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Previously, we proposed a “thermodynamic” model (T-model) in an attempt to analyze temporal 
dynamics of the central commands (CCs) coming to the muscles in the course of forelimb movements 
in humans. The model used electromyography (EMG) data and was tested on a simplified geometric 
simulation of a human arm with a fixed shoulder joint in the case of parafrontal hand movements under 
the action of tangential loads. The T-model is based on equations that determine the relationship between 
infinitesimal changes in the muscle force and length, which, by analogy with the principles of classic 
thermodynamics, are taken as exact differentials. Thus, our study represents the further development 
of the T-model, taking into account the CCs coming to the elbow joint muscles, belonging to the 
subject with known biomechanical parameters of his arm identified via magnetic resonance imaging 
(MRI). When considering circular planar movements of the subject’s hand against the background of 
tangential loads, symmetrical sinusoidal force waves develop in the muscles, and the CC waves acquire 
asymmetric shapes. The proposed method of the equalization/normalization procedure in the T-model 
allows us to formally consider the inverse transformation of the symmetric force waves into asymmetric 
CCs, which are the root cause of force generation. This approach was found to be quite effective in 
describing hysteresis differences of the CCs related to oppositely directed test movements. To analyze 
these differences using the T-model, we propose a method using multiplicative or additive correction 
terms to be applied to the muscle stiffness, or force velocity, respectively. The further development of 
the T-model is discussed concerning the real experimental practice. 
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INTRODUCTION

General formulation of the problem. Despite the 
significantly increased experimental and technical 
capabilities in the studies of targeted human 
movements, it becomes clear that a significant 
increase in the number of channels for recording 
electrophysiological and biomechanical information 
in the experiment in many cases may encounter 
difficulties in its subsequent adequate processing 
and analysis. The information about the activity 
of a number of muscles belonging to the same or 
different joints or even to different limbs is closely 
connected with the problem of redundancy of the 

motor control system introduced by Bernstein in his 
hierarchical theory of voluntary movement control 
[1]. To manage this problem for the analysis of 
purposeful human movements, Bernstein introduced 
a simplifying concept of “synergy”, which can be 
considered an ability of the CNS to diminish motor 
redundancy by reducing the degrees of freedom in 
the movement programs. Computational algorithms 
have been developed to evaluate the efficiency 
of motor control using the following algorithms, 
(1) principal component analysis, (2) indepen
dent component analysis, (3) factor analysis, (4) 
nonnegative matrix factorization, and others [2–4]. 
Several review papers have focused on the problems 
of movement control using a limited number of 
muscle synergies [7, 8].

The stability of synergies in motor actions 
convincingly confirms the existence of such a well-
defined concept of human movement control, and 
this primarily concerns the movements of the upper 
limbs [9, 10]. Muscle synergy is likely capable 
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of reconstructing muscle activity during virtual 
arm spatial movements or force generation tasks, 
and synergy models can sometimes describe the 
electromyography (EMG) data satisfactorily [11]. 
However, a striking similarity was recently found 
in the activity patterns of close synergists during 
two-joint arm movements [12–17]. With the help 
of graphic models, linear and circular two-joint 
movements were modeled for a particular case 
of tangential end-point loads [13], which made it 
possible to identify power synergies in the muscles 
of the proximal and distal joints for these types of 
movements.

Compared to the simplified hinge joints used to 
model arm movements, synovial joints not only 
show isolated rotations but are also capable of 
exhibiting some displacement movements. The 
amplitudes of translational movements in the 
shoulder joint are known to be capable of reaching 
several centimeters during large-scale movements; 
hand segments also cannot be correctly represented 
as rigid bodies fixed at a certain point [18]. In any 
case, accurate knowledge of the main anatomical 
parameters of the muscles and joints involved in the 
studied movement seems to be highly important for 
increasing the accuracy of the quantitative analysis 
of the real movements. To take a real step in this 
direction, the spatial copies of the arm bones of 
one subject who participated in the experiments 
were created using 3D printing [19]. The places of 
origin and attachment of the main muscles of the 
elbow and shoulder joints were directly determined 
by the prints; this, together with the determination 
of the exact distances between the elbow and 
shoulder joint axes, made it possible to evaluate the 
shoulders of the force moments, the moments per se, 
as well as force and length changes in the real test 
movements [17]. The respective EMG records and 
force and length trajectories, which were presented 
in the aforementioned study, have been used in the 
present modeling. 

