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Abstract. Prototype based classification offers intuitive and sparse models with excellent gen-
eralization ability. However, these models usually crucially depend on the underlying Euclid-
ian metric; moreover, online variants likely suffer from the problem of local optima. We here
propose a generalization of learning vector quantization with three additional features: (I) it
directly integrates neighborhood cooperation, hence is less affected by local optima; (II) the
method can be combined with any differentiable similarity measure whereby metric parame-
ters such as relevance factors of the input dimensions can automatically be adapted accord-
ing to the given data; (III) it obeys a gradient dynamics hence shows very robust behavior,
and the chosen objective is related to margin optimization.
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1. Introduction

Prototype based classifiers such as Kohonen’s Learning Vector Quantization (LVQ)
offer intuitive and simple, yet powerful learning algorithms for many applications
[6,27,28]. It has recently been shown that standard LVQ implicitly aims at mar-
gin optimization and hence very good generalization ability can be expected also
for high dimensional data [8]. Numerous modifications of basic LVQ have been
proposed to achieve faster convergence, more stable behavior, or better adaptation
according to optimum Bayesian decision, for example [28]. However, some draw-
backs of LVQ and variants prohibit to achieve optimum results: (I) The location of
prototypes found by LVQ depends on the initialization. The algorithm thereby gets
easily stuck in local optima for multi-modal data distributions. (II) LVQ crucially
depends on the chosen metric, commonly the Euclidian metric. Hence LVQ likely
fails for heterogeneous data with different relevances of the input dimensions.
(III) LVQ offers an intuitive heuristic. An underlying cost function as proposed
e.g., in [34] is highly incontinuous and causes instable behavior of LVQ in case of
overlapping classes.
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Several alternatives have been introduced to take these problems into account:

(I) In order to avoid the problem of local optima of LVQ, Kohonen pro-
poses to combine LVQ with neighborhood cooperation, i.e., to initialize LVQ
with prototypes found by the Self-Organizing Map (SOM), or to directly
combine LVQ with SOM-training [27]. This approach partially solves the
problem of local optima. However, SOM is based on a fixed neuron-topology
which has to fit the internal topology of the data. For simplicity, often
a two-dimensional lattice is chosen which possibly does not match the
(unknown) data topology. Methods which identify and repair topological
defects are costly [1,2,42]. In addition, a simultaneous update of all neurons
in a neighborhood provided by SOM according to LVQ causes a strengthen-
ing of inherent instabilities of LVQ [27]. Kohonen advises to use LVQ-SOM
only with small neighborhood size after initial unsupervised SOM training to
avoid these effects as far as possible.

Alternatives for avoiding local optima are offered by iterative schemes
which dynamically adapt the number of prototypes and their global position
such as the greedy scheme proposed in [44] or counters for the utilization of
prototypes as proposed in [31]. Thereby, the number of prototypes is gener-
ally not fixed a priori. If a cost function is available, training can be com-
bined with global methods like simulated annealing as proposed in [14,38].
This procedure is usually quite costly and annealing must be carefully con-
trolled at points of phase transitions.

We follow the approach proposed by Kohonen and present a combina-
tion of LVQ with neighborhood cooperation which is based on neural gas
(NG) or topology representing networks, respectively [29,30].1 Since NG uses
a data adapted topology, the approach does not suffer from possible topo-
logical mismatches. In our approach, NG and LVQ updates are combined
resulting in stable and robust behavior. The learning rule can be interpreted
as optimization of one single cost function.

(II) Several generalizations of learning schemes originally based on the Euclidian
metric have been proposed. A variety of unsupervised clustering algorithms
for the visualization and quantization of data exists which also incorporate
adaptive metrics: extensions of classical k-means such as the algorithms of
Gustafson and Kessel or Gath and Geva, clustering using more complex clus-
ter shapes such as fuzzy-k-varieties or fuzzy-k-shell, and incorporation of
auxiliary information into the metric used by the self-organizing map as pro-
posed by Kaski and many others [3,9,13,15,25,26]. Approaches which equip
supervised LVQ with an adaptive diagonal metric have also been proposed [5,
19,32]. Particularly, the gradient dynamics proposed in [19] has proven to be

1Only topology representing networks introduce a topology of neurons. However, we will refer to both
methods by neural gas since we are only interested in the benefitial effects of the learning dynamics.



SUPERVISED NEURAL GAS WITH GENERAL SIMILARITY MEASURE 23

successful in various application areas such as processing of satellite images
or time series prediction [41,43].

We will generalize this last approach to arbitrary differentiable similarity
measures. Thereby, parameters such as relevance factors of the metric can
be automatically adapted according to the given data. It will be shown in
experiments that alternatives to the (weighted) Euclidian metric have benefi-
cial effects for non-Gaussian data distributions.

(III) Some approaches develop cost functions for variants of LVQ. The first pro-
posals can be found in [24,34]. In [34], a more stable learning algorithm
based on this error formulation, so-called generalized LVQ (GLVQ), can also
be found. Exact investigation of equilibria for specific situations as presented
in [35] show that GLVQ yields robust behavior whereas original LVQ does
not. A precise derivative of the gradient formulas as well as a generalization
to incorporate relevance terms has been presented in [19].

Of course, standard unsupervised vector quantization itself possesses a cost
function, the quantization error, which looks very similar to the cost function
underlying basic LVQ and variants [18,27]. More complex unsupervised algo-
rithms which include neighborhood cooperation also often obey a potential
dynamic such as a modification of SOM as proposed in [21], NG [29], or sto-
chastic alternatives thereof [14,22]. Therefore, it is not surprising that these
cost functions can be transferred to learning vector quantization, as proposed
recently for a soft-competition variant of LVQ [38].

