
Neural Process Lett (2007) 26:145–158
DOI 10.1007/s11063-007-9048-7

Comparison of Stochastic Global Optimization Methods
to Estimate Neural Network Weights

Lonnie Hamm · B. Wade Brorsen · Martin T. Hagan

Published online: 1 September 2007
© Springer Science+Business Media, LLC 2007

Abstract Training a neural network is a difficult optimization problem because of numer-
ous local minima. Many global search algorithms have been used to train neural networks.
However, local search algorithms are more efficient with computational resources, and there-
fore numerous random restarts with a local algorithm may be more effective than a global
algorithm. This study uses Monte-Carlo simulations to determine the efficiency of a local
search algorithm relative to nine stochastic global algorithms when using a neural network on
function approximation problems. The computational requirements of the global algorithms
are several times higher than the local algorithm and there is little gain in using the global
algorithms to train neural networks. Since the global algorithms only marginally outperform
the local algorithm in obtaining a lower local minimum and they require more computational
resources, the results in this study indicate that with respect to the specific algorithms and
function approximation problems studied, there is little evidence to show that a global algo-
rithm should be used over a more traditional local optimization routine for training neural
networks. Further, neural networks should not be estimated from a single set of starting values
whether a global or local optimization method is used.

Keywords Evolutionary algorithms · Function approximation · Neural networks ·
Simulated annealing · Stochastic global optimization

L. Hamm
Straumur-Burdaras Investment Bank, London, UK

B. W. Brorsen (B)
Department of Agricultural Economics, Oklahoma State University, 414 Agricultural Hall, Stillwater,
OK 74078-6026, USA
e-mail: wade.brorsen@okstate.edu

M. T. Hagan
School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA

123

146 L. Hamm et al.

1 Introduction

Training neural networks is challenging because the objective function being minimized con-
tains numerous local minima. Therefore, some have used so called global search algorithms
to train neural networks rather than the more traditional local search algorithms. Global
optimization algorithms are a class of algorithms that seek to avoid getting trapped in local
minima.

Global search algorithms can be divided into two broad categories, stochastic and deter-
ministic. Deterministic global algorithms are not investigated here because they are too slow
for problems with more than a few parameters. Instead, several stochastic global algorithms
are investigated. Some examples of stochastic search algorithms are simulated annealing
and various evolutionary algorithms such as genetic algorithms, evolutionary strategies, and
evolutionary programming [1].

Simulated annealing was used by Porto et al. [2], Sexton et al. [3], and Ludermir [4] to
train neural networks. Genetic algorithms are the most common evolutionary algorithms used
to train neural networks, especially in recent applied work [5–7]. Some examples of using
evolutionary programming or evolutionary strategies are Binner et al. [8], Porto et al. [2],
and Fisher et al. [9]. Evolutionary algorithms have also been used to evolve the architecture
of neural networks as well as the weights [10]. However, this study is only concerned with
estimating the weights of neural networks using a fixed architecture. That is, a neural network
with a fixed number of hidden layers and hidden neurons.

When an objective function has many local minima, a global search algorithm can poten-
tially find a lower minimum than a local algorithm. But since local search techniques are
much faster, restarts of a local search algorithm with random starting values are an alter-
native to using global algorithms. Many studies have sought to compare local and global
search algorithms for training neural networks. However, the results reported in the literature
are mixed. From an experimental evaluation standpoint, many of these studies lack rigor.
Many of the studies looked at the performance of the algorithms on only one or two data
sets and few of the studies compared results across different global optimization routines.
In addition, the majority of the data sets were classification problems or fitting a function
of a single input variable [11–13]. Less attention has been paid to function approximation
problems. This study provides a rigorous comparison of nine global algorithms against an
efficient local optimization routine across six data sets in a function approximation context.
Since only function approximation problems are studied, the conclusions may not extend to
classification problems. The stochastic global algorithms are: two simulated annealing algo-
rithms, one simple random stochastic algorithm, one genetic algorithm and five evolutionary
strategy algorithms. Depending upon the size of the neural network, the neural networks are
estimated with either 250 or 500 random restarts of each algorithm. The distributions of the
final objective function values from each of these restarts are then compared against each
other. Speed is measured as the time taken to solve the 250 or 500 optimizations.