The patterns of averaged EMGs were analyzed 
during two different types of hand movements 
within the horizontal plane, the linear parafrontal 
[12] and the circular [16, 17], performed under 
external loads oriented in the tangential direction. In 
these studies, distinctive profiles of the related EMG 
activity were observed. Such problems demonstrated 
clear hysteresis regarding the forces acting on the 
muscles. For the linear parafrontal movements, 
the so-called “thermodynamic” model (T-model) 
was created [14]; this model tried to predict a 

nonlinear functional interdependence of the three 
basic parameters defining the muscle state, namely 
E (intensity of the efferent activity), F (muscle 
force), and L (muscle length). The T-model included 
the time-dependent integration of the equations 
defining the interrelations between infinitesimal 
changes in the preceding parameters. By inducing 
an additional parameter, the hysteresis weight, the 
T-model explained qualitatively the presence of the 
hysteresis effects in EMG records observed in the 
course of real movements of the arm. However, the 
model [14] was based on a simplified geometry of 
the muscles and bones that make up the human arm; 
so, it could take into account only some qualitative 
effects in the CC formation. 

The present study is aimed at the further 
development of the T-model using EMG recordings 
in real test movements [17], while the corresponding 
mechanical parameters of the muscle state in 
these experiments were also estimated quite 
accurately [19]. Using the MRI method to identify 
the parameters, an accurate planar model of the 
subject’s hand was created, which made it possible 
not only to assess changes in the muscle lengths 
during test movements, but also to evaluate time 
profiles of the generated forces. The significance 
of cyclic test movements for the analysis of 
signal transformations lies in the cyclic forms of 
muscle forces, which makes it possible to compare 
ascending and descending parts of the CCs; in 
addition, a change in the movement direction makes 
it possible to compare reactions of the muscles to 
changes of opposite directions in the muscle length, 
allowing us to adequately analyze the hysteresis 
effects of active muscle contractions.

Hypothesis .  The T-model al lows one to 
evaluate the functional interdependence of the 
main parameters that determine the state of the 
muscles during movements of the human hand, 
namely the EMG intensity, muscle length, and 
generated force. The T-model is based on a time-
dependent integration of the equations defining 
interrelations between the infinitesimal changes in 
the aforementioned parameters, which are assumed 
to be exact differentials. The model has been tested 
using data obtained earlier in the experiments with 
recording EMGs from muscles of the elbow and 
shoulder during circular movements of the hand 
simultaneously with production of a force in the 
tangential direction [17]. The T-model is assumed 
to be useful for the analysis of voluntary movements 
when it is possible to estimate the intensity of 
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activation of the studied muscles using EMG 
methods; however, the biomechanical status of these 
muscles is not fully known.

METHODS

Study design. We used several experimental 
records from our previous study [17], where the 
respective methods were described in detail. Under 
the conditions of our tests, surface EMGs recorded 
from the upper limb muscles and subjected to full-
wave rectification and low-frequency filtering could 
be considered adequate analogs of the CCs coming 
from the upper CNS structures to the motoneurons 
of these muscles. From one participant, we obtained 
precise data on the geometry of the musculoskeletal 
system of the upper limb revealed by MRI followed 
by 3D printing of the right arm bones [19]. The motor 
tests consisted of circular movements of the right 
hand of the subject within a plane passing through 
the shoulder joint. The movements were completely 
imposed on the subject by a robotic-mechatronic 
device according to the passive movement program; 
in parallel, with the help of a visual biofeedback 
system, the subject produced a force by pressing a 
handle of the device for measuring the force vector 
installed on the mobile platform of the mechatronic 
apparatus with his hand. The force was created in 
the visual biofeedback mode according to the active 
movement program, which consisted of creating a 
force vector of the constant amplitude and direction, 
changing tangentially with respect to the movement 
trajectory.

