefficients randomly in the range [−1.0,1.0].

Initialize learning rates for constraint weighting coefficients; a preliminary empirical search may be
needed for a good set of values.

Initialize weights of the Hopfield network through Eq. 4.

Initialize Hopfield network neuron outputs randomly in the range [0.0,1.0].

Adaptive Search

Relaxation

Relax Hopfield network dynamics through asynchronous update until convergence to a fixed point.

Adaptation

Update constraint weighting coefficients as in Eq. 7.

Compute constraint specific unweighted error values:

Initially let E ′
row = E ′

col = E ′
dis = E ′

glo = 0.0

If
N∑

i=1
zrow,i > 1.0, then E ′

row = E ′
row +

N∑

i=1
zrow,i − 1.0 for row = 1, 2, . . . , N

If
N∑

i=1
zi,col > 1.0, then E ′

col = E ′
col +

N∑

i=1
zi,col − 1.0 for col = 1, 2, . . . , N

E ′
dis =

N×N∑

i=1

N×N∑

j=1
di j δ

dis
i j zi z j

E ′
glo =

N×N∑

i=1
zi − N

Update learning rates for constraint weighting coefficients using the heuristic global adaptation rule
[Cichocki et al., 1993]:

µϕ =

⎧
⎪⎪⎨

⎪⎪⎩

1.05 × µϕ, if E ′
ϕ

(
tk+1

)
< E ′

ϕ (tk )

0.7 × µϕ, if E ′
ϕ

(
tk+1

) ≥ 1.04 × E ′
ϕ(tk ), for ϕ = row, col, dis, and glo.

µϕ, otherwise

Update constraint weighting coefficients:

grow = grow − µrow E ′
row

gcol = gcol − µcol E ′
col

gdis = gdis − µdis E ′
dis

If E ′
glo > 0.0, then gglo = gglo = µglo E ′

glo
If E ′

glo < 0.0, then b = b + µglo E ′
glo

Recompute weights through Eq. 4.

Termination

If termination criteria not satisfied (i.e. a local minimum solution not found or maximum number of
adaptations trials attempted), continue with Adaptive Search.

complete update of outputs for all the neurons in the network. The normalized total distance
(NTD), i.e. the total travel distance of a local minimum solution divided by the number of
cities, will be leveraged to determine the quality of solutions.

An empirical approach is needed to initialize the values of learning rate parameters, one
per constraint, appearing in Eq. 7. In a general sense, it is reasonable to start with inde-
pendently determined values for these parameters. Since the TSP has four constraints, (row,
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Table 2 Performance for best
performing learning rate initial
settings for 100-city TSP

Mean SD

Relax & Adapt Cycles 7.8 2.3

Network updates 27.0 17.5

Quality of solution 0.286 0.136

Table 3 Performance for the 150-city TSP

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

Relax & Adapt Cycles 14 23 23 30 50 28

Network updates 92 102 96 206 175 134

Quality of solution 0.1300 0.4954 0.5259 0.5079 0.4440 0.4206

column, distance, and global) there are four parameter values to be initialized following an
empirical process of search. The effect of these four learning rates on the adaptation algo-
rithm performance was probed through judicious sampling of the four-dimensional parameter
space. Eight cases, where each one represents a unique combination of values for the initial
values of four learning rates, were simulated for the 100-city TSP instance: each case was
simulated ten times. Significant performance differentiation was observed across these eight
cases. One particular combination of settings, namely µrow = 1.0, µcol = 1.0, µdis = 0.01,
and µglo = µbia = 1.0, resulted in better quality solutions with lower computational cost
compared to all the rest considered. It is also relevant to note that, regardless of the learning
rate parameter settings, the adaptive Hopfield network was able to converge to a solution of
the 100-city TSP in all 80 simulation cases. Statistical measures of quantities of interest are
shown in Table 2 for the best performing learning rate settings. The “Quality of Solution” is
measured by the normalized total distance (NTD) (i.e. total solution distance is divided by
the number of cities) of the solution found, while noting that the expected value of NTD for
a randomly determined solution is 0.50. The “Relax & Adapt Cycles” indicates how many
times the Hopfield network converged to a fixed point and consequently went through an
adaptation process, while the “Network Updates” shows the number of times a complete
update of all the neurons in the network took place.

In order to test the performance of the adaptation procedure for larger problem instances,
the TSP with city counts of 150, 200, 250, and 500 were studied using the learning rate initial
settings adopted above and results are presented in Tables 3–7. The adaptation scheme was
able to guide the network towards a local optimum solution in most cases although there were
cases where search attempts proved to be futile even after substantial computational effort
was expended. This happened more frequently as the scale of the problem increased and it
is most likely due to excessive amount of computation needed for on-demand computation
of weights. Attempts to locate a local minimum solution for city counts above 500 were not
successful within a four-week maximum time allotment imposed by the resources available
at the time.