We will follow the approach in [19,34] because it describes the standard
crisp assignments of LVQ and makes an intuitive integration of the cost term
of NG as well as general similarity measures possible. This function is very
robust, as pointed out in [34], and it implicitly optimizes the margin, thus
giving good generalization [8]. As we will explain later, this cost function can
be combined with every differentiable similarity measure and can be used in
a flexible manner. For specific choices of the similarity measure the algorithm
can be interpreted as kernelization of GLVQ. Then theoretical guarantees on
the generalization ability from standard LVQ transfer to these cases [8]. Pre-
liminary results for the weighted Euclidian metric have been reported in [17]
which demonstrate the robustness of the method even for highly multimodal
and heterogeneous data.

We will now first introduce LVQ, GLVQ, and NG. We will then describe their
integration into one cost function for general similarity measures. We derive
formulas for some specific similarity measures which are beneficial in practice.
Finally, we demonstrate the capability of the algorithm in several experiments.

2. Learning Vector Quantization and NG

Assume given inputs v ∈V ⊂R
DV with class labels cv ∈L, L denoting the finite set

of possible labels. A prototype based classifier is characterized by codebook vectors
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(prototypes or neurons) wr with class labels cr ∈L. Denote by W ={wr} the class
of all prototypes and by Wc ={wr |cr =c} the class of prototypes assigned to class
c ∈L. Classification is realized by the winner-takes-all rule, i.e., a stimulus vector
v ∈V is mapped to the class of the closest prototype

v �→ c(v)= cr such that d(v,wr ) is minimum,

where d(v,wr ) = ‖v − wr‖2 denotes the squared Euclidian metric for the moment.
The neuron wr is called winner or best matching unit. The subset of the input
space

�r ={v ∈V |d(v,wr ) is minimum}

is called receptive field of neuron wr .
LVQ aims at minimizing the classification error, i.e., the difference of data

labeled with c, {v | cv = c}, and the union of the receptive fields of prototypes
labeled with c,

⋃
cr=c �r . For this purpose, LVQ as introduced by Kohonen [27,

28] recursively adapts the winner wr , given signal v, by

�wr =
{

ε · (v −wr ) if cv = cr ,

−ε · (v −wr ) otherwise,

where ε ∈ (0,1) is the learning rate. As explained in [34], this update can be inter-
preted as stochastic gradient descent on the cost function

CostLVQ =
∑
v∈V

fLVQ(dr+ , dr−),

whereby dr+ denotes the squared Euclidian distance of v to the closest prototype
labeled with cv and dr− denotes the squared Euclidian distance to the closest pro-
totype labeled with a label different from cv. For standard LVQ, the function is

fLVQ(dr+ , dr−)=
{

dr+ if dr+ �dr− ,

−dr− otherwise.

Obviously, this cost function is highly discontinuous and instabilities arise for over-
lapping data distributions.

The cost function of LVQ2.1 as explained e.g., in [27] can be obtained by set-
ting in the above sum the term fLVQ2.1(dr+ , dr−)=w(dr+ − dr−) whereby w yields
the identity within a window in which adaptation of LVQ2.1 takes place, and w

vanishes outside. Still this choice produces an instable dynamic, i.e., prototypes
diverge due to the fact that repelling forces from the term dr− might be larger
than attracting forces from the term dr+ . To prevent this behavior as far as possi-
ble, the window w within which adaptation takes place must be chosen carefully.
LVQ2.1 explicitely optimizes the term dr+ −dr− . According to [8] the related term
(‖v − wr−‖ − ‖v − wr+‖)/2 yields the hypothesis margin of the classifier. General-
ization bounds in terms of this hypothesis margin have been derived in [8]. Hence
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LVQ2.1 can be seen as a classifier which aims at structural risk minimization dur-
ing training, comparable to SVM [7].

Sato and Yamada propose an alternative, which still involves the hypothesis
margin, but also additional scaling factors for avoiding the prototype divergence
as discussed in [35]. Here

fGLVQ(dr+ , dr−)= sgd
(

dr+ −dr−

dr+ +dr−

)
,

whereby sgd(x)= (1+ exp(−x))−1 denotes the logistic function. Taking the deriva-
tive yields the updates

�wr+ = ε+ · sgd′
µ(v) · ξ+ ·2 · (wr+ − v),

and

�wr− =−ε− · sgd′
µ(v) · ξ− ·2 · (wr− − v),

where ε+ and ε− ∈ (0,1) are the learning rates, the logistic function is evaluated at
position µ(v)= (dr+ −dr−)/(dr+ +dr−), and

ξ+ = 2 ·dr−

(dr+ +dr−)2
,

and

ξ− = 2 ·dr+

(dr+ +dr−)2
,

denote the derivatives of fGLVQ(dr+ , dr−) with respect to dr+ and dr− , respectively.
As reported in [34], this modification, called GLVQ, shows superior performance

to LVQ2.1. However, being a stochastic gradient descent on a potentially multi-
modal function, the algorithm depends on the initialization of the prototypes and
gets easily stuck in local optima.

Unsupervised neural quantization schemes offer an intuitive possibility to spread
unlabeled prototypes wr ∈ W faithfully among a given data distribution. Neigh-
borhood cooperation ensures that initialization of prototypes is much less critical
for achieving global optima, if the degree of neighborhood cooperativity is scaled
appropriately during training. Unfortunately, for the popular self-organizing map
[27] a cost function can only be found for the discrete case or modified versions
[12,21,33]. In addition, SOM is restricted to a fixed lattice structure for the pur-
pose of easy visualization and therefore topological mismatches might occur [42].
A convenient alternative is offered by NG [29] which optimizes the cost function

CostNG = 1
C(γ,K)

∑
wr∈W

∑
v∈V

hγ (r, v,W)d(v,wr ),
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where

hγ (r, v,W)= exp
(

−kr(v,W)

γ

)
,

denotes the degree of neighborhood cooperativity, kr(v,W) yields the number of
prototypes wp for which d(v,wp)�d(v,wr ) is valid, i.e., the rank of wr , and
C(γ,K) is a normalization constant depending on the neighborhood range γ and
cardinality K of W. The learning rule is given by

�wr = ε ·hγ (r, v,W)(v −wr ),

where ε >0 is the learning rate. This learning rule can be interpreted as stochastic
gradient on the above cost function. NG shows very robust behavior and adapts
automatically to the given data topology due to the incorporation of the respective
rank of the prototypes, i.e., a data optimum neighborhood factor.