2 Stochastic Global Optimization

Local search techniques use the gradient of the objective function with respect to the model
parameters to guide the search. The search will generally move downhill in the search space
from its starting point towards the nearest minimum. Stochastic global optimization algo-
rithms are not restricted to taking only a downhill step. In addition, they may simultaneously
explore many different regions of the search space. A concept at the core of stochastic global

123

Stochastic Global Optimization Methods 147

optimization is the generation of a trial point θ̃ by taking a step from the current point θ as
follows:

θ̃ = θ + r, (1)

where r is a random vector drawn from some probability density function. The random move
is often referred to as a mutation in the evolutionary algorithm literature.

In the beginning of a simulated annealing algorithm [1], large steps are taken from the
current point according to (1). As the algorithm progresses, the variance of r decreases, steps
are smaller, and the probability of accepting inferior trial points decreases. The algorithm
begins to focus on the most promising areas of the parameter space. Eventually, the hope is
that it settles to a point that is close to the global minimum.

Genetic algorithms as optimization algorithms are based loosely on the concepts of selec-
tion and reproduction found in nature. As such, the literature draws much of its terminology
from genetics and biology. Genetic algorithms require a set of potential or candidate solu-
tions, called individuals, to the problem at hand. The candidate solutions or individuals are
referred to collectively as a population. The individuals in a population are born, mate, and
die. A typical number of individuals in a population would be between 20 and 100.

In some genetic algorithms, the individuals in the population are encoded as binary strings.
However, for real-valued optimization problems, there are advantages to using a real-valued
encoding. That is, leaving the individuals as floating point numbers as they are in simulated
annealing [14,15]. Real-valued encoding is used in this research.

An iteration of a genetic algorithm is referred to as a generation. In each iteration or gen-
eration, the individuals are subject to the operations of mutation, crossover, and selection,
which operate on the individuals to form the next generation of the population. The crossover
operator is the distinguishing operator of genetic algorithms [16].

Crossover has traditionally been viewed as the main search operator with mutation being
only a background operator. Crossover is the process by which “genetic” material from
different individuals is combined to create a potentially superior offspring. Pairs of indi-
viduals are picked at random from the population to serve as parents. These parents are
subjected to crossover to form offspring. A simple crossover operator is the one-point cross-
over scheme. Two parents s = (s1, . . . , sn) and v = (v1, . . . , vn) are drawn at random
from the population. A random point k ≤ n is chosen and the elements above this point
are swapped which produces the individuals s′ = (s1, . . . , sk−1, sk, vk+1, . . . , vn) and v′ =
(v1, . . . , vk−1, vk, sk+1, . . . , sn). Many other crossover schemes have been used.

In the case of this research, an individual that produces a relatively low function value
would have a high fitness value. A probability that is proportional to its fitness is assigned to
each individual. Selection for the next generation’s population is then based on this proba-
bility.

Similar to genetic algorithms, modern evolutionary strategy algorithms operate on a pop-
ulation of potential solutions. However, in contrast to genetic algorithms, mutation is the
primary operator and recombination is only a background operator. One of the most common
evolutionary strategies is the (µ, λ)-evolutionary strategy. The (µ, λ)-evolutionary strategy
is so named because it generates λ offspring from µ parents, λ > µ ≥ 1. The λ offspring
are generated by mutation. Some implementations of the (µ, λ)-evolutionary strategy also
apply a recombination operator. The best µ individuals from the λ offspring are selected
for inclusion in the next generation. The comma in (µ, λ) represents that only the offspring
are available for selection by survival of the fittest to be included in the next iteration of the
algorithm.