A previous description of the T-model. A 
T-model of CCs coming to the muscles during a 
movement was presented in our previous paper 
[14]. The study considered certain elements 
modeling nonlinear macrocharacteristics of the 
muscle contractions based on experiments with 
a classic nerve-muscle preparation [20]. This 
approach was based on the reconstruction of the 
nonlinear surface describing the muscle force F 
as a function of the two variables, E (intensity of 
the arriving efferent activity, i.e., of the central 
command, CC), and L (muscle length). Two sets of 
the “quasi-static” characteristics, F(E|L=const) and 
F(L|E=const), were used to define the two sets of 
mutually perpendicular sections of the F  surface. 
Under experimental conditions, recording of the 
characteristics is carried out during slow linear 
changes in one of the controlled input parameters 

(E, L), when another one is fixed at various 
consecutively changed levels Li = i∙ΔL and Ej   = 
= j∙ΔE, where ΔL and ΔE represent the selected 
parameter discretization levels; i, j = 0, 1, 2, .... 
The T-model in the aforementioned study [14] was 
based on Eq. (1) presented in the next paragraph; 
however, the consideration took into account a 
rough geometric diagram of the muscles and bones 
of the hand. The model analyzed changes in the 
length and force of the muscles during a presumable 
parafrontal rectilinear movement of the hand against 
the action of an externally applied tangential force. 
In the present study, we tried to model functional 
relationships between the EMG intensities recorded 
from the muscles and the evaluated mechanical 
parameters of contraction [17].

Computer simulations. Calculations and graphic 
plotting were performed using Origin 2018 software 
(OriginLab Corp., MA, USA). All tests within the 
T-model are based on the relevant experimental 
records described previously. This software was also 
used to check out the Gaussian fit of the relevant 
experimental relationships.

RESULTS 

A general formulation of the T-model. First, 
we considered elements that must be applied in 
modeling the nonlinear macrocharacteristics of 
muscle contractions based on the experiments 
with a classic nerve-muscle preparation; details 
of this approach and corresponding experiments 
were described earlier [20, 21]. This approach is 
based on the reconstruction of a nonlinear surface 
representing equilibrium positions of the muscle 
force F as a function of two independent variables, 
E, the intensity of efferent activity (or a CC analog) 
and L, the muscle length. The nonlinear surface 
F(E, L) is, therefore, defined by two sets of static 
characteristics, F(E|Li=const) and F(L|Ej=const), 
thus representing two sets of mutually perpendicular 
sections of the force surface. In real experiments, 
the characteristics could be recorded during slow 
linear changes in one of the input parameters, either 
E or L, when another parameter is fixed at one of 
the consecutive discrete levels, Li = i∙ΔL =const 
and Ej = j∙ΔE = const, where ΔL and ΔE are levels 
of discretization of the arguments, i, j = 0, 1, 2, ... 
The following functional dependency is used to 
define infinitesimal muscle force changes along any 
pathway passing the force surface F(E, L) via the 
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respective independent changes of arguments:

 
	        

L E

F FdF dE dL
E L
∂ ∂   = +   ∂ ∂   

.	 (1)

Equation (1) provides a procedure for linear 
approximation of a nonlinear surface F(E, L) within 
its domain of definition: 0<E<Emax; Lmin<L<Lmax, 
restricted by appropriate natural physiological and 
anatomical limitations. At any point of the F(E, L) 

surface, the partial derivatives 
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are defined by the respective mutually perpendicular 
sections of the force surface. By analogy with the 
formalism used in thermodynamics, we will further 
consider the differentials dF, dE, and dL in Eq. (1) 
as exact differentials [22]. Therefore, this equation 
can also be considered the basis for describing 
active muscle contractions within the framework of 
the T-model presented earlier [14].

In general, the quasistatic characteristics are 

nonlinear; therefore, the partial derivatives 
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and  
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 can be essentially changed at various

places within the working space (E, L). Moreover, 
both characteristics are crucially dependent on the 
direction of changes in the input variables, thus 
demonstrating powerful hysteresis effects; the latter 
represent an expression of the principally nonlinear 
properties of muscle contraction [21, 23].