3. Supervised Neural Gas

Note that GLVQ does only adapt the closest correct and wrong prototype. Hence
prototypes initialized outside the data distribution will probably not become
adapted at all. Similarly, prototypes are often not capable of reaching an appro-
priate cluster center due to repelling forces from data of different classes. In
supervised neural gas (SNG) which will be defined below, the idea of neighbor-
hood cooperativity is integrated into GLVQ to avoid the dependency on the ini-
tialization of GLVQ. Given a training point, all prototypes of the respective class
are adapted towards the data point according to their rank like in NG.

We can formulate the objective of SNG within one cost function which com-
bines the dynamics of NG and GLVQ:

ESNG =
∑
v∈V

∑
wr∈Wcv

hγ (r, v,Wcv ) ·fSNG(dr , dr−)

C(γ,Kcv )
,

whereby

fSNG(dr , dr−)=fGLVQ(dr , dr−)= sgd
(

dr −dr−

dr +dr−

)
,

and dr denotes the squared Euclidian distance of v to wr . Kcv denotes the cardinal-
ity of the set of prototypes labeled by cv, i.e., |Wcv |. wr− denotes the closest pro-
totype not in Wcv . Here all prototypes of a specific class are adapted towards the
given data point, preventing neurons from being idle or repelled from their class.
The NG-dynamics aim at spreading all prototypes with a specific class label faith-
fully among the respective data. The simultaneous GLVQ dynamics make sure that
those class borders are found which yield a good classification. In addition, the
cost function includes terms related to the hypothesis margin just like GLVQ and
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original LVQ. Note that vanishing neighborhood cooperativity γ → 0 yields the
original cost function of GLVQ.

The update formulas for the prototypes can be obtained taking the derivative.
For each v, all prototypes wr ∈Wcv are adapted by

�wr = ε+ · sgd′|µr(v) · ξ+
r ·hγ (r, v,Wcv )

C(γ,Kcv )
·2 · (v −wr )

and the closest wrong prototype is adapted by

�wr− =−ε− ·
∑

wr∈Wcv

sgd′|µr(v) · ξ−
r ·hγ (r, v,Wcv )

C(γ,Kcv )
·2 · (v −wr−),

whereby ε+ and ε− ∈ (0,1) are learning rates and the logistic function is evaluated
at position

µr(v)= dr −dr−

dr +dr−
.

The terms ξ are again obtained as derivative of fSNG as

ξ+
r = 2 ·dr−

(dr +dr−)2

and

ξ−
r = 2 ·dr

(dr +dr−)2
.

The derivation of these formulas can be found in the appendix for the general case
of an underlying, possibly continuous data distribution.

Note that the original updates of GLVQ are recovered if γ → 0. For positive
neighborhood cooperation, all correct prototypes are adapted according to a given
data point such that also neurons outside their class become active. Eventually,
neurons spread among the data points of their respective class. Since all prototypes
have thereby a repelling function on the closest incorrect prototype, it is advisable
to choose ε− one magnitude smaller than ε+. As we will see in the experiments,
also highly multimodal classification tasks can be solved with this modification of
GLVQ.

4. General Similarity Measures

SNG is much less affected by initialization of prototypes, however, it still cru-
cially depends on the Euclidian metric. Noise will likely accumulate if high dimen-
sional data is dealt with. The algorithm cannot properly process heterogeneous
data where the input dimensions are subject to different scaling. In [19], a simple
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though powerful extension of GLVQ, generalized relevance learning vector quan-
tization (GRLVQ), has been proposed: the Euclidian metric is substituted by a
scaled metric

dλ(x,y)=
∑

i

λi(xi −yi)
2,

whereby λi � 0 constitute scaling or relevance terms with
∑

i λi = 1 which are
adapted automatically during training. The relevance terms allow a different and
problem-adapted scaling of the input dimensions. Thereby, noisy or superfluous
dimensions can be scaled with small relevance terms eventually resulting in a
pruning of these dimensions. More significant dimensions can be scaled with large
relevance terms. Adaptation of λ takes place simultaneously to the adaptation of
prototypes as minimization of the extended cost function

EGRLVQ =
∑
v∈V

fGLVQ(dλ
r+ , dλ

r−),

where dλ
r+ denotes the scaled squared Euclidian distance of the closest correct pro-

totype to the data point, and dλ
r− denotes the scaled squared Euclidian distance of

the closest incorrect prototype. The updates of wr+
and wr−

in GRLVQ are similar
to GLVQ. In addition, the relevance terms λ are adapted according to the gradi-
ent of this cost function with respect to λi for all i. The constraints λi ≥ 0 and∑

λi =1 are taken into account by normalization after each step.
The same extension can be used for the cost function of SNG: supervised rele-

vance neural gas (SRNG). More general, one can substitute the Euclidian metric
in SNG by any differentiable similarity measure

dλ: RDV ×R
DV →R,

whereby λ constitute parameters of the metric which can be adapted during train-
ing. A similarity measure thereby refers to any function which yields nonnegative
real values, however, it need not be symmetric or fulfill the triangle inequality. The
general cost function then has the form

ESRNG =
∑
v∈V

∑
wr∈Wcv

hγ (r, v,Wcv ) ·fSNG(dλ
r , dλ

r−)

C(γ,Kcv )
,

whereby dλ
r :=dλ(v,wr ), r− denotes the closest prototype which does not belong to

Wcv measured according to the similarity measure dλ, and the rank of prototypes
is computed using this general similarity measure. Taking the derivatives yields the
updates

�wr =−ε+ · sgd′|µr(v) · ξ+
r ·hγ (r, v,Wcv )

C(γ,Kcv )
· ∂dλ

r

∂wr
(1)
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for all prototypes wr ∈Wcv , and the update

�wr− = ε− ·
∑

wr∈Wcv

sgd′|µr(v) · ξ−
r ·hγ (r, v,Wcv )

C(γ,Kcv )
· ∂dλ

r−

∂wr−
(2)

for the closest wrong prototype, whereby ε+ and ε− ∈ (0,1) are learning rates and
the logistic function is evaluated at position

µr(v)= dλ
r −dλ

r−

dλ
r +dλ

r−
.

