
Neural Processing Letters (2007) 26:41–56
DOI 10.1007/s11063-007-9041-1

New Least Squares Support Vector Machines Based
on Matrix Patterns

Zhe Wang · Songcan Chen

Received: 14 August 2005 / Accepted: 7 May 2007 / Published online: 13 June 2007
© Springer Science+Business Media B.V. 2007

Abstract Support vector machine (SVM), as an effective method in classification problems,
tries to find the optimal hyperplane that maximizes the margin between two classes and can
be obtained by solving a constrained optimization criterion using quadratic programming
(QP). This QP leads to higher computational cost. Least squares support vector machine
(LS-SVM), as a variant of SVM, tries to avoid the above shortcoming and obtain an analyt-
ical solution directly from solving a set of linear equations instead of QP. Both SVM and
LS-SVM operate directly on patterns represented by vector, i.e., before applying SVM or
LS-SVM to a pattern, any non-vector pattern such as an image has to be first vectorized into
a vector pattern by some techniques like concatenation. However, some implicit structural or
local contextual information may be lost in this transformation. Moreover, as the dimension
d of the weight vector in SVM or LS-SVM with the linear kernel is equal to the dimension
d1 × d2 of the original input pattern, as a result, the higher the dimension of a vector pattern
is, the more space is needed for storing it. In this paper, inspired by the method of feature
extraction directly based on matrix patterns and the advantages of LS-SVM, we propose
a new classifier design method based on matrix patterns, called MatLSSVM, such that the
new method can not only directly operate on original matrix patterns, but also efficiently
reduce memory for the weight vector (d) from d1 × d2 to d1 + d2. However like LS-SVM,
MatLSSVM inherits LS-SVM’s existence of unclassifiable regions when extended to multi-
class problems. Thus with the fuzzy version of LS-SVM, a corresponding fuzzy version of
MatLSSVM (MatFLSSVM) is further proposed to remove unclassifiable regions effectively
for multi-class problems. Experimental results on some benchmark datasets show that the
proposed method is competitive in classification performance compared to LS-SVM, fuzzy
LS-SVM (FLS-SVM), more-recent MatPCA and MatFLDA. In addition, more importantly,
the idea used here has a possibility of providing a novel way of constructing learning model.
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1 Introduction

Support vector machine (SVM), based on the statistical learning theory, has effectively been
developed [1–3] and applied successfully in machine learning. The goal of SVM aims to
minimize the Vapnik-Chervonenkis (VC) dimension by finding the optimal hyperplane with
the maximal margin, where the margin is defined as the distance of the closest point, in each
class, to the separating hyperplane. And it has two key advantages: a general purpose linear
learning algorithm and a problem specific kernel that computes the inner product of input data
points in a feature space. However, finding this optimal hyperplane by solving a constrained
optimization criterion using quadratic programming (QP) leads to higher computational cost.
Least squares support vector machine (LS-SVM) established by Suykens and Vandewalle
[4,5] can obtain an analytical solution directly from solving a set of linear equations instead
of QP through replacing inequality constraints with equality constraints in formulation of the
conventional SVM. This can efficiently reduce the computational cost and at the same time
still makes LS-SVM inherit the aforementioned two advantages of the conventional SVM.

