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Abstract. In this paper we present a novel method for the estimation of the shape parameter
of the Generalized Gaussian Distribution (GGD) function for the leptokurtic and Gaussian
signals by matching negentropy of GGD function and that of data approximated by some
non-polynomial functions. The negentropy of GGD function is monotonic function of its
shape parameter for values corresponding to super-Gaussian and Gaussian distribution fam-
ily. The simulation results have been compared with those obtained by existing methods such
as Mallat’s method and Kurtosis matching method. It has been found that the proposed
method is effective and useful in the cases where we have a few observation samples and
distribution is highly spiky.
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1. Introduction

Accurate statistical model for the observed data is a matter of key importance in
the many statistical signal processing algorithms. Use of a parametric model for
the unknown underlying Probability Density Function (PDF) of the observed data
is very common practice. However, accuracy of such a model depends on the accu-
racy in estimation of defining parameters. One of such parametric models is the
Generalized Gaussian Distribution (GGD) function [1] which is widely used to
model signals in the different areas. The GGD function is defined in terms of loca-
tion parameter or mean, scale parameter, and shape parameter. This function is
also called as generalized Laplacian distribution and exponential power distribu-
tion. The detailed properties of this distribution was first examined in very past in
[2] in the development of the Bayesian inferential process and has been used in the
different areas of applications. Recently, GGD has been used in the different areas
of digital signal processing, e.g., digital image processing [3, 4], speech signal pro-
cessing [5, 6], digital watermarking [7], blind signal separation [5, 8–10] of speech,
images and other arbitrary signals.

The GGD function for different values of shape parameter represents distributions
with various shapes such as uniform, normal, Laplacian, and even more highly
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parsimonious distributions with the exponentially decaying heavy tails. Accord-
ingly, it can be used to model data with symmetric distributions with varying
degree of peakedness. In the statistical modeling of the underlying PDF of a data,
highly accurate values of these parameters are needed and must be estimated from
the data. There have been development of different methods such as Maximum
Likelihood (ML) estimation, moment and kurtosis matching methods for the esti-
mation of parameters of GGD function [11–13]. These different methods have
been used by different researchers, e.g., in [14], moment matching method has been
used to estimate shape parameter for the speech signal. In [10], ML method has
been used while in [6, 15] kurtosis matching method has been used. The detailed
discussion on relative pros and cones of these methods can be found in [11]. In
some applications, such as in [6], very small number of data samples are available
or accessible and estimation of GGD parameters from very small number of sam-
ples by ML or moment matching methods are less accurate [11]. In this letter, we
propose a new method for the estimation of the shape parameter by negentropy
matching which has been found suitable for the estimation from a few data sam-
ples. Negentropy of the GGD is monotonic function of the shape parameter and
inverse mapping of this function can give value of the shape parameter. Also, the
proposed method has been applied for the estimation of shape parameter for com-
puter simulated data and some real world signals to compare its performance with
that of aforesaid existing methods of kurtosis and moment matching.

2. GGD Function Family

The GGD function is generalized form of generalized gamma distribution family.
The PDF for an arbitrary zero mean Random Variable (RV) x in the form
of GGD function with mean µ, scale parameter α, and shape parameter β is
given by

fGG(x;µ,α,β)= β

2α�(1/β)
exp(−[|x|/α]β)=A exp(−[|x|/α]β) for µ=0, (1)

where A= β/2α�(1/β), α = σ
√
�(1/β)/�(3/β); �(y)= ∫∞

0 e−t ty−1dt = Gamma
function; −∞<x <∞; α > 0; β > 0; and σ = Standard deviation. The value of
β controls rate of exponential decay of the function. Thus the shape of GGD
function depends on the value of shape parameter β. For β = 0.5, β = 1 and
β = 2, GGD function represents, respectively, Gamma Distribution, Laplacian
Distribution and Gaussian Distribution and the shape of distribution tends to
become uniform as β→ ∞. For β→ 0, GGD represents impulsive function with
flat tails. The GGD function for zero mean and different values of α and β are
shown in Figure 1.
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Figure 1. GGD distribution for different values of scale parameter and shape parameter. This family of
distribution includes Gaussian, sub-Gaussian and super-Gaussian distributions.