Here

ξ+
r = 2 ·dλ

r−

(dλ
r +dλ

r−)2
and ξ−

r = 2 ·dλ
r

(dλ
r +dλ

r−)2
.

The derivative with respect to λ is computed by

�λ= ε
∑

wr∈Wcv

sgd′|µr(v) ·hγ (r, v,Wcv )

C(γ,Kcv )
·
(

ξ+
r · ∂dλ

r

∂λ
− ξ−

r · ∂dλ
r−

∂λ

)
. (3)

Here ε ∈ (0,1). The derivation of these formulas can be found in the appendix.
Note that these update formulas can be formulated for any differentiable similarity
measure d. Metric parameters λ can thereby be adapted automatically in a data
driven way. Depending on the role of the parameters λ it might be advisable to
restrict the search space for λ to a certain range, e.g., λ positive and normalized,
to prevent degeneration of the solution. These constraints can be plugged into the
algorithm using explicit normalization after each update step.

The question now occurs for which choices of the similarity measure the algo-
rithm SRNG can be interpreted as a kernelized version of SNG. Kernelization
constitutes a common trick to transfer well understood and possibly simple algo-
rithms to more complex situations: in the case of SVM, for example, a nonlinear
kernel allows to separate complicated data sets in a high dimensional space, the
feature space which is provided by the kernel, with a linear separator [37]. Thereby,
theoretical guarantees such as the generalization ability are preserved. LVQ and
SRNG for the Euclidian metric can be interpreted as margin optimization algo-
rithm for which theoretical bounds on the generalization error depend on the mar-
gin and are independent of the data dimensionality. Hence kernelization of LVQ
or SRNG would be connected to the good bounds on the generalization error.
We will in the following refer to the general similarity measure used in SRNG by
d: RDV ×R

DV →R.
A kernel is a function k:RDV ×R

DV →R such that some Hilbert space X and a
function �: RDV →X can be found with

k(x,y)=�(x)t�(y).
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That is, k can be interpreted as scalar product in some high dimensional (possi-
bly infinite dimensional) space. The most prominent application of kernels within
machine learning can be found in the context of SVMs [7]. However, based on the
success of SVM, kernelization of various alternative machine learning tools such as
principal and independent component analysis became popular [37]. If the chosen
kernel is fixed, results from statistical learning theory such as bounds on the gen-
eralization error can be transferred directly from the basic version of the learning
algorithm to the kernelized one. At the same time, appropriate nonlinear kernels
often considerably expand the capacity of the original method, yielding universal
approximators in the case of SVM, for example [16,40]. Thereby, the possibly high
dimensional mapping � need not be computed explicitely such that computational
effort can be reduced. The fact whether a function constitutes a kernel can be
tested using e.g., Mercer’s theorem [37]. Popular kernels include, for example, the
polynomial kernel, the Gaussian kernel, or kernels specifically designed for com-
plex data structures such as strings [20,23].

In our case, we are interested in a general similarity measures d such that some
�: RDV →X exists with

d(x,y)=‖�(x)−�(y)‖,

whereby ‖ · ‖ denotes the metric in the Hilbert space X. If this holds, we can in-
terprete the cost function ESRNG as cost function of SNG in some (possibly) high
dimensional Hilbert space, whereby the generalization ability of the classifier only
depends on the margin of the classifier. It is well known that such � can be found
for a more general class of functions than Mercer kernels: one sufficient condi-
tion is, for example, that d constitutes a real-valued symmetric function d with
d(x,x)=0 for all x such that−d is conditionally positive definite, i.e., for all N ∈N,
c1, . . . , cN ∈ R with

∑
i ci = 0 and x1, . . . ,xN ∈ R

DV the inequality
∑

i,j cicj · (−1) ·
d(xi ,xj ) � 0 holds [36]. As an example, functions of the form ‖x − y‖β for an
arbitrary metric ‖ · ‖ and β ∈ (0,2] fulfill these properties. Hence if d also fulfills
these properties, SRNG constitutes a kernelized version of SNG and generaliza-
tion bounds transfer to this case.

Note however that bounds on the generalization ability of the classifier do not
transfer to a general similarity measure d if parameters λ of d are adapted during
training, i.e., the feature space X of the mapping � is implicitly changed during
training. In addition, it might be appropriate to use general similarities which do
not fulfill the above conditions and thus cannot be interpreted as kernelization of
the original algorithm. This might be the case, for example, for problem-specific
similarity measures. However, we found experimentally that SRNG provides good
generalization for these cases.

Apart from the standard squared Euclidian metric, we will in the following deal
with three different similarity measures:
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– the scaled squared Euclidian metric with adaptive relevance terms which has
already successfully been tested in combination with GLVQ [19]:

dλ
2 (x,y)=

∑
i

λi(xi −yi)
2,

whereby λi ≥0 and
∑

i λi =1.
– The (weighted) quartic similarity measure:

dλ
4 (x,y)=

∑
i

λ2
i (xi −yi)

4,

whereby
∑

i λi = 1 and λi ≥ 0. This similarity measure punishes large deviations
of the elements xi and yi more than the squared Euclidian metric whereas small
deviations are tolerated. This fact seems particularly appropriate if the entries
xi are not Gaussian but more sharply clustered. The quartic similarity measure
then better matches the test whether a large number of entries can be found
within such a cluster. If data are component-wise normalized to mean 0 and var-
iance 1, this similarity measure magnifies component-wise distances iff they are
larger than the variance.