Generally, a pattern or data object that both SVM and LS-SVM deal with is a vector. There-
fore, when a pattern to be processed is an image itself, for instance, a face, the image first has
to be transformed or vectorized into a vector pattern by concatenating its pixels in some way.
This type of vector representation is natural in most of data analyses [6]. However, one inher-
ent problem of the image-as-vector representation lies in that the spatial redundancies within
each image matrix are not fully utilized, and some of the information about local spatial
relationships is lost [7,8]. On the other hand, although computational efficiency in LS-SVM
is raised compared to SVM, loss of sparseness in its solution [9] makes every input pattern
(e.g. the dimension of an input pattern is d1 × d2 and the number of the input patterns is l)
contribute to the model, thus leading to LS-SVM have to store the training set for subsequent
classification such that the memory overhead is greatly increased. In fact, for LS-SVM with
linear kernel to be mainly discussed here, we can save so-needed storage space directly by
storing the d1 × d2-dimensional weight vector and the bias rather than the whole training
set. However, even in such a case, the storage space requirement will still be rather large for
large dimensionality patterns such as an image due to the dimension of the weight vector
is equal to that of the input pattern. Therefore, intuitively, directly manipulating original
matrix patterns by means of the matrix algebra method seems simpler. Several researchers
have made such attempts along this line. Yang et al. [10] proposed two-dimensional principal
component analysis (2DPCA) that extracts features directly from the 2D images. Through the
experiments on several well-known benchmark faces, this method is shown to be better than
classical PCA in favor of both image classification and reduction of computation complexity
for feature extraction. Ye et al. [11] and Li and Yuan [12] also respectively proposed two-
dimensional linear discriminant analysis (2DLDA) based on image matrix, which overcomes
the singularity problem implicitly in LDA and achieves competitive recognition accuracy on
face identification. But all the 2D methods above are only used to deal with two-dimensional
image patterns themselves. Chen et al. [7] went further and developed a more general method,
called MatPCA and MatFLDA, to extract features based on matrix patterns reshaped from an
original one-dimensional or 2D pattern. Compared with the conventional methods such as
PCA and LDA of extracting features based on vector patterns, Chen’s method first matrixizes
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a one-dimensional or 2D pattern into a corresponding matrix pattern before exacting fea-
tures. In doing so, the information, generally, should not be lost due to that such newly-
formed matrix pattern still retains all its feature components, more likely, some new implicit
structural or contextual information can additionally be introduced. Inspired by both Chen’s
matrixization method and the analytically-solvable advantages of LS-SVM, in this paper, we
introduce similar matrixization method into LS-SVM and expect that this introduction can
combine the advantages of both the matricization method and LS-SVM and finally develop
a new variant of LS-SVM directly operating on matricized patterns (called MatLSSVM, for
short). Compared with LS-SVM with linear kernel, which has a d(= d1 × d2)-dimensional
weight vector w, MatLSSVM has the two weight vectors u with d1 dimensionality and v with
d2 dimensionality that respectively act on the left and right sides of the matrix pattern A with
d1 × d2 dimensionality so that the matrix pattern can be directly manipulated. Through this
transformation, the information of the matrix pattern may be effectively utilized and the space
which is used to store weight vectors is reduced from d1 ×d2 for LS-SVM with linear kernel
to d1 +d2 for MatLSSVM. However, LS-SVM is formulated only for two-class problems and
unclassifiable regions exist when extended to multi-class problems. Similarly, MatLSSVM
also has the same problem. In order to remove such unclassifiable regions, Tsujinishi and Abe
[13] proposed fuzzy version (FLS-SVM) of LS-SVM for multi-class problems. Borrowing
their idea, similar fuzzy version MatFLSSVM is also presented here for attacking the same
unclassifiable region problem existed in MatLSSVM.

We compare MatLSSVM and MatFLSSVM with corresponding LS-SVM, FLS-SVM,
MatPCA and MatFLDA on some benchmark machine learning datasets. Through the exper-
iments, we find that the proposed matrixization approaches are competitive with their corre-
sponding vector versions.

The rest of this paper is organized as follows. In Sect. 2, LS-SVM and FLS-SVM are
reviewed respectively. We describe MatLSSVM and MatFLSSVM in detail in Sect. 3. In
Sect. 4 we show the performance comparison among these algorithms. Section 5 further
gives the relationship between LS-SVM and MatLSSVM. Finally, we conclude in Sect. 6.

2 An Overview of LS-SVM and FLS-SVM

LS-SVM proposed by Suykens and Vandewalle [4,5] is a least squares version of SVM. Due
to the equality type constraints instead of inequality constraint, the solution follows from
solving a set of linear equations instead of QP and the computational cost of LS-SVM is
rather lower than that of SVM. However, LS-SVM is formulated for two-class problems
and unclassifiable regions exist when extended to multi-class problems. So FLS-SVM [13]
was proposed as a fuzzy version of LS-SVM to effectively resolve unclassifiable regions for
multi-class problems. In this section we will respectively review LS-SVM and FLS-SVM.