123

148 L. Hamm et al.

One of the defining characteristics of modern evolutionary strategies is their ability to
evolve or self-adapt the variances and sometimes covariances of the mutations. Therefore,
the individuals in the population are composed of the parameters being optimized, called
object variables in the literature, and the variances and covariances, called strategy parame-
ters, of a multivariate normal distribution for mutation.

3 Neural Network Architectures and Data

This study is restricted to training of the feedforward type of multilayer perceptron (MLP).
The specific form used in this study is defined by:

f (xt , θ) = x̃′
tφ +

p∑

j=1

β j G(x̃′
tγ j) (2)

where xt is an n ×1 vector of inputs or explanatory variables for observation t , x̃t = (1, x′
t),

γ j is an (n + 1) × 1 vector of weights connecting the inputs to hidden neuron j , θ =
(φ0, . . . , φn, β1, . . . , βp, γ

′
1, . . . , γ

′
p) is the vector of model parameters or weights, p is the

number of hidden neurons in the single hidden layer, and G(•) is the hidden layer activation
function defined by:

G(z) = 1/[1 + exp(−z)]. (3)

Given a set of training data with T observations, the objective or cost function in this study
is penalized least squares:

min
θ∈�

Q(θ) =
T∑

t=1

[yt − f (xt , θ)]2 + rφ

n∑

i=0

φ2
i + rβ

p∑

j=1

β2
j

+ rγ

p∑

j=1

n∑

i=0

γ 2
i j (4)

where yt is the dependent variable, sometimes called the target value, � is the space of
feasible weights or model parameters, and rφ, rβ, and rγ are weight decay constants. The
weight decay constants penalize large weight values and were employed in Franses and van
Dijk [17]. Following Franses and van Dijk [17] the weight decay parameters are set equal to
rφ = .01, and rB = rγ = .0001.

The six training data sets used in this study were taken from Franses and van Dijk [17] and
are detailed in the following sections. These data sets are primarily economic time series. Eco-
nomics provides a rich source of function approximation problems [18]. Table 1 summarizes
the six neural network models.

3.1 Bilinear

Data with the bilinear model are generated by

yt = βyt−2εt−1 + εt (5)

with β = 0.6 in this study. The series is generated by setting y−1 = y0 = 0 and drawing
εt from a standard normal distribution. A total of 350 observations are generated with the
first 100 discarded leaving 250 observations for the training set. Granger and Andersen [19]

123

Stochastic Global Optimization Methods 149

Table 1 Summary of training data sets and neural network models

Data Set Obs NN architecture # parameters

Bilinear 250 2-3-1, dc; logistic-identity 15
DAX 360 4-4-1, dc; logistic-identity 29
JYUS 364 2-3-1, dc; logistic-identity 15
JYUSTTR 326 2-3-1, dc; logistic-identity 15
Flare 533 22-8-3; logistic-identity 211
MG 500 5-6-1; logistic-identity 43

Note: Column 2 is the number of observations in the data set. The neural network architecture is shown in col-
umn 3. The number of neurons in consecutive layers is enumerated as input-hidden-output, with a dc following
indicating a direct connection between the input and output neurons. Column 3 also likewise enumerates the
activation functions beginning with the first hidden layer. Column 4 is the number of weights for the model

showed that linear models will not be successful in modeling this series. Following Franses
and van Dijk [17], two lags are used as inputs to the model. This training set is referred to as
the Bilinear data set.

3.2 JYUS

The second time series is the weekly returns on the Japanese Yen-US dollar exchange rate.
The weekly return is given by

rt = ln Pt − ln Pt−1, (6)

where rt is the return for week t and Pt is the price level of the Japanese Yen-US dollar
exchange rate for week t . The training data consists of 364 observations from January 1986
through December 1992. The relationship between the JYUS returns and its lags is nonlinear
[17]. Two lags of (6) are used as inputs. This data set is referred to hereafter as the JYUS
data set. Exchange rates as with many financial time series are often modeled with gener-
alized autoregressive conditional heteroskedasticity [20]. It is not clear that the presence of
heteroskedasticity should in any way affect the ability of the various algorithms to find the
global optimum, but we cannot eliminate that possibility.