Since the Hopfield network is a gradient descent based search algorithm, its performance is
expected to project the typical profile of a deterministic search. Results in
Tables 2–7 indicate that the network more often than not located an average quality solution
although, at times, some solutions had surprisingly high quality, i.e. very low normalized
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Table 4 Performance for the 200-city TSP

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

Relax & Adapt Cycles 7 19 33 7 19 17

Network updates 73 45 104 40 107 74

Quality of solution 0.1241 0.5278 0.4999 0.1136 0.4644 0.3459

Table 5 Performance for the 250-city TSP

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

Relax & Adapt Cycles 37 7 8 19 37 22

Network updates 135 21 36 183 253 126

Quality of solution 0.5487 0.1266 0.1069 0.5362 0.5297 0.3696

Table 6 Performance for the 400-city TSP

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

Relax & Adapt Cycles 19 17 18 18 18 18

Network updates 267 86 117 56 266 158

Quality of solution 0.4596 0.4776 0.4630 0.4996 0.4399 0.4679

Table 7 Performance for the 500-city TSP

Trial 1 Trial 2 Trial 3 Mean

Relax & Adapt Cycles 25 18 25 23

Network updates 261 329 333 308

Quality of solution 0.4823 0.4836 0.4867 0.4842

travel distance. Solution quality aspect of the performance appeared to scale reasonably well
with the increase in the size of the problem up to 250 cities: two out of five solutions had very
low NTD values for the 250-city TSP instance and average quality of solutions remained
less than 0.40 across this range of city counts. However, as the problem size increases to 500
cities, performance of the adaptive Hopfield network approaches to that of a random search
algorithm, although seemingly maintaining a slight edge over it. However, further validation
of this observation would be justified given the limited nature of the empirical data available
in this respect. The computational cost increases with the raise in the size of the problem
although not in a dramatic manner: the trend of increase in the number of total relaxations is
observable in Tables 5–7. One is tempted to interpret these numbers further: considering that
relaxation cycle (an update) for hardware realization would typically require on the order of
milliseconds or less, an update count of 1,000 would essentially require no more than one
second to perform the search for a local optimum solution. This observation suggests there is
promise in applying the Hopfield network as an optimization algorithm in a real-time context.
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Simulation results confirm that the proposed adaptation methodology facilitates an
automated procedure to determine values for constraint weighting coefficients such that
the Hopfield network is consequently able to locate a locally optimum solution for the TSP.
Empirical results further demonstrate that the methodology appears to scale to larger problem
sizes: locally optimum solutions were computed for 500-city TSP instances within reason-
able computation cost bounds although further study for even larger problem sizes would be
justified.

3.4 Observations on and the Impact of the Proposed Adaptation Methodology

The proposed approach is applicable for any static optimization problem, combinatorial or
otherwise, that can be mapped to the Hopfield network through a quadratic penalty/per-
formance function. In other words, the proposed algorithm is poised to be able to search
for a set of values for the penalty coefficients (e.g. constraint weighting coefficients) so
that the fixed point the Hopfield network converges following relaxation of its dynamics is
a locally optimum solution of the specific optimization problem under investigation. The
amount of computational effort and the duration of such a search are likely to heavily depend
on the nature of the optimization problem being addressed and will require a comprehensive
follow-up empirical study to assess, which admittedly is not contained within the scope of
work presented here.

The process of solving a static optimization problem with the Hopfield network or its
derivatives requires formulation of a problem-specific penalty/performance function and
empirical exploration of a suitable set of values for the penalty (constraint weighting) coef-
ficients. The designer might have to perform a trial-and-error search to explore the penalty
coefficient space to determine appropriate values for these parameters since randomly deter-
mined values will often not suffice. The work proposed herein in effect automates this very
same process of trial-and-error (which might require a certain degree of expertise as well)
and makes it possible to perform the same work without any noteworthy level of expertise.
Accordingly, the proposed methodology does not induce additional overhead for the overall
optimization process when considered from start to finish.

The basic Hopfield network implements a gradient-descent search algorithm, which has
the fundamental premise of computing a locally optimal solution for a static optimization
problem. The enhancement being suggested herein does not change this fact since it is related
to the setup phase of the algorithm. In other words, the proposed contribution addresses a
shortcoming of the algorithm associated the initialization/configuration phase and not the
search phase. Accordingly, even after incorporating the enhancement being proposed, the
Hopfield network performs a gradient descent search for solutions of the optimization prob-
lem. Ordinarily a relatively straightforward enhancement of the basic Hopfield algorithm
along the lines of incorporating a stochastic search component, i.e. as in the mean field
annealing or the Boltzmann machine, is likely to improve the solution quality dramatically
at the expense of greater computational cost and partial loss of parallelism, while retaining
the applicability of the proposed adaptation scheme.

The proposed methodology for adaptation of constraint weighting coefficients addresses
an outstanding shortcoming associated with solving static optimization problems with the
Hopfield networks. Prior to the research findings reported herein, values of constraint weight-
ing coefficients could only be defined through empirical means or pre-computed, both of
which projected their own limitations as well. This study facilitates values of penalty or
constraint weighting coefficients to be defined through a sound mathematical and adaptive
methodology within an automated framework as its significant contribution.
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14 G. Serpen

4 Conclusions

This study demonstrates feasibility and applicability of an adaptation methodology for deter-
mining values of constraint weighing coefficients for a Hopfield network configured for
static optimization. The proposed adaptation scheme effectively eliminates the guesswork
associated with determining appropriate values for the said parameters. The work presented
herein makes an important contribution towards enhancing and effectuating the Hopfield
network as a more viable algorithm for addressing optimization problems. Given the signifi-
cant computational promise of Hopfield networks as an optimization algorithm for real time
environments, assessing the scaling properties of the adaptation scheme for even larger scale
optimization problem instances is an important extension of this work. Another direction
for further research is to evaluate the utility of a stochastic enhancement of the adaptive
Hopfield search algorithm for large-scale problem instances for computation of near-optimal
solutions.
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