2.1 LS-SVM

Let S = {(xi , yi )|i = 1, . . . , l} ⊂ Rn ×{+1,−1} be a set of examples. The decision function
that we want to achieve in LS-SVM is given by:

f (x) =
l∑

i=1

αi yi K (x, xi ) + b, (1)

123



44 Z. Wang, S. Chen

where αi are real constants and b is a bias. The output of f (x) is 1 if its value is greater than
0, −1 otherwise. In (1), K (x, xi ) is a kernel function, and αi and b are unknown and can be
solved through the primal problem (P) defined below:

min
w,b,ξ

1

2
wtw + C

2

l∑

i=1

ξ2
i , (2)

subject to the equality constraints:

yi (w
t�(xi ) + b) = 1 − ξi , i = 1, . . . , l, (3)

where �(.) is a linear or nonlinear function which maps the input space into a higher dimen-
sional feature space, w is a weight vector to be determined, C is a regularization constant
and ξi s are slack variables. Therefore, we construct the Lagrangian:

L(w, b, ξ, α) = 1

2
wtw + C

2

l∑

i=1

ξ2
i −

l∑

i−1

αi
[
yi (w

t�(xi ) + b) − 1 + ξi
]
, (4)

where αi are Lagrange multipliers (i.e. αi in (1)). The necessary conditions for the optimality
are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂w
= 0 ⇒ w =

l∑
i=1

αi yi�(xi ),

∂L

∂b
= 0 ⇒

l∑
i=1

αi yi = 0,

∂L

∂ξi
= 0 ⇒ αi = Cξi , i = 1, . . . , l,

∂L

∂αi
= 0 ⇒ yi (w

t�(xi ) + b) − 1 + ξi = 0, i = 1, . . . , l.

(5)

By elimination of w and ξi , the solution is given by

[
0 − Y t

Y � + C−1 I

] [
b
α

]
=

[
0
→
1

]
, (6)

where Y = [y1, . . . , yl ]t ,�i j = yi y j�(xi )
t�(x j ),

→
1 = [1, . . . , 1]t . The function �(x) in

(6) is related to the kernel function K (x, xi ) by imposing

�(xi )
t�(x j ) = K (xi , x j ), (7)

which is motivated by Mercer’s Theorem.

2.2 FLS-SVM

As a fuzzy version of LS-SVM, FLS-SVM introduces fuzzy membership functions to resolve
unclassifiable regions for multi-class problems in conventional pairwise classification [14].
In conventional pairwise classification for multi-class problem [14], there is a binary classi-
fier for each possible pair of classes and the number of the total pairs is k(k −1)/2 for k-class
problem. The decision function for the pair of classes i and j is given by:

fi j (x) = wt
i j�(x) + bi j , i, j = 1 . . . k, (8)
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where x is a certain vector pattern and fi j (x) = − f j i (x). Then for the pattern x we calculate

fi (x) =
k∑

i=1,i �= j

sign( fi j (x)), (9)

where sign( f (x)) =
{

1 f (x) > 0,

0 otherwise,
and this pattern is classified into the class j according

to

j = arg max
i=1,...,k

fi (x). (10)

But if Eq. 10 is satisfied for plural js, x is unclassifiable [13]. Thus all these pattern xs form
unclassifiable regions.

To avoid this, Tsujinishi and Abe [13] introduced a fuzzy membership function and defined
the one-dimensional membership function mi j (x) as follows:

mi j (x) =
⎧
⎨

⎩

1 for fi j (x) ≥ 1,

fi j (x) otherwise.
(11)

In [13], using two operators, the minimum and the average operators, determines the mem-
bership to which class the unknown pattern x belongs. Here we only adopt the minimum
operator due to that it can more effectively resolve the unclassifiable region problem.