– in analogy to the so-called locality improved kernel (LIK) which has been pro-
posed to take local correlations of spatio or temporal data into account, such as
DNA sequences in computational biology [39], we use the following similarity
measure: assume data points have the form v = (v1, . . . , vDV

) and local correla-
tions of neighbored entries vi , vi+1 might be relevant for the similarity measure;
v might, for example, represent a time window of length DV of a time series. dL

then computes

dλ
L(x,y)=

DV∑
i=1

λisi(x,y),

whereby

si(x,y)=

 l∑

j=−l

bj

bnorm
(xi+j −yi+j )

2




β

,

measures the correlation of the distances of the entries within a local window
around position i of the two data points. Thereby, β >0 is typically chosen as a
small natural number, bj is a factor which is decreasing towards the borders of
the local window such as bj = 1/(|j | + 1), bnorm =∑l

j=−l bj , and l denotes the
radius of the local windows. At the borders of the range of indices of x and y,
indices might be taken modulo CV +1, or adaptation of the window size at the
borders is necessary. λi ≥0 are adaptive values with

∑
i λi =1.
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Since these similarity measures are differentiable, we can use these similarities
together with SRNG. Thereby, however, only dλ

2 allows for a direct interpretation
as kernelized SNG if the relevance terms λ are fixed. We will see in the experi-
ments, however, that a competitive generalization ability and better classification
accuracy can be achieved for adaptive relevance term or the alternatives dλ

4 and
dλ
L. The update formulas for prototypes and relevance terms for these similar-

ity measures result directly from the derivatives of the similarities and formulas
(1)–(3). Thereby

− ∂dλ
2 (x,y)

∂xi

=2 ·λi · (xi −yi),
∂dλ

2 (x,y)

∂yi

=2 ·λi · (yi −xi),

∂dλ
2 (x,y)

∂λi

= (xi −yi)
2.

− ∂dλ
4 (x,y)

∂xi

=4 ·λ2
i · (xi −yi)

3,
∂dλ

4 (x,y)

∂yi

=4 ·λ2
i · (yi −xi)

3,

∂dλ
4 (x,y)

∂λi

=2 ·λi(xi −yi)
4.

− ∂dλ
L(x,y)

∂xi

=
i+l∑

p=i−l

2 ·λp ·β · (sp(x,y)
)(β−1)/β · bi−p

bnorm
(xi −yi),

∂dλ
L(x,y)

∂yi

=
i+l∑

p=i−l

2 ·λp ·β · (sp(x,y))(β−1)/β · bi−p

bnorm
(yi −xi),

∂dλ
L(x,y)

∂λi

= si(x,y).

5. Experiments

5.1. highly multimodal artificial data

We first demonstrate the ability of SRNG to deal with highly multimodal data
and to adapt relevance factors automatically according to the data structure for
the weighted squared Euclidian metric using artificially generated data sets. Data
sets 1–6 consist of two classes with 50 clusters with about 30 points for each clus-
ter. The centers of the clusters are thereby located on a checkerboard structure in
the two dimensional square [−1,1]2. Data sets 1, 3, and 5 contain two-dimensional
data points from these clusters for which the sets differ with respect to the over-
lap of the classes as depicted in Figures 1 and 2. Data sets 2, 4, and 6 are
achieved as copies of 1, 3, and 5, respectively, whereby the two-dimensional points
are embedded into 8 dimensions as follows: a point (x1, x2) is embedded as
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Figure 1. Artificial multimodal data set used for training with two classes (different class labels indicated
as × and +): training set 1 and prototypes found by SRNG (�, spread over the clusters) and GRLVQ
(∗, only within two clusters in the middle).

(x1, x2, x1 + η1, x1 + η2, x1 + η3, η4, η5, η6). Thereby, ηi is uniform noise with sup-
port [−0.05,0.05] for η1, [−0.1,0.1] for η2, [−0.2,0.2] for η3, [−0.1,0.1] for η4,
[−0.2,0.2] for η5, and [−0.5,0.5] for η6. Thus x6–x8 contain no information which
is relevant for the classification. For the classification, x3–x5 contain disrupted cop-
ies of x1 which might be used for the classification, i.e., information with respect
to the location in dimension 1 can also be achieved from these dimensions. Dimen-
sion 2 is relevant and cannot be substituted. These sets are randomly divided into
training and test set of the same size in a cross-validation. We train SRNG with
metric dλ

2 with 50 prototypes for each class on these sets whereby prototypes are
initialized randomly with small values. Relevance factors λi are initialized equally.
Training is done for 3000 cycles with learning rates ε+ = 0.1 for correct proto-
types, ε− = 0.05 for incorrect prototypes, and ε = 0.0001 for the relevance terms.
The neighborhood range is started at σ = 100 and it is multiplied by 0.995 after
each epoch.

For comparison, we report the mean values of a cross-validation for the
following variants: SRNG with neighborhood cooperation and adaptation of the
relevance terms as proposed in this paper; SNG, i.e., SRNG, whereby no adapta-
tion of the relevance factors is done and the standard Euclidian metric is used;
GRLVQ, i.e., SRNG, whereby no neighborhood cooperation takes place; GLVQ
as proposed by Sato and Yamada [34] without neighborhood cooperation and rele-
vance adaptation; a simple one-nearest-neighbor classifier (NN), whereby the result
reports the classification accuracy on the test set if nearest neighbors are taken
from the training set; the classification accuracy if prototypes are set by hand into
the cluster centers which have been used to construct the data (opt).