3.3 JYUSTTR

A second model to predict the Japanese yen-US dollar exchange rate is constructed by using
technical trading rules as inputs to a neural network prediction model. Specifically, moving
average trading signals are used. Following the notation of Franses and van Dijk [17], we
define a moving average for period t as

mt (τ) = 1

τ

τ−1∑

i=0

pt−i (7)

A moving average technical trading rule can be constructed from (7) as follows

st (τ1, τ2) = mt (τ1) − mt (τ2). (8)

where τ1 < τ2. Equation (8) defines what is commonly called a dual moving average cross-
over. Following Franses and van Dijk [17], τ1 and τ2 are set to 1 and 40. The time periods
are the same as with the JYUS data set. Three lags of (8) are used as inputs. This data set
will hereafter be referred to as JYUSTTR.

123

150 L. Hamm et al.

3.4 DAX

The DAX time series data concerns the prediction of weekly absolute returns on the DAX
stock index of the Frankfurt stock exchange. The weekly absolute returns are similarly defined
as in (6) except that the absolute value is taken. This task is given to be harder than predicting
just return levels. Franses and van Dijk [17] showed evidence of nonlinearity between this
series and its lags. The time period for this data is 1986–1992. Two lags are used as inputs
and three hidden neurons are used.

3.5 Mackey-Glass

This study uses a discrete version of the Mackey-Glass equation as used in Gallant and White
[21]:

g∗(xt−5, xt−1) = xt−1 + 10.5 ·
[

0.2 · xt−5

1 + x10
t−5

− 0.1 · xt−1

]
. (9)

This series is said to be qualitatively like financial market data. The series can exhibit
long stretches of volatile data of apparently random duration. The Mackey-Glass data was
generated from (9) with starting values of x0 = 1.6 and xi = 0, i = −4, . . .,−1. There
were 1000 observations generated with the first 500 discarded leaving 500 observations for
training data. The neural network model has five inputs consisting of five lags of the Mac-
key-Glass (MG) series. As can be seen from (9), only lags t−1 and t−5 are necessary to
approximate this series. However, in most actual applications of neural networks, the true
dimension of the problem is unknown. Therefore, superfluous inputs are commonly part of
neural network modeling. The neural network model has one hidden layer with six neurons,
logistic activation functions for the hidden layer neurons and an identity transfer function for
the output neuron.

3.6 Flare

The Flare data are solar-flare data. The objective is to predict the number of small, medium,
and large size flares that will happen during the next 24-h period in a fixed active region of
the suns surface. There are three dependent variables in the data set, one each to predict the
number of small, medium, and large solar flares. There are 22 inputs describing the type and
history of the active region and the previous flare activity. The first 533 observations from
the data file flare1.dt are used for training. Based upon the training and prediction results on
this data set from Prechelt [22], a network with eight neurons in a single hidden layer with
the logistic transfer function is chosen and a identity activation function in the output layer.
The scaling of the data is left as it is in the original file. This leaves all the input variables
scaled from 0 to 1 and. All the outputs have minimum values of 0 with maximum values of
.75, .375, and 1.00.

4 Optimization Algorithms

Stochastic global algorithms are theoretically good at widely exploring the potential solution
space. However, they are slow at finding the local maximum once a promising area of the
solution space is found. Therefore, it is common to combine a local algorithm with a global
algorithm by using the weights obtained from the global algorithm as starting values for the

123

Stochastic Global Optimization Methods 151

local routine [23,24]. This two-phase approach has been used for training neural networks
[25,26]. This research uses a two-phase approach by using the local search routine used
in this study with each global algorithm. There is no widely accepted criterion on when to
switch from the global algorithm to the local algorithm. Since the switch needs to occur
before a local optimum is reached, convergence criteria that are used for local routines, such
as the magnitude of the gradient, are not appropriate. Therefore, for simplicity and so that all
algorithms would be treated in the same way, the global routines are run for 100,000 function
evaluations. Speed could have been increased by picking a number smaller than 100,000 and
accuracy could have been increased by picking a larger number. Thus, the choice of 100,000
represents a single point in the tradeoff between accuracy and speed. After 100,000 function
evaluations is reached, the local routine then takes over and is run to convergence. Without
using a two-phase approach the performance of the global methods was much worse than the
local algorithm. The local and global optimization algorithms along with their abbreviations
are enumerated below.