With the minimum operator, the final membership mi (x) of the x for class i can be
determined by

mi (x) = min
j=1,...,k

mi j (x), (12)

Consequently, the x is classified into the class j where

j = arg max
i=1,...,k

mi (x). (13)

3 MatLSSVM and MatFLSSVM

Due to the advantages of both the matrixization method and LS-SVM, we here propose the
matrixizied version of LS-SVM, MatLSSVM, for two-class problems operating directly on
matricized patterns. To remove unclassifiable regions effectively for multi-class problems,
a corresponding fuzzy version of MatLSSVM (MatFLSSVM) is also further proposed. In
the matricized LS-SVMs, the decision functions for MatLSSVM and MatFLSSVM are both
taken as the following form:

f (A) = ut Av + b, (14)

where A is a d1-by-d2 matrix pattern, u is a d1-dimensional (left) weight vector, v is a
d2-dimensioanal (right) weight vector and b is a bias as in LS-SVM. Obviously, for the same
pattern A, the space that the matricized LS-SVMs need to store the weight vectors is d1 + d2

and the space that the vector counterparts with linear kernel need to store the weight vector
is d1 × d2. The ratio of the spaces that the two versions need is (d1 + d2)/(d1 × d2). Table 1
shows that for matrix patterns with different size, the higher dimension the pattern has, the
less memory new model needs to store weight vectors compared with LS-SVM.
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Table 1 Spaces needed for storing weight vectors of MatLSSVM and LS-SVM with linear kernel respectively
based on matrix pattern and vector pattern for ORL datasetsa with different matrix size (one unit space/one
image)

Image size d1 + d2 (Matrix) d1 × d2 (Vector) (d1 + d2)/(d1 × d2)

14 × 11 25 154 1:6.16

28 × 23 51 644 1:12.63

56 × 46 102 2576 1:25.25

112 × 92 204 10304 1:50.51

a Available at http://www.uk,research.att.com/facedatabase.html

3.1 MatLSSVM Construction

Firstly, we consider the two-class classification problem in the matrix case. Let
S = {(Ai , yi )|i = 1, . . . , l} ⊂ Rd1×d2 × {+1,−1} be a set of examples. MatLSSVM
aims at constructing a classifier with the decision function of the form (14). And we require
that for the patterns in S, the following condition (15) must be met to the greatest degree:

f (Ai ) = ut Aiv + b

{≥ 1, if yi = 1;
≤ −1, if yi = −1; i = 1, . . . , l. (15)

Integrating their corresponding binary class labels, we thus have

yi f (Ai ) = yi (u
t Aiv + b) ≥ 1, i = 1, . . . , l. (16)

In order to deal with linearly inseparable set of the examples, as in LS-SVM, we introduce
a set of slack variables ξi into Eq. 16 as follows:

yi f (Ai ) = yi (u
t Aiv + b) ≥ 1 − ξi , i = 1, . . . , l. (17)

Considering that A is a d1-by-d2 matrix, thus Av is a d1-dimensional vector and as a result,
the original set of matrix examples S can be transformed into a set of new low-dimensional
vector examples Svec = {(Aiv, yi )|i = 1, . . . , l} ⊂ Rd1×1 × {+1,−1} for each fixed v.
Then, on the Svec, similarly to LS-SVM, the primal problem (P) for MatLSSVM can be
formulated below:

min
u,v,b,ξ

1

2
ut u + C

2

l∑

i=1

ξ2
i , (18)

subject to the equality constraints:

yi (u
t Aiv + b) = 1 − ξi , i = 1, . . . , l, (19)

where (19) is quadratic due to that both u and v are unknown. Through (18) and (19), we can
construct the Lagrangian:

L(u, v, b, ξ, α) = 1

2
ut u + C

2

l∑

i=1

ξ2
i −

l∑

i=1

αi
[
yi (u

t Aiv) + b) − 1 + ξi
]
, (20)
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where αi are Lagrange multipliers. Then we get the partial derivatives of L respectively with
respect to u, b,ξi , αi and set them equal to zero:

∂L

∂u
= u −

l∑
i=1

αi yi Aiv = 0, (21)

∂L

∂b
= −

l∑
i=1

αi yi = 0, (22)

∂L

∂ξi
= Cξi − αi = 0, i = 1, . . . , l, (23)

∂L

∂αi
= −{yi (ut Aiv + b) − 1 + ξi } = 0, i = 1, . . . , l. (24)

According to (21), we find that u and v are interdependent. Thus it is impossible to analytically
compute the optimal u and v simultaneously. However, for a fixed v, from (21) to (24), we
can observe that the equations are formally the same as those in (5). Thus, the weight u can be
solved by using the same approach as that of LS-SVM. On the other hand, in order to make
(18) minimal, according to optimization theory, we develop a gradient descent algorithm to
derive the solution to the v by (25):