Because our goal is to analyze temporal changes 
in the CCs providing a given movement, Eq. (1) may 
be transformed as follows:
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For partial  derivatives,  which define the 
relationships between functions that can be 
represented by exact differentials, there are the 
reciprocity relationships showing that the inverse 
partial derivative is equal to its reciprocal [22]. 
Therefore, an equality between the derivatives 
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 does exist, and Eq. (2) is

equivalent to the following expression:
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.	 (3)

Normalization of the data of real movement 
tests. In the subsequent, we will further consider 
cyclic movements of the hands, in which forces 
acting on the muscles are waves resembling the 
symmetrical positive parts of sinusoids. Figure 1A 
demonstrates the responses of the biceps brachii 

(BicBr) muscle registered in the experiments 
with circular movements of the right arm within 
a plane passing through the shoulder joint [17]. 
The movements were produced by the robotic-
mechatronic device in accordance with the passive 
movement program; in parallel, using the visual 
biofeedback system, the subject created an effort by 
pushing his hand on the handle of the force vector-
measuring device installed vertically at the moving 
platform of the mechatronic apparatus. The effort 
was created in the visual biofeedback regimen in 
accordance with the active movement program, 
coinciding with the force vector of a steady 
amplitude and direction that changed tangentially 
with respect to the movement trajectory [17, 24]. 
In addition, the CC, estimated from the averaged 
EMG recorded in several repetitions of the same 
motor programs, was also shown to have a shape 
resembling slightly deformed force waves. Next, 
we normalize both waves, E(t) and F(t), by setting 
their areas equal to unity; similarly, the length of the 
muscle L(t) will undergo the same normalization. 
As a result, an initial set of the time dependences 
(E0, F0, L0; Fig. 1A) is transformed into the scaled 
set (E, F, L), in which each function has the same 
area equal to unity (Fig. 1B).  The normalized time 
functions (E, F, L) are defined at the time interval 
[0, T] by the scaling procedure: 
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The 0
minL  in Eq. (4) corresponds to a minimal 

value of the muscle length within the tested time 
interval (Fig. 1AI). Graphical results of the 
normalization procedure after calculating the 
scaling factors aE, aF, and aL are shown in Fig. 1. For 
further modeling, we used pairs of the normalized 
dependences L1, L2; F1, F2, and E1, E2, in which 
indices 1 and 2 correspond to the shortening and 
lengthening movements, respectively. To compare 
CCs corresponding to opposite directions of the 
movement, we used the same scaling factor aE that 
was defined for the shortening tests, always showing 
a greater integral intensity of EMG compared to 
the lengthening events. Therefore, areas under 
the E2 curves after normalization are smaller 
than unity (Figs. 2DI and 5DI). After performing 
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any mathematical procedure on the normalized 
functional dependences, it is possible to return to 
their original scales by inverse scaling.

T-model: analysis of the EMG pattern related 
to elbow flexion using a multiplicative correction 
procedure. After data normalization, we obtain 
a possibility for comparing shapes of the E(t) 
and F(t) functions, which are rather close to each 
other. Therefore, the original problem of finding 
a connection between functions F0 and E0 can 
be reduced to the analysis of the “distortion” of 
symmetric function F during its “transformation” 
(inverse) into an asymmetric function E. However, 

one can observe a similarity between changes in 
both functions if we compare their time derivatives  

E
t

∂
∂

and F
t

∂
∂

 (Fig. 1BIII). This similarity becomes even 

more expressed when considering the derivative 
curve 

smE
t

∂
∂

 obtained after a stronger smoothing 

procedure for E(t) (red curves in Fig. 1BII, III).
Assuming the closeness of the time derivatives  