The results are collected in Table 1. As depicted in Figure 1, the variants of
LVQ without neighborhood cooperation are not capable of placing prototypes into
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Figure 2. Artificial multimodal data setswith two classes (different class labels indicated by × and +):
training set 3 with some overlap (top) and training set 5 with large overlap of the clusters (bottom).

clusters which are not directly located at the origin. Correspondingly, the classi-
fication accuracy for GLVQ and GRLVQ is close to only 50%, i.e., a random
guess. SNG and SRNG spread the prototypes faithfully among the data. Train-
ing has thereby been done with the minimum number of prototypes sufficient for
classification at 100%. SNG and SRNG usually miss at most 2 or 3 out of 100
clusters. (One missing cluster accounts for an error of about 1%). For the well
separated data set 1, SNG and SRNG almost achieve optimum classification accu-
racy. SRNG is capable of classifying 95% of the data correctly also for data set 2,
where data are embedded into 8 dimensions. A typical relevance profile which is
thereby achieved is

λ= (�0.34,�0.4,�0.18,≈0, . . . ,≈0).
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Table 1. Training/test set accuracy (mean values in %, variation
� ± 2% in all cases) of the obtained clustering for the multi-
modal data sets.

Data1 Data2 Data3 Data4 Data5 data6

Opt 100 100 97.3 97.3 58 58
NN 100 95.4 93.1 77.1 67.3 50.1
GLVQ 49.4/48.9 50/49 51.5/49.5 50/49.5 50/50 51/50
GRLVQ 50.2/50 50/50 55/49 50.5/50 51/50 51/49
SNG 99/98 80/72 90/90 75/64 61/50 70/50
SRNG 99/99 95/94 92/91 92/92 66/54 67/55

Hence the importance of dimension 2 is clearly pointed out. Irrelevant dimensions
are effectively pruned and the relevance of dimension 1 is shared among 1 and 3.
Note that training and test set accuracy for data set 2 are worse compared to data
set 1 for SNG which does not adapt relevance factors. Hence added noisy dimen-
sions here significantly reduce the performance of a metric-based classifier whereas
SRNG can account for this fact using the relevance terms. The classification accu-
racy for data sets 3 and 4 is a bit worse owing to the larger overlap of the classes.
However, the training and test set accuracy of SRNG is close to the accuracy of
NN for both sets. As expected, the generalization error of SRNG is very bad for
data sets 5 and 6 which contain highly overlapping data as can be seen in Figure 2.
Nevertheless, SRNG is capable of achieving a comparably good training error, i.e.,
of optimizing the given cost function due to the neighborhood cooperativity. The
relevance profile of SRNG for data sets 4 and 6 is thereby similar to the above
profile for data set 2, clearly indicating the importance of the first 2 dimensions
and only entries for the first three dimensions are significant.

5.2. discrete data

The mushroom data set from the UCI repository [4] consists of 8124 vectors which
contain 22 symbolic attributes including binary attributes as well as attributes with
up to 12 different values. Data are here embedded into 117 dimension by encoding
all symbols in a unary way. In addition, data is linearly transformed component-
wise to zero mean and unit variance. The two class label ‘edible’ and ‘poison-
ous’ are represented by 51.8% and 48.2%, respectively, of the data set. Hence data
are high dimensional, however, it is well known that only few relevant dimensions
allow a classification close to 100% [10]. The classification can also be given by a
logic formula. As an example, attributes related to only ‘odor’ allow a classification
of about 98.5%, and the single test ‘spore-print-color=green’ yields the accuracy
99.41%. Nevertheless, the learning task is difficult for standard vector quantization
due to the high dimensionality of the input space. Since we with symbolic data, the
distribution is not Gaussian but focused. We will test SRNG for the two similarity
measures dλ

2 and dλ
4 .
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We report averaged results of 10 independent runs. Data has thereby randomly
been split into training set (75% of data) and test set (25% of data). We use
two prototypes per class and correspondingly start with a small neighborhood
parameter 0.5. Learning parameters have been optimized for the runs. SRNG
with the squared Euclidian metric dλ

2 converges after 350 epochs and yields the
mean training set accuracy of 96.01 ± 0.53% and test set accuracy 96.33 ± 0.56%.
In comparison, the metric dλ

4 converges already after 50 epochs and yields the
training set accuracy 99.76 ± 0.1% and test set accuracy 99.77 ± 0.03%. Note
thereby, that data have been transformed to unit variance, such that this met-
ric puts a bias onto dimensions where the symbols are not uniformly distributed.
Rare (hence potentially significant) events are boosted in this way. The similar-
ity measure dλ

4 thus leads to very sparse and accurate models. Interestingly, the
relevance profiles emphasize dimensions which have been extracted also by differ-
ent methods such as rule extraction [10]: The relevance profile for dλ

4 empha-
sizes dimensions 27 (odor = foul), 28 (odor = none), 41 (gill-color = pink), and 101
(spore-print-color=green). Also for dλ

2 , dimension 28 is related to the largest rele-
vance term (see Figure 3).

Hence, relevance profiles allow to deal with high dimensional data, and the simi-
larity measure dλ

4 allows to achieve state-of-the-art performance with very compact
models.

5.3. time series data

The data set in this experiment consists of a univariate time series which describes
the monthly power consumption in kilowatt hours for 355 consecutive months.
Data has been taken from [11] (KWHNSA.ZIP). The values are thereby not
seasonally adjusted, it can hence be expected that values from the respective sea-
son of the previous years are relevant for prediction. In addition, local correla-
tion of consecutive values can be expected. The first derivative of the time series
has been considered to account for trends. In addition, the numbers have been
translated to zero mean. Then the resulting values have zero mean and variance
1.66. Since we only deal with classification, the absolute range (−4,4) has been
divided into seven intervals with an equal number of elements (≈50). Real val-
ues are substituted by the class labels given by the respective interval index (see
Figure 4). The task is to predict the interval index of the value of the next
time step based on the past values in the chosen time interval. For classification,
time windows of length 30 are chosen, i.e., prediction is done based on the past
2.5 years. For each method we report results from 10 independent runs, whereby
the data set is split into a training set of 273 data points corresponding to the first
part of the time series and a test set of 51 data points corresponding to the last
part of the sequence.