∂L

∂v
= −

l∑

i=1

αi yi At
i u. (25)

Details are given below.
We first substitute the fixed v into (21) and (24). By elimination of u and ξi , the similar

solution to that of LS-SVM can be gotten by
[

0 − Y t

Y � + C−1 I

] [
b
α

]
=

[
0
→
1

]
, (26)

where Y = [y1, . . . , yl ]t ,
→
1 = [11, . . . , 1l ]t ,�i j = yi y j (Aiv)t (A jv) = yi y jv

t At
i A jv. For

�i j , we can rewrite it by �i j = yi y jv
t K (Ai , A j )v, where K (Ai , A j ) is the kernel matrix

that operates on the matrix pair Ai , A j , and defined as K (Ai , A j ) = At
i A j . Further, u can

be gotten by (21) and v is updated by (25), i.e.

vt+1 = vt − η
∂L

∂vt
= vt − η

(
−

l∑

i=1

αi yi At
i ut

)
, (27)

where η is the learning rate and t is the iterative counter. The full algorithm of MatLSSVM
is summaried as follows:

1. Initialize v0, η, maxIter, ε and C ;

2. Compute the vector pattern space St = {x1, . . . xi , . . . xl} = {A1vt , . . . Aivt , . . . Alvt }
from the matrix pattern space S = {A1, . . . Ai , . . . Al}.
3. Get bt , αi through (26), then ut =

l∑
i=1

αi yi Aivt ;

4. Update v through (27), i.e. vt+1 = vt − η ∂L
∂vt

= vt − η

(
−

l∑
i=1

αi yi At
i ut

)
;

5. If ‖vt+1 − vt‖ > ε and t < maxIter then t = t + 1, goto 2; else stop.
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where v0 is the initial value of v, maxIter is the maximal iterative count and ε is a ter-
mination condition. Consequently, we can represent the decision function of the classifier
for input matrix pattern Z

f (Z) = ut Zv + b

{
> 0 then Z ∈ class + 1
< 0 then Z ∈ class − 1

, (28)

where the two weight vectors u and v, the bias b are obtained in the process of training.
On the whole, MatLSSVM is made up of two procedures. Firstly, the final solution to v can

be gotten by an iterative algorithm. Secondly, for every fixed v, an analytical solution to u can
be gained similarly to LS-SVM. Here, for a fixed v, the solution to u is free of local minima
due to the solution to a convex optimization [15] and at the same time, the computational
cost may obviously be reduced because of the dimension reduction of patterns. However, in
solving v, its optimality may not be guaranteed due to non-convexity of the criterion (18)
for v. In addition, it is worth noting that if we want the problem (18) to be convex, we may
alternatively take only u instead of both u and v as unknown and view the vector v in such a
case as a hyperparameter at the kernel level of (26).

3.2 MatFLSSVM

Similarly to FLS-SVM, MatFLSSVM as a fuzzy version of MatLSSVM is used to solve the
unclassifiable regions for multi-class problems. In MatFLSSVM, the decision function for
the pair of classes i and j of a k-class problem is given by:

fi j (A) = ut
i j Avi j + bi j , i, j = 1 . . . k, (29)

where A is defined as before and the pair decision function fi j satisfies fi j (A) = − f j i (A)

for all i and j .
The one-dimensional membership function mi j (A) can be similarly defined as:

mi j (A) =
⎧
⎨

⎩

1 for fi j (A) ≥ 1,

fi j (A) otherwise.
(30)

With the minimum operator, the final membership mi (A) of the x for class i can be determined
by

mi (A) = min
j=1,...,k

mi j (A), (31)

Consequently, the A is classified to the class j making

j = arg max
i=1,...,k

mi (A). (32)

4 Experiments

In this section we will experimentally compare the classification performance among
LS-SVM, FLS-SVM, MatLSSVM and MatFLSSVM, and at the same time, also give the
comparison results among MatPCA [7], MatFLDA [7], MatLSSVM and MatFLSSVM.
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4.1 Description of Experimental Datasets