E
t

∂
∂

 and F
t

∂
∂

 within the interval [0, T] and

excluding edge effects, one can also verify that 
the derivative E

F
∂
∂

 in Eq. (3) can be equated

to unity. Taking this assumption into account 

A B

sec

I

II

III

Fig. 1. Procedure of the data normalization. A) EMGs recorded from the m. biceps brachii (BicBr) of the subject with identified 
muscle geometry in tests with circular movements of his right hand within the plain passing via the shoulder joint [17]. The force 
wave developed by the muscle (F0) and length changes of the latter (L0) were calculated based on the positioning of the 3D printed 
bones of the tested subject [19]. The rectified and low-pass filtered surface EMG records were averaged for six repetitions of the 
identical movement tests. Details of the methods are described elsewhere [17, 25]. The averaged EMG record E0 was calibrated 
in % of its intensity during the maximal voluntary contraction (MVC). B) Procedure of normalization (described in detail in the 
text). The corresponding normalized curves F, L, and E have the same areas equal to unity. Panel BIII presents a comparison of the 
time derivatives from E(t) records obtained with standard (300 p.p.t., Savitsky-Golay) and additional (500 p.p.t., Savitsky-Golay) 
smoothing procedures (black line E, and red line Esm in panel BII). Dashed lines in panel BIII correspond to the range ±0.02 a.u. 
(arbitrary units) around the dF/dt dependency.
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and integrating both sides of Eq. (3), we can 
transform it into the following integral form:

  ( ) ( ) ( )
( ) ( ) ( )

0

,
t F

E t F t M V d
L
τ

τ τ τ
τ

∂
= −

∂∫
  ( 5 )

where ( ) LV
t

τ ∂
=
∂

 is the velocity of muscle length

changes during a hand movement along the given 
trajectory; a correction factor ( )M τ  is introduced to 
compensate for distortions that might be connected, 
e.g., with the preceding assumption that 1E

F
∂

=
∂

.

Considering that the derivative F
L

∂
∂

 in Eq. (5) 

coincides with the stiffness of muscle S, and 

renaming MV M= , we obtain the final form for the 
“transformation” of F(t) into E(t):

	     ( ) ( ) ( ) ( )
0

,  0
t

E t F t S M d t Tτ τ τ= − ≤ ≤∫ .	 (6)

In accordance with Eq. (6), E(t) describes the 
change in time for the CC, which causes a given 
change in the muscle length L(t) simultaneously 
with the creation of a given force wave F(t) by the 
muscle (Fig. 2AI, CI). At the same time, Eq.  (6) 
might be treated as a reverse process of some 
decomposition of the force wave F(t) with the help 
of the second integral term. Due to the normalization 
procedure used in the study, the integral term in 

A B C D

sec

I

II

III

Fig. 2. T-model using the multiplicative correction term; modeling of the real experiment with the elbow flexor muscle BicBr. A–D) 
EMGs recorded in the shortening (A, B) and lengthening (C, D) movements were compared. Panels AI and CI contain superpositions of 
the normalized records of the force (F), EMG intensity (E), muscle length (L), and difference (F–E); indices 1 and 2 signify belonging 
of the respective parameters to shortening and lengthening directions of the movement, respectively. Elements of the normalization 
procedure are presented in panels BI and DI. Lines II and III illustrate the respective mathematical procedures described in the text. 
Calibration of the vertical axes is given in arbitrary units (a.u.) defined by the normalization procedure. In panels BII and DII, black 
lines describe the multiplicative correction term M(t) computed using the initial experimental E(t) records, including the 300-point 
Savitsky-Golay smoothing procedure; red lines correspond to the same computations using the additional 500-point smoothing of 
the above E(t) records (the E1 record is shown in Fig. 1B). Two types of curves E1,2(t) were further used to compute I1,2 and E1,2

th in  
line III.



154 A. I. Kostyukov et al.

Eq. (6) becomes equal to zero for the entire interval 
T, which determines the wave duration F(t):

		   ( ) ( )
0

0
T

S M dτ τ τ =∫ .	 (7)

Therefore, the area of the regions of decreasing 
E(t) with respect to F(t) coincides with the area of 
regions where E(t) is greater (see the F–E curve in 
Fig. 2AI). However, Eq. (7) is valid only for the 
cases where areas of the normalized waves E(t) 
are equal to unity. Those, due to hysteresis effects, 
correspond mainly to the shortening trajectories 
(Fig. 2A, B). Application of the equal coefficients 
of normalization to the E waves in the shortening 
and lengthening movements belonging to the same 
experiment usually evoked a relative diminishing of 
the E(t) areas in the second case (Fig. 2C, D). In this 
case, a difference appears between the positive and 
negative values of the areas under the F–E curve; 
so, Eq. (7) does not hold.