We trained prototype based classifiers using 7 prototypes per class and learn-
ing rates which are optimized for the respective training method. Neighborhood
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Figure 3. Relevance profiles for SRNG and the mushroom-data. For both similarity measures, dλ
2

(top) and dλ
4 (bottom), several dimensions are significantly emphasized, particularly dimension 28

(odor = none) in both cases.

cooperation starts with an initial neighborhood size 7 and is multiplied by 0.999
after each epoch. Prototypes are initialized randomly with small values and the
relevance factors are at the beginning all equal. SRNG has been used with the
metrics dλ

2 , dλ
4 , and dλ

L. The radius of local windows for dλ
L is chosen as l = 6,

local correlations of degree β =4 are considered, and the local windows are cut at
the borders of index range. Each method is trained for 2500 epochs after which
convergence could be observed in all cases. In Table 2 the mean classification
accuracy on the training and test set of the methods is reported. In addition, we
compute the mean squared error of the prediction which is obtained from the clas-
sification predicting for each value in a receptive field a constant (the mean value
of data in the training set in the receptive field of the respective prototype). Note
that default classification to the class of largest size would yield a classification
accuracy of 14.3%. Prediction to a constant value would yield the mean squared
error 1.66.

Obviously, the classification accuracy and the prediction error are best for the
similarity measure dλ

L which can take local correlations of the observed time series
into account. dλ

4 yields better results on the training set than the simple squared
weighted Euclidian norm, which can be explained by the fact that data in the
several dimensions are focused, whereby small deviations of the data points from
the prototypes should be tolerated due to inherent noise of the process, large
deviations, however, are less likely. Note that the classification accuracy and the
prediction error on the test set are much worse compared to the training set. This
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Figure 4. Monthly power consumption in kilowatt hours; representative subset of the data starting from
months 100 to 300; data are linearly transformed to acount for trends, and differences of consecutive
month are predicted. As can be seen, the time series is rather noisy, whereby some seasonal features of
the graph can be identified. The prediction task is turned into a translation task by dividing the values
to be predicted into seven classes as indicated by horizontal lines. The number of points in the classes is
thereby approximately of the same size.

is due to the fact that only few training data are available, and the time series is
comparably noisy. Nevertheless, results are always considerably better than default
classification or prediction which would yield a classification accuracy of 14.3%
and the mean squared prediction error 1.66. The generalization ability of the three
metrics in these runs is competitive, whereby dλ

L also yields the best classification
results on the test set.

Relevance profiles obtained for the various similarity measures for all runs are
reported in Figure 5. For all models peaks can be observed at different significant
positions: the immediate past (on the right) and positions 18 and 6 which correspond
to the same month in the previous year and the year before. Hence the resulting rel-
evance profiles are very reasonable. The relevance profiles of dλ

L vary comparably
much between independent runs. This can be explained by the fact that information
is here integrated in several consecutive windows and thus redundancy of informa-
tion is present. Moreover, local time windows at the borders are emphasized resulting
in high relevance terms at the left side and right side. This is due to the fact that
information contained at the borders is only contained in a smaller number of local
time windows compared to time series entries within the middle.

Table 2. Training and test set accuracy (in %) for clas-
sification (C) with SRNG and various metrics, mean
squared error of the corresponding constant predic-
tion for the preprocessed time series (P); the reported
results are mean values of 10 runs.

C (train) C (test) P (train) P (test)

dλ
2 83.7±0.7 20.59±1.42 0.4±0.04 1.17±0.05

dλ
4 93.43±0.93 26.08±1.53 0.21±0.03 0.94±0.11

dλ
L 96.5±0.52 30±5.1 0.12±0.01 0.94±0.1
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Figure 5. Relevance profiles for similarity measures Lλ
2 (top), Lλ

4 (middle), and Lλ
L (bottom), measured

over ten runs (dotted lines), including the average. In all profiles, the peaks of the immediate past, and
the same season one and two years earlier, respectively, are clearly visible. For Lλ

L, the variance is higher
due to redundant information of the windows and comparably high values are observed at the borders
because redundancy is here smaller.

6. Conclusions

We have presented a generalization of learning vector quantization which com-
bines several significant aspects into one model: the algorithm is based on the very
robust cost function of GLVQ. Therefore, on the one hand, stable behavior also for
overlapping and noisy data, is obtained, on the other hand, good generalization
capabilities due to the implicit margin optimizition can be achieved. The algorithm
includes neighborhood cooperation reducing the problem of local optima; the ini-
tialization of prototypes is no longer an issue. This scheme has experimentally
proved an efficient strategy. The algorithm automatically adapts metric parameters
and is particularly well suited for high dimensional data. In addition, any problem
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specific similarity measure can be used such that very powerful models arise also
with only a small number of prototypes. These objectives have been integrated into
one single cost function and update formulas for prototypes and relevance terms
have been derived also for the case of an underlying, possibly continuous data dis-
tribution. In addition, the performance of the method has been demonstrated in
several experiments.
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Appendix

It remains to show that the updates of prototypes and possible additional param-
eters λ of the chosen similarity measure can be derived as stochastic gradient
descent on the chosen cost function. Obviously, ESRNG describes a more general
setting than ESNG. The updates of the latter one can be derived from the former
update formulas chosing the similarity measure as standard weighted Euclidian
metric. For an underlying data distribution P the cost function of SRNG becomes

ESRNG =
∫

v∈V

∑
wr∈Wcv

hγ (r, v,Wcv)

C(γ,Kcv)
·fSNG(dλ

r , dλ
r−) dP (v).