These experiments are conducted on the benchmark datasets including both those in a matrix
representation, for example, the ORL face database and the Letter text-base,1 and those in a
vector representation: Iris (4 attributes/ 3 classes/150 data)2, Waveform (21/3/1500)2, Wine
dataset (12/3/178) that is generated through the last one attribute of the original Wine data-
set with 13 attributes2 being omitted (by us) mainly for producing more assembling matrix
patterns, Water-treatment (denoted Water-T.) (38/2/116),2 Sonar (60/2/208),3 Musk Clean2
(denoted M.C.2) (166/2/6598)2 and M.C.2 (160/2/6598) that is the same dataset in M.C.2
with 166 attributes with the last six dimensions of each pattern being also omitted (by us)
mainly for generating more assembling matrix patterns. ORL faces base contains 400 grey
human face images of 40 persons, 10 different images each person and each image size is
normalized to 28 × 23. Letter dataset contains 10 text classes consisted of digits 0–9 with
each class having 50 samples and each sample is a 24 × 18 matrix pattern.

4.2 Set-up of experiments

In our experiments, each dataset is randomly divided into the two no-overlapping parts with
the one for training and the other one for testing. Then, for each such classification problem,
10 independent runs are performed and their classification accuracies on the test sets are
averaged and reported as the way in [7]. Here, the involved parameters include the maximal
iterative count maxIter, ε, v0, the learning rate η, and the regularization constant C . We initial-
ize maxIter=5000, ε = 10−3. In general, v0 can be initialized with an arbitrary vector, but for
simplicity and fairness of comparison among the different algorithms, we definitely initialize
v0 = [1, . . ., 1, . . ., 1]t . The learning rate η is selected from the set {1, 10, 100, 1000} and
the range of the regularization constant C is from 2−6 to 210 with each step by multiplying
2. Consequently, the optimal η and C for each dataset, correspond to the best average test
accuracy based on the ten independent runs. At the same time, the kernel functions between
LS-SVM and FLS-SVM both choose the linear kernel, i.e., K (x, xi ) = xt xi with respect to
�(x) = x . Correspondingly,K (Ai , A j ) (matrix) of (26) in MatLSSVM and MatFLSSVM
is set to At

i A j .
It is worth pointing out that although all the patterns in both ORL and Letter datasets are

2D matrix themselves and the proposed methods can directly use them as the input patterns,
we can still reshape them to another corresponding matrix patterns with different size as
done in the experiments below. As for original vector patterns, we can matrixize them to a
corresponding matrix patterns by some concatenation or assembling techniques.

4.3 Experimental Results

4.3.1 Comparison Among LS-SVM, FLS-SVM, MatLSSVM and MatFLSSVM

Table 2 demonstrates all classification accuracies on different datasets under the above exper-
imental conditions. The best classification accuracy for each dataset is shown in boldfaces.
First of all, we examine matrixization effect by only comparing the classification perfor-
mance of MatLSSVM with LS-SVM. Here, both classifiers use the conventional pairwise

1 Available at http://sun16.cecs.missouri.edu/pgader/CECS477/NNdigits.zip
2 Available at http://www.ics.uci.edu/∼mlearn/MLRository.html
3 Available at ftp://ftp.cs.cmu.edu/afs/cs/project/connect/bench/
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strategy to deal with those multi-class datasets: ORL, Letter, Iris, Waveform and Wine. From
this table, we find that for image patterns themselves such as ORL and Letter datasets, Mat-
LSSVM and LS-SVM exhibit their separate advantage. For ORL dataset, the classification
accuracy of MatLSSVM on the original 28 × 23 matrix pattern outperforms that on all other
reshaped matrix patterns but is decreased by 1.1% compared with LS-SVM. Conversely, on
Letter datasets, the results are exactly opposite. For MatLSSVM, the best accuracy is not
achieved on the original 24 × 18 matrix pattern but on the 2 × 216 one. Moreover, com-
pared with LS-SVM, MatLSSVM accuracy is increased by 0.27%. From these facts, we
believe whether the matrixization method obtains beneficial structural information for im-
age pattern classification or not depends on different matrixiziation for the same dataset and
different datasets. For the vector patterns from the rest seven datasets used here, similarly to
image patterns, the performance raise of MatLSSVM over LS-SVM does not always hold.
In fact, on the four datasets (Sonar, Water-T., Iris, Waveform), the matrixization method im-
proves performance from slight to distinct under at least one matixizing pattern compared
with LS-SVM and whereas on another three datasets (M.C.2(166A), M.C.2(160A), Wine),
the results are opposite. On the whole, the matrixization method improves performance on
four out of seven datasets and especially distinct on Water-T. (achieving about 4%). On
the other hand, on those datasets that their performances are degraded, the matrixization
method achieves about 2.5% decrease on Wine in the worst case but only slight on the rest.
Therefore, similarly to the image pattern datasets, for the vector pattern datasets, whether
MatLSSVM can really increase performance or not depends on different matrixization even
for the same dataset and different datasets. From different performance exhibitions for
different matrixizing patterns on the same datasets, we are reminded that the matrixization
also has its own two sides: one side is for it to indeed facilitate representing some structural
information if some matrixizing pattern is coincidental to nature of those data such as Letter
and Water-T. datasets and the other is opposite, i.e., it exists some possibility of breaking
down the structure of data itself, especially for 1D vector pattern such as Wine datasets. In
short, matrixization for vector patterns just gives us one more option in a lot of classification
methods.