3. Parameter Estimation for GGD

In order to use GGD function as a PDF model for the data z= {z1, z2, . . . , zN }
with N samples, the crucial task is the estimation of its defining parameters µ, α,
and β from the data. There exist many methods to estimate these parameters. The
mean z or median z̃ of the data is taken as location parameter µ. The suitabil-
ity of mean or median as the location parameter depends on the value of β and
choice can be judged by the efficiency η(β) of these estimators defined as follows
[16]

η(β)= var[z]
var[z̃]

≈ �(3/β)
�(1/β)�2(1+1/β)

(2)

where var[.] denotes variance of [.]. The plotting of the theoretical relation in
Equation (2) is shown in Figure 2 which also contains zoomed-in portion, inside
the figure, of the curve for very small values of β. It is evident from Figure 2 that
the mean is a good estimator of location parameter for β > 1.41. For the lower
values of β (β <1.41), the median is better estimate of the location parameter, and
the suitability of both estimators worsen for very small values of β, for as for
β→0, η→∞. The scale parameter is estimated from the knowledge of the shape
parameter β and standard deviation σz of the data as follows [5]

α=σz
√
�(1/β)
�(3/β)

where σz= 1
N

N∑

i=1

(zi −µ)2 (3)
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Figure 2. Theoretical value of η for estimators of µ.

As said earlier, there are many other methods such as ML estimation approach,
kurtosis and moment matching methods for the estimation of the shape parame-
ter. The comparative study on the performance of these methods can be found in
[11] from where it can be imbued that ML approach is suitable for the spiky sig-
nals. However, due to computational complexities it is unsuitable for the real time
application and data with small number of samples. Apart from ML approach
other methods, based on the matching of some monotonic function of the shape
parameter of GGD and same of the data, have also been proposed. We take here
Mallat’s method [13] and kurtosis matching method [14] for study. Mallat’s method
is a moment matching method in which the Generalized Gaussian Ration (GGR)
of the unknown data is matched with the theoretical value of GGR of the GGD
function. The GGRs of the data and of GGD function are related as

GGRz= E[|z|]
√
σ 2
z

=�(2/β)/
√
�(3/β)�(1/β)=γ (β) (4)

where γ is some function of the shape parameter of the GGD. The shape
parameter is obtained by inverting the above relation as follows

β=γ−1(GGRz) (5)

Similarly, the generalized kurtosis of the GGD is also monotonic function of
its shape parameter. The method of shape parameter estimation by matching of
kurtosis of the data and of GGD is also widely used in the signal processing appli-
cations [14]. The Generalized kurtosis Kz of the data and shape parameter β of
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GGD function are related as

Kz=
1
N

∑N
i=1 |zi |4

(
1
N

∑N
i=1 |zi |2

)2
= �(5/β)�(1/β)

�(3/β)2
=φ(β) (6)

where φ is some function of shape parameter of GGD to represent its kurtosis.
The shape parameter is determined by inverting the above relation as follows

β=φ−1(Kz) (7)

We propose here negentropy based method for the shape parameter estimation.
The negentropy J of the GGD can be computed only in terms of shape parame-
ter of the GGD function. The negentropy of the data is a measure of information
content in the data and it is always positive and is invariant from scale and linear
transformations [17] of the data. The negentropy J is defined in terms of Differ-
ential Entropy (DE) of the data. The DE, 	H of z is given by [17, 18]

	H(z)=−
∫ ∞

−∞
p(z) logp(z)dz, (8)

where p(z) represents PDF of the data. Using GGD function for the PDF of the
data, Equation (8) an be given by

	H(z)= log(1/A)
∫ ∞

−∞
Ae− |z|β

αβ dz+
∫ ∞

−∞
A

|z|β
αβ

e− |z|β
αβ dz

= log(1/A)+2A
∫ ∞

0

|z|β
αβ

e− |z|β
αβ dz (9)

Since integral in second term of Equation (9) is for positive values of the vari-
able, using (z/α)β =m⇒ dz = αβ−1m(1/β)

−1dm in Equation (9) along with use of
value of A from Equation (1) and that of α from Equation (3). Equation (9) can
be further simplified as

	H(z)= log(1/A)+ 2Aα
β

∫ ∞

0
m

1
β e−mdm= log(1/A)+ 2Aα

β
�

(
1
β

+1
)

=f (α,β)= log
[

2α�(1/β)
β

]
+ 1
β

=
⎡

⎣ 2
β

√
σ 2
z �(1/β)3

�(3/β)