4.1 LO

The two local optimization algorithms used in this study are the quasi-Newton routine DUM-
ING and the conjugate-gradient routine DUMCGG from the IMSL subroutine libraries IMSL
Math/Library [27]. The quasi-Newton routine is used on the Bilinear, DAY, JYUS, JUUSTTR,
and Mackey-Glass training problems. The conjugate-gradient routine is used on the much
larger Flare training problem. The conjugate-gradient routine does not require calculation or
storage of the BFGS approximation to the Hessian. For the DUMING routine, the maximum
number of iterations is set to 20,000 and the maximum number of function and gradient
calculations is set to 30,000. For the DUMCGG routine, the maximum number of function
evaluations is set to 60,000. All other user definable parameters for the DUMING and DUM-
CGG routines, including the gradient and step size based convergence criteria, are set to their
default.

4.2 NNGA

The NNGA algorithm is a genetic algorithm that uses the neural network specific crossover
operator proposed by van Rooij et al. [28]. Mutation for the NNGA is accomplished with
a normal distribution. The standard roulette selection mechanism is used for the selection
operator. The NNGA uses a generational replacement scheme whereby the entire population
is replaced in each generation. The replacement mechanism is implemented with elitism. The
best performing chromosome is retained and replaces a randomly selected individual in the
next generation. Following van Rooij et al. [28], the population size is set at 50. The bias of
the fitness normalization, which maintains constant selective pressure, is set experimentally.
The standard deviation of the mutation and the probability of mutation and crossover are also
set experimentally.

4.3 EVOL

This algorithm is an evolutionary strategy taken from Schwefel [29] who refers to the algo-
rithm as EVOL. In evolutionary strategy notation, the algorithm is referred to as a (1+1)-evo-
lutionary strategy. The algorithm employs Gaussian mutation of the model parameters. The
FORTRAN code included with Schwefel [29] was used. The code was modified to suppress

123

152 L. Hamm et al.

the default convergence so that all algorithms were evaluated in the same fashion using the
number of function evaluations.

4.4 KORR1, KORR2, KORR3, and KORR4

The KORR1, KORR2, KORR3, and KORR4 algorithms are variations of the KORR evolu-
tionary strategy algorithm taken from Schwefel [29]. The KORR algorithm is a multimem-
bered (µ, λ)-evolutionary strategy. As with the EVOL algorithm, the FORTRAN coding
from Schwefel [29] was used. Similar to EVOL, the code was modified to replace the default
convergence criterion with one based on the number of function evaluations used. For all four
evolutionary algorithms, the covariance terms for mutation are set to zero and the number of
parents and descendents is set to 10 and 60 respectively. The KORR1 algorithm utilized no
recombination. The KORR2 algorithm is similar to KORR1 except intermediary recombi-
nation is used for evolution of the object variables or neural network weights. The KORR3
algorithm adds intermediary recombination of the step sizes of mutations to KORR1. KORR4
uses intermediary recombination to evolve both the object variables and the standard devia-
tions of mutation.

4.5 SA1 and SA2

The SA1 algorithm is a Boltzmann annealing version of simulated annealing. This is some-
times referred to as classic simulated annealing [30]. The SA2 algorithm is a fast simulated-
annealing algorithm [30]. The next section discusses the procedure for picking the beginning
temperature and standard deviation.

4.6 SW

The SW algorithm is the Solis and Wets [31] algorithm proposed by Solis and Wets [31] and
used in Baba et al [32]. The SW algorithm is sometimes used in combination with genetic
algorithms [11].