In order to get better accuracies on multi-class problems, both FLS-SVM and Mat-
FLSSVM are also implemented. The results are tabulated in Table 2 from which we can
clearly observe that on these multi-class datasets, both FLS-SVM and MatFLSSVM can
consistently be better or comparable to in classification accuracy LS-SVM and MatLSSVM,
respectively. These experimental results accord with the theoretical analysis in [13] and
this is the reason why we further propose MatFLSSVM. Moreover, on these multi-class
datasets, the similar analyses for experimental results between MatFLSSVM and FLS-
SVM can also be obtained and seem to follow the same trend between MatLSSVM and
LS-SVM.

In order to further demonstrate that the proposed matrixization approaches (MatLSSVM
and MatFLSSVM) are competitive with their corresponding vector versions (LS-SVM and
FLS-SVM), we perform the t-test on the classification results of the 10 runs to calculate
the statistical significance of the proposed matrixization approaches. The null hypothesis H0

demonstrates that there is no significant difference between the mean number of patterns
correctly classified by the proposed matrixization approaches and their corresponding vector
versions. If the hypothesis H0 of each dataset is accepted at the 5% significance level, i.e.,
the t-test value is less than 1.7341, the corresponding results in Table 2 will be denoted by
the asterisk ‘∗’. Consequently, from Table 2, it can be clearly found that the proposed matrix-
ization approaches possess comparable classification performance with their corresponding
vector approaches. On the whole, compared with the vector approaches, the main advantage
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of the proposed matrixization versions is less space demanding but at the price of an iterative
implementation.

4.3.2 Comparison Among MatPCA, MatFLDA, MatLSSVM, MatFLSSVM

In this section we also make a compare in classification performances among MatLSSVM
and MatFLSSVM, and other matrixization methods such as MatPCA and MatFLDA. Mat-
PCA and MatFLDA are matricized versions with respect to PCA and FLDA respectively and
are used to extract features on which the Nearest Neighbor (NN) is often used as the classi-
fication method. Table 3 demonstrates all the best classification accuracies of all the above
methods and the best result for each dataset is denoted in boldface. According to the table,
the best accuracies of MatLSSVM and MatFLSSVM are all better than those of MatPCA
and MatFLDA on all datasets except Sonar dataset. In particular on Letter, Waveform, Wine,
M.C.2(160A) datasets, their accuracies are both increased by more than 5%, respectively.
Further, due to use of the NN classification in MatPCA and MatFLDA, every training pattern
in dataset has to be stored and thus leading to rather large memory space. In contrast, both
MatLSSVM and MatFLSSVM only need store their weight vectors and biases, producing
great saving for the storing space.

5 Further Discussion on the Relationship between LS-SVM and MatLSSVM

In this section, we will further reveal the relationship between LS-SVM and MatLSSVM
from the point of view of both theory and experiment for better understanding.

The decision function of LS-SVM with linear kernel ( i.e. �(x) = x) is defined as follows:

f (x) = wt x + b, (33)

where x is a (d1 × d2)-dimensional vector pattern, then dimension of the weight vector w is
d1d2 × 1 and b is a bias.