Denoting by WC
c = W\Wc the complement of Wc, we can alternatively write this

function as

∫
v∈V

∑
( wr∈Wcv

w
r′ ∈WC

cv

)
hγ (r, v,Wcv ) ·nr ′(v,WC

cv
)

C(γ,Kcv )
·fSNG(dλ

r , dλ
r ′) dP (v),

where ni(v,W) characterizes the prototype closest to v in W, i.e., it is 1 if
dλ(v,wi )=minwj ∈W dλ(v,wj ) and 0 otherwise. Denote by H : R→{0,1},

H(x)=
{

1 if x >0,

0 otherwise,

the Heaviside function. Recall that ki(v,W) yields the number of prototypes in W
which are closer to v than wi . We can write

ki(v,W)=
∑

wj ∈W

H(dλ(v,wi )−dλ(v,wj ))

and

ni(v,W)=H(−ki(v,W)).

The derivative of the Heaviside function H is the Dirac-function δ, which is
symmetric and nonvanishing only for the input 0. Denote µr,r ′

(v) = (dλ
r − dλ

r ′)/
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(dλ
r + dλ

r ′), and by ξ+
r,r ′ and ξ−

r,r ′ the derivative with respect to dλ
r and dλ

r ′ , respec-
tively. The derivative of the integrand of ESRNG with respect to wr ∈ Wcv yields
the following two summands:

∑
wr′ ∈WC

cv

hγ (r, v,Wcv ) ·nr ′
(
v,WC

cv

)
C(γ,Kcv )

· sgd′|
µr,r′ (v) · ξ+

r,r ′ · ∂dλ
r

∂wr
,

which equals the update (1), and

∑
( wp∈Wcv

w
r′ ∈WC

cv

)
nr ′
(
v,WC

cv

)
C
(
γ,Kcv

) ·fSNG
(
dλ
p, dλ

r ′
) · ∂hγ (p, v,Wcv )

∂wr
.

This equals

∑
wp∈Wcv

∑
wr′ ∈WC

cv

∑
wq∈Wcv

nr ′
(
v,WC

cv

) ·fSNG
(
dλ
p, dλ

r ′
)

C(γ,Kcv )
· ∂hγ

(
p, v,Wcv

)
∂kp(v,Wcv )

·δ(dλ
p −dλ

q ) ·
(

∂dλ
p

∂wr
− ∂dλ

q

∂wr

)
.

∂hγ (p, v,Wcv )/∂kp(v,Wcv ) and ∂hγ (q, v,Wcv )/∂kq(v,Wcv ) coincide for dλ
p = dλ

q ,
hence this term vanishes due to the properties of δ. The derivative of ESRNG with
respect to wr ′ ∈WC

cv
yields the two summands

∑
wr∈Wcv

hγ

(
r, v,Wcv

) ·nr ′
(
v,WC

cv

)
C(γ,Kcv )

· sgd′|
µr,r′ (v) · ξ−

r,r ′ ·
∂dλ

r ′

∂wr′
,

which equals the update (2), and

∑
( wr∈Wcv

wp∈WC
cv

)
hγ

(
r, v,Wcv

)
C(γ,Kcv )

·fSNG(dλ
r , dλ

p) · ∂np

(
v,WC

cv

)
∂wr′

.

This equals

∑
wr∈Wcv

∑
wp∈WC

cv

∑
wq∈WC

cv

hγ

(
r, v,Wcv

) ·fSNG(dλ
r , dλ

p)

C(γ,Kcv )
· δ(−kp

(
v,Wcv

))

·(−1) · δ(dλ
p −dλ

q

) ·
(

∂dλ
p

∂wr′
− ∂dλ

q

∂wr′

)
.
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Again, this vanishes due to the properties of δ. The derivative with respect to λ

yields the summands

∑
( wr∈Wcv

w
r′ ∈WC

cv

)
hγ

(
r, v,Wcv

) ·nr ′(v,WC
cv

)

C(γ,Kcv )
· sgd′|

µr,r′ (v)

·
(

ξ+
r,r ′ · ∂dλ

r

∂λ
− ξ−

r,r ′ ·
∂dλ

r−

∂λ

)
,

which equals the update (3), and the terms

∑
( wr∈Wcv

w
r′ ∈WC

cv

)
fSNG(dλ

r , dλ
r ′)

C(γ,Kcv )
·nr ′

(
v,WC

cv

) · ∂hγ (r, v,Wcv )

∂λ

and

∑
( wr∈Wcv

w
r′ ∈WC

cv

)
fSNG(dλ

r , dλ
r ′)

C(γ,Kcv )
·hγ

(
r, v,Wcv

) · ∂nr ′
(
v,WC

cv

)
∂λ

.

The first one equals

∑
wr∈Wcv

∑
wr′ ∈WC

cv

∑
wp∈Wcv

nr ′
(
v,WC

cv

) ·fSNG
(
dλ
r , dλ

r ′
)

C(γ,Kcv )
· ∂hγ

(
r, v,Wcv

)
∂kr(v,Wcv )

·δ(dλ
r −dλ

p) ·
(

∂dλ
r

∂λ
− ∂dλ

p

∂λ

)

and hence vanishes. The second one equals

∑
wr∈Wcv

∑
wr′ ∈WC

cv

∑
wq∈WC

cv

hγ

(
r, v,Wcv

) ·fSNG
(
dλ
r , dλ

r ′
)

C(γ,Kcv )
· δ(−kr ′

(
v,Wcv

))

·(−1) · δ(dλ
r ′ −dλ

q

) ·
(

∂dλ
r ′

∂λ
− ∂dλ

q

∂λ

)

and hence vanishes as well.