⎤

⎦+ 1
β

(10)

Equation (l0) gives DE of data in terms of scale and shape parameters. The negen-
tropy J is computed as the difference of DE 	H(zGauss) of a Gaussian RV zGauss,
with same variance as of that of z(σ 2

zGauss
= σ 2

z ), and DE 	H(z) of z modeled
by the GGD fGG(0, α, β). Accordingly, negentropy J, in light of Equation (10) is
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given by [19]

J =	H(zGauss)−	H(z)=f (αg, βg =2)−f (α,β)

= log

⎡

⎣β
2

√
�(0.5)3�(3/β)
�(1/β)3�(1.5)

⎤

⎦+
(

0.5− 1
β

)
=ψ(β) (11)

where αg and βg are scale and shape parameters for Gaussian RV z, ψ is some
function of shape parameter of the GGD to measure negentropy. The theoreti-
cal variation of negentropy of GGD with shape parameter, as in Equation (11),
is shown in Figure 3. Since it is monotonically decreasing function of the shape
parameter for 0 �β � 2 it can be inverted to get β if the negentropy of the data
is known. For β >2, GGD belongs to sub-Gaussian family and negentropy again
begins to rise highly non-linearly with increasing β. It is important to note that
the relation between negentropy and shape parameter is monotonic either before
or after β = 2. So it cannot be used for the estimation for all values of shape
parameters together, because it will introduce ambiguity. However, it is obvious
from curves in Figure 3 that for a very large change in β there occurs very smaller
change in negentropy for β>2 than for β<2. This indicates that the curve for 0�
β�2 will be more sensitive to change in β and will be better for estimation of β
by inverse mapping. The shape parameters of super-Gaussian signals, for 0�β�2
is estimated by inverting the above relation as follows

β=ψ−1(J ) (12)

Figure 3. Shape parameter versus negentropy of the GGD. It is zero for Gaussian distribution and
positive for the spiky distribution (a) for 0.1�β�2.1 (b) for 2�β�60.
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The negentropy of the standardized data z can be approximated in terms non-
polynomial density functions given by Hyvarinen et al. [17]

J (z)=k1

[

E

{

z exp

(

−z
2

2

)}]2

+k2

[

E

{

exp

(

−z
2

2

)}

−
√

1
2

]2

(13)

where k1 = 7.412, k2 = 33.67,E{.} denotes expectation of {.}. Cumulants based
approximation of negentropy can also be used but it is worst for super-Gaussian
distribution because it gives too much weight to the tail of the distribution [17].
In the Equations (5), (7) and (13) it is impossible or may be difficult to find exact
inverse functions γ−1, φ−1 and ψ−1. However, with the help of look-up table it is
possible to approximate the inverse relation and same will be used here. The used
look-up table can be simple (2 ×R) array in which one row (or column) contains
R values of shape parameters and others row (or column) contains correspond-
ing values of negentropy estimated from Equation (11). Since the entries in table
include shape parameter values up to 2, it can be made smaller or larger subject to
required tolerance and need of real time application. However, it can not be always
expected and guaranteed that the entries for β–J pair will always match for the
unknown test data. Under such a case the entries in look-up table can be interpo-
lated to get an approximate value of the shape parameter at the cost of extra but
easier computations.

4. Experiments and Results

For the experiment random variables of different lengths, ranging from order of 10
to 105, were generated with GGD parameters mean = 0, standard deviation = 1 and
shape parameters ranging from 0.02 to 2. The look-up table for negentropy, kurtosis
and moment matching were prepared for different values of β ranging from 0.02 to 2
(of size 2×100) for negentropy matching method and 0.02 to 5 for the moment and
kurtosis matching. Two sets of data, namely (1) small number of samples (20–80),
and other of large number of samples (102 to 105) were prepared. The estimated and
true shape parameters for the first data set are shown in Figure 4 for β ranging from
0.02 to 0.3 (up to 2 are not shown only to keep clarity in figure). The related, error
in estimation, for the value of β ranging from 0.02 to 2, is plotted in Figure 5 from
where estimation performance for β ranging from 0.3 to 2 (not shown in Figure 5)
can also be imbued. The similar estimation results for large sample size are shown in
Figures 6 and 7. It is evident from these figures that the proposed method provides
lesser error, in comparison to moment or kurtosis matching methods, in estimation
from small number of samples in case when β is less than 1. The reason behind
such behavior of estimator can be explained using Figure 8 which shows slopes of
negentropy, kurtosis and of GGR (inverted) curves for related range of β value. The
slope of negentropy curve is more conducive than that of kurtosis or GGR curve
to notice and reflect small mutual changes in abscissa and ordinate. Thus even for
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Figure 4. True and estimated β for different sample sizes. The legend indication is same for all subplots.
(Kurt-kurtosis matching, Ggr-Mallat’s method, Negn=Negentropy matching.)