The decision function of MatLSSVM is (14):

f (A) = ut Av + b,

where A is a d1-by-d2 matrix pattern, u is a d1-dimensional (left) weight vector, v is a
d2-dimensioanal (right) weight vector and b is a bias.

Then, we introduce Kronecker product operation (denoted by ⊗) [16] and according to
its property [16], (14) can be transformed into:

f (A) = vec(ut Av) + b = (vt ⊗ ut )vec(A) + b = (v ⊗ u)t vec(A) + b. (34)

where vec(X ) denotes an operator that vectorizes a matrix X to corresponding a vector,
for example, let X = (xi j ) ∈ C p×q and xi = (x1i , x2i , . . . , x pi )

t is its i-th column, thus
vec(X) = (xt

1, xt
2, . . . , xt

q)t is a p × q dimensional vector. Comparing (33) with (34), we
find that the decision functions in LS-SVM and MatLSSVM have the same form and now,
the v ⊗ u in MatLSSVM plays the same role as the w in LS-SVM and both have the same
dimension. It is easy to prove that the solution space for v ⊗ u is contained in that for the w,
because usually, the weight vector w of LS-SVM does not always satisfy decomposability
of the Kronecker product.

Next, we give a set of experiments on two-class datasets to illustrate the relationship
between the w and the v ⊗ u. Due to that the matrixizaion method is difficult to be visually
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Table 4 The angle θ between the w and the v ⊗ u and the best classification accuracies for each dataset
comparison between LS-SVM and MatLSSVM

Dataset (attributes) Water-T. (38A) Iris(1,2) (4A) Sonar (60A) M.C.2 (160A) M.C.2 (166A)

θ (in degree) 75.02 18.38 48.53 69.19 70.38

LS-SVM (%) 94.85 100 75.74 88.31 87.78

MatLSSVM (%) 98.33 100 75.83 88.29 87.22

demonstrated in 2D or 3D plot, we can just interpret the obtained results and performance
difference by computing the angle between the vector w and the vector v ⊗ u (denoted by θ

in degree, θ ∈ [−180, 180]) on the same classification problem. Detail description about the
experiment setting is shown in last section. Table 4 shows the best experimental results of
LS-SVM and MatLSSVM. From the table, we can observe that for Iris, Sonar, M.C.2 (160A)
and M.C.2 (166A) datasets, with the number of the attributes of these datasets growing more,
θ also increases larger. However, the differences of the classification accuracies between
LS-SVM and MatLSSVM on the above same datasets are comparable and less than 0.56%.
From these facts, we believe that in higher dimensional space, although the similarity between
the w of LS-SVM and the v ⊗ u of MatLSSVM becomes less, LS-SVM and MatLSSVM
can still obtain comparable classification effect. In addition, for Water-T. dataset, θ achieves
75.02◦ and is relatively large, such a difference may be a reason that the best accuracy of
MatLSSVM is raised by 3.48% compared with that of LS-SVM. On the whole, a big θ may
be a necessary condition of the classification performance difference between LS-SVM and
MatLSSVM.

6 Conclusions and Future Work

In this paper, we employed the concept from MatPCA and MatFLDA to develop MatLSSVM.
Further, MatFLSSVM, as the fuzzy version of MatLSSVM, was proposed to effectively
resolve unclassifiable regions for multi-class problems. And we also reveal the relationship
between MatLSSVM and LS-SVM. Differently from the traditional LS-SVM and FLS-SVM
operating on vector pattern, they operate directly on matrix patterns and only need to store
the two weight vectors with lower dimensionality and the bias such that the so-required stor-
age space is greatly reduced. Through matrixizing the vector patterns, we obtain some useful
information for classification and corresponding competitive performance on real world data-
sets. However, MatLSSVM and MatFLSSVM are both still linear classifiers and their less
space demanding only holds for the primal problem (18), i.e., both LS-SVM and FLS-SVM
here utilize the linear kernel. Consequently, it is our future work to further extend MatLSSVM
and MatFLSSVM to corresponding nonlinear versions and compare them with LS-SVM and
FLS-SVM with non-linear kernel.
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