5 Global Optimization Algorithm Parameters

Some parameters of the various stochastic global algorithms must be chosen well in order
for these algorithms to perform well. Often parameters are chosen on an ad hoc basis. Much
effort was expended to choose good parameters for these algorithms. The procedure used to
pick a good set of algorithm parameters and to run simulation with can best be described as
a two-stage procedure. In the first stage, a large number of combinations of parameters for
each algorithm were investigated. For each combination of algorithm parameters, a limited
number of restarts or estimations were performed. For the larger networks on the Flare and
Mackey-Glass data sets, five restarts were run for each configuration of algorithm param-
eters. For the other data sets, 10 restarts were run. The specific parameter configuration
with the lowest average objective function value computed across the restarts was chosen as
the “winning” configuration. In the second stage, the “winning” configuration of algorithm
parameters was used in running full-scale simulation of either 250 or 500 restarts depending
upon the size of the network. The results from the full-scale simulations with the “winning”
algorithm parameter configurations are presented in the next section.

123

Stochastic Global Optimization Methods 153

As an example, for the simulated annealing algorithms and Bilinear data set, 10 restarts
with each of 72 combinations of the algorithm parameters were tried. Full-scale simulations
with the “winning” configuration of algorithm parameters from these restarts were used to run
500 restarts, the results of which are presented in the next section. Hypothesis tests showed a
statistical difference in performance between different parameter combinations, which means
the two-stage procedure to choose algorithm parameters gives a small increase in accuracy
to the global algorithms. Therefore, it could be argued that the procedure gives an unfair
advantage to the global algorithms. However, if the local optimization routine outperforms
or is competitive with the global routines, this provides further evidence that random restarts
with a local search algorithm is competitive with many global algorithms.

6 Results

The global algorithms marginally outperformed the local routine in most cases. However, in
some cases the local search routine outperformed one or more of the global routines. With
respect to the minimum value obtained across the restarts, the local routine obtained a solu-
tion that was equal or very close, and in some cases superior, to the minima obtained by the
global algorithms.

Figures 1–6 show the objective function values using boxplots for each of the optimization
routines and training data sets. As Fig. 6 shows, the NNGA algorithm performed significantly
worse than all other algorithms on the Mackey-Glass training data. It can be seen from Figs.
1–6 that the global algorithms provide only marginally more probability, if any, of obtaining
a solution that is in the lower end or left-hand side of the distribution of possible solutions.
Also, all of the algorithms have some very poor solutions. Thus, using a single set of starting
values with any of the algorithms could lead to solutions far from the global optimum.

Table 2 shows the computing time required for the global algorithms relative to the local
optimization algorithm. For example, 145 times as many restarts could be performed with
the local optimization routine as the NNGA algorithm with the Bilinear data. For the two
larger problems, the time advantage of the local algorithm was not as great. With a fixed
amount of computer time, many more restarts could be performed with the local routine than
with the global algorithms. Therefore, given an equal amount of computational resources,
considering the results in Table 2, the local search algorithms are superior to the nine global
search algorithms tested. Furthermore, even ignoring computational time, there is no single
global search algorithm that consistently or substantially outperformed all others.

7 Conclusions

At least with respect to the specific algorithms studied, the results provide little evidence to
show that a global algorithm should be used over a more traditional local optimization routine
for training neural networks. In fact, all of the global algorithm results reported use the global
method parameters as starting values in a local optimization routine because otherwise the
global methods would not be competitive. The results strictly apply only to the estimation
methods and problems considered. Only function approximation problems are considered
and by necessity the problems considered were smaller than many real-world problems. Also,
note that penalized least squares was used rather than least squares. Further, the stochastic
global algorithms were ended after 100,000 function evaluations and so the results repre-
sent a single point in the continuum that these algorithms provide in the tradeoff between