a large change in kurtosis or GGR, β remains same, but that change is noticed by
the negentropy curve. However, this property of kurtosis and GGR curves, arising
due to non-linearity, can make it robust to outlier. It is important to mention here
that if the J −β relation for the sub-Gaussian region will be used to obtain shape
parameter (of course for sub-Gaussian signal) similar non-linear relation, as shown
in Figure 3(b), between abscissa and ordinate will result in inaccurate estimation
because J–β relation is saturating very early. Also, the J–β mapping relation for
both the leptokurtic and platykurtic signals cannot be kept in one look-up-table
because it will give two values of shape parameters for a given value of negentropy
and estimation will be ambiguous. It can be imbued from Figure 9 that such ambi-
guity will exist for 0.75<β<2 before and after mesokurtic value (β=2) because for
β�2 negentropy curve begins to saturate to 0.035. In Figure 10 the results of esti-
mation of β for a highly spiky noise, machine gun noise taken from the NOISEX-92
database, are presented. Sub-plots in that figure present fittings of GGD function,
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Figure 5. Error in estimation of shape parameter for small value of shape parameters with small no. of
data samples. The proposed method gives less error than kurtosis and moment matching.

with estimated parameters from noise data of different sample size, e.g., 20, 100,
and 1000 samples, in the normalized histograms of data. The shape parameters were
estimated using kurtosis, moment and negentropy matching methods. In each case
it can be seen how the negentropy based estimation provides better fit. In one of the
sub-plots in Figure 10 the Chi-Square scores [20] between the GGD with estimated
parameters and data are also shown. It is evident from the figure that even for the
smaller number of samples negentropy based method gives better estimation than
that of the moment or kurtosis based methods.

5. Conclusions

We proposed a novel method for the shape parameter estimation of the GGD
by negentropy matching. This method provides better estimation of β, in com-
parison to moment or kurtosis matching, when the data samples are smaller and
shape parameter is also less than 1. For β > 2 negentropy matching method can
not be used as the negentropy again begins to increase after β = 2, terminating
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Figure 6. True and estimated β for different but large sample sizes (legend is same for all plots).

the monotonicity of the negentropy curve. Thus the proposed method can give
ambiguous result if entire values of shape parameter of GGD are put in the
same look-up table. This is happening due to break of monotonic relation between
negentropy and shape parameter for β= 2. However, most of the natural signals,
e.g., speech, image are leptokurtic, so proposed method is still useful. Anonymous
reviewers suggested an interesting idea to mitigate such an ambiguity by use of
normalized kurtosis of the data as indicator of the super-Gaussianity or sub-Gaus-
sianity of data to select suitable part of J −β relation in the look-up table. How-
ever, relative performance of J −β relation for sub-Gaussian and super-Gaussian
region for the estimation β is still unexplored, but due to early saturation in the
J −β relation for sub-Gaussian side it will not give better result. We have approx-
imated negentropy in terms of non-polynomial function. It can also be approxi-
mated in terms of cumulants. Estimation using cumulants based approximation of
negentropy is left unexplored, however, cumulants based approximation of negen-
tropy is worst for the super-Gaussian data.
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Figure 7. Error in estimation of shape parameter for small value of shape parameters with small no. of
data samples. The proposed method gives less error than kurtosis and moment matching.

Figure 8. Slope of the negentropy, kurtosis and GGR of the GGD for small value (0.02–0.4) of β.
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Figure 9. Showing ambiguity in inverse mapping of J − β relation in estimation of shape parameter.
For the same value of negentropy two values of shape parameters are possible which correspond to
super-Gaussian and sub-Gaussian distribution. However for β� 2, J −β relation saturates to very low
value of negentropy.
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