123

154 L. Hamm et al.

Fig. 1 Boxplot of objective function values from random restarts of different optimization algorithms for
neural network training on the bilinear training data. The boxplots indicate the median, upper and lower quar-
tiles, upper and lower adjacent values, and outside values. In the box plot, the solid dot indicates the median
and the right and left ends of the box are the upper and lower quartiles. The vertical lines or whiskers outside
the box mark the highest (lowest) data points within a range defined by the upper (lower) quartile + (−) 1.5
times the interquartile range. Any values outside of the whiskers are considered outside values and are plotted
by open circles

Fig. 2 Boxplot of objective function values from random restarts of different optimization algorithms for neu-
ral network training on the DAX training data. See Fig. 1 for a more detailed explanation of the information
in this figure

123

Stochastic Global Optimization Methods 155

Fig. 3 Boxplot of objective function values from random restarts of different optimization algorithms for neu-
ral network training on the JYUS training data. See Fig. 1 for a more detailed explanation of the information
in this figure

Fig. 4 Boxplot of objective function values from random restarts of different optimization algorithms for
neural network training on the JYUSTTR training data. See Fig. 1 for a more detailed explanation of the
information in this figure

123

156 L. Hamm et al.

Fig. 5 Boxplot of objective function values from random restarts of different optimization algorithms for
neural network training on the flare training data. See Fig. 1 for a more detailed explanation of the information
in this figure

Fig. 6 Boxplot of objective function values from random restarts of different optimization algorithms for
neural network training on the Mackey-Glass training data. See Fig. 1 for a more detailed explanation of the
information in this figure

123

Stochastic Global Optimization Methods 157

Table 2 Ratio of training times for global optimization algorithms in comparison to local optimization algo-
rithms

Data Set NNGA EVOL KORR1 KORR2 KORR3 KORR4 SA1 SA2 SW

Bilinear 145 174 175 175 175 175 174 185 159
DAX 48 59 61 60 60 64 60 63 54
JYUS 93 111 106 106 106 106 113 119 93
JYUSTTR 58 68 66 66 67 66 68 70 56
Flare 4 4 4 4 5 4 4 4 4
Mackey-Glass 12 14 14 13 14 13 15 14 13
Average 60.00 71.67 71.00 70.67 71.17 71.33 72.33 75.83 63.17

Note: The numbers indicate the ratio of the average training time for the global optimization routine divided by
the average training time for the local optimization routine. For example, for the DAX neural network model,
the NNGA took on average 48 times longer to train then the local optimization routine. The training times are
averaged across all restarts

accuracy and computational time. There may be problems where global optimization methods
are superior. However, even ignoring computational time, the stochastic global algorithms
for training neural networks did little better than using a local algorithm alone. The results
clearly indicate that neural networks should not be estimated from a single set of starting
values whether a global or local optimization method is used.

References

1. Uryasev S, Pardalos PM (eds) (2001) Stochastic optimization: algorithms and applications. Kluwer Aca-
demic Publishers, Netherlands,

2. Porto VW, Fogel DB, Fogel LJ (1995) Alternative neural network training models. IEEE Expert 16–22
3. Sexton RS, Dorsey RE, Johnson JD (1999) Beyond backpropagation: using simulated annealing for train-

ing neural networks. J End User Comput 11:3–10
4. Ludermir TB (2003) Neural networks for odor recognition in artificial noses. Proceedings of the Interna-

tional Joint Conference on Neural Networks 1:143–148
5. Mirmirani S, Li HC (2004) Gold price, neural networks, and genetic algorithm. Comput Econ 23:193–200
6. Matilla-Garcia M, Arguello C (2005) A hybrid approach based on neural networks and genetic algorithms

to study the profitability in the Spanish stock market. Appl Econ Lett 12:303–308
7. Zhao Z (2006) Steel columns under fire—A neural network-based strength model. Adv Eng Sof 32:97–

105
8. Binner JM, Graham K, Gazely A (2004) Co-evolving neural networks with evolutionary strategies. A

new application to Divisia money. Adv Econom 19:127–143
9. Fisher MM, Hlaváčková-Schindler K, Reismann M (1999) A global search procedure estimation in neural

spatial interaction modeling. Pap Reg Sci 78:119–34
10. Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE

T Neural Networ 5(1):39–53
11. Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Learning in multilayer perceptrons using global

optimization strategies. Nonlinear Anal 47:3431–3436
12. Georgieva A, Jordanov I (2006) Supervised neural network training with a hybrid global optimization

technique. 2006 International Joint Conference on Neural Networks, Vancouver, BC, Canada, July
13. Ye H, Lin Z (2003) Global optimization of neural network weights using subenergy tunneling func-

tions and ripple search. Circuits and Systems, 2003, Isacs ’03. Proceedings of the 2003 International
Symposium on, vol. 5, Issue 25–28, May 2003, pp V-725–V-728

14. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs 3rd rev. and extended
ed., Springer-Verlag, Berlin

15. Syswerda G (1991) Schedule optimization using genetic algorithms, In: Davis L (ed) Handbook of genetic
algorithms. Van Nostrand Reinhold, New York, pp 332–349

16. Davis L (ed) (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

123

158 L. Hamm et al.

17. Franses PH, van Dijk D (2000) Nonlinear time series models in empirical finance. Cambridge University
Press, Cambridge

18. Hamm L, Brorsen BW (2000) Trading futures markets based on signals from a neural network. Appl
Econ Lett 7:137–140

19. Granger CW, Andersen AP (1978) An introduction to bilinear time series models. Vandenhoek and Rupr-
echt, Gottingen

20. Yang S-R, Brorsen BW (1995) Nonlinear dynamics of daily foreign exchange rates. Adv Quant Anal
Finance Account 3:111–130

21. Gallant A, White H (1992) On learning the derivatives of an unknown mapping with multilayer feedfor-
ward networks. Neural Networks 5:129–138

22. Prechelt L (1994) Proben1—A set of neural network benchmark problems and benchmarking rules.
Technical Report 21/94, Universitat Karlsrude. http://page.mi.fu-berlin.de/∼prechelt/Biblio/1994-21.pdf

23. Pardalos PM, Romeijn E (eds) (2002) Handbook of global optimization vol 2: Heuristic approaches.
Dordrecht, Netherlands,

24. Boender CGE, Romeijn HE (1995) Stochastic methods. In: Horst R, Pardalos PM (eds) Handbook of
global optimization. Kluwer Academic Publishers, Netherlands, pp 829–869

25. Skinner AJ, Broughton JQ (1995) Neural networks in computational materials science: training algo-
rithms. model Simul Mater Sci 3: 371–390

26. Yan W, Zhu Z, Hu R (1997) A hybrid genetic/bp algorithm and its application for radar target clas-
sification. Proceedings of the 1997 IEEE National Aerospace and Electronics Conference (NAECON)
2:981–984

27. IMSL Math/Library version 3.0 (1997) Visual Numerics, Houston, TX
28. van Rooij AJF, Jain LC, Johnson RP (1996) Neural network training using genetic algorithms. World

Scientific Publishing Co., Singapore
29. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York
30. Szu H, Hartley R (1987) Fast simulated annealing. Phys Lett A 122:157–162
31. Solis FJ, Wets JB (1981) Minimization by random search techniques. Math Oper Res 6:19–30
32. Baba N, Mogami Y, Kohzaki M, Shiraihi Y, Yoshida Y (1994) A hybrid algorithm for finding the global

minimum of error function of neural networks and its applications. Neural Networks 7:1253–1265

123

http://page.mi.fu-berlin.de/$sim $prechelt/Biblio/1994-21.pdf

	Comparison of Stochastic Global Optimization Methods to Estimate Neural Network Weights
	Abstract
	Introduction
	Stochastic Global Optimization
	Neural Network Architectures and Data
	Bilinear
	JYUS
	JYUSTTR
	DAX
	Mackey-Glass
	Flare
	Optimization Algorithms
	LO
	NNGA
	EVOL
	KORR1, KORR2, KORR3, and KORR4
	SA1 and SA2
	SW
	Global Optimization Algorithm Parameters
	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