The integrand in the integral term of Eq.  (6) 
includes multiplication of the muscle stiffness S(t) 
and time-dependent correction term M(t), which we 
will further call the multiplicative correction term 
(MCT). The MCT can be defined in two simple 
steps. First, we transform Eq. (7) as follows:

	         ( ) ( ) ( ) ( )
0

.
t

S M d F t E tτ τ τ = −∫ 	 (8)

Second, by differentiating the preceding expre
ssion and considering that ( ) ( )

( )
 
dF t

S t
dL t

= , the MCT can 
be determined directly:

	          ( )
( ) ( )

( ) ( )
d F t E t

M t V t
dF t

 − = .	 (9)

Circular movements of the hand with the parallel 
development of an accompanying force demonstrate 
the bell-shaped form of the forces created by both 
shoulder and elbow muscles [17]. This form of the 
force waves causes a change in the sign of the muscle 
stiffness at their tops; in shortening movements, 
it coincides with the transition from negative to 
positive (Fig. 2AII); reverse alternation of signs 
corresponds to lengthening movements (Fig. 2CII). 
The stiffness curves have essential discontinuities, 
the latter are located at the lower extreme points 
of the curves L(t) and, accordingly, at the zero 
points of the velocity curves V(t) (Fig. 2AII, CII). 
Similar discontinuities are also seen in the MCT 
curves (Fig. 2BII, DII), and they are located in 
correspondence with the F(t) apexes. The direction 
of the M(t) discontinuities is reversed with a change 
in the movement direction due to the respective 

dependency on the velocity (Fig.  2BII, CII). Due 
to the coincidence of the positions of zeros and 
discontinuities in the functions S(t) and M(t), these 
discontinuities disappear after their multiplication 
in the integrand I(t)=S(t)M(t) (Fig.  2AIII, CIII). 
The smoothing procedure applied to M(t) records is 
shown by the red curves in Fig.  2BII, CII; using 
these curves for computing the integrands, I(t) is 
actually equivalent to similar smoothing at this 
stage (Fig. 2AIII, CIII). Finally, producing the 
final computation of the theoretical curves Eth(t) 
for opposite movement directions, one can see a 
high-quality prediction of the CC waveforms by the 
T-model (Fig. 2BIII, DIII). Note a high extent of 
the coincidence of the predicted waveforms E1,2

th 
for the unsmoothed and smoothed records at the 
levels of computation of M(t) and I(t) signals. This 
coincidence shows that the integration procedure 
in Eq. (6) provides by itself a sufficient degree of 
signal smoothing.

T-Model for artificial test-signals. Figure 3 
shows the signal conversion process described in the 
preceding for several types of the artificial signals 
that simulate possible time dependences of the 
difference F(t)-E(t). Lines I and II show signals of 
sinusoidal forms of different amplitudes. Line I may 
be considered a model of the real records in Fig. 2, 
which are superimposed over the simulated curves. 
The panels relating to lines I and II show sinusoidal 
signals of different amplitudes. Line I, apparently, 
can be considered a model of real records in Fig. 
2 superimposed on the simulated curves, whereas 
in line III, we consider symmetrical positioning of 
the difference signals using a set of the Gaussian 
curves with the same time parameters and different 
amplitudes. For all lines in Fig. 3, two normalized 
waveforms were used, sinusoidal F(t) and linearly 
dropping L(t) ones, rendering a constant negative 
velocity V(t) for the muscle length changes. The 
duration of these signals coincided with the duration 
of the above real muscle reactions shown in Fig. 2; 
thus, we were able to superimpose these records on 
sets of the corresponding artificial curves (red curves 
in line I). Some similarity between the red and black 
F–E curves (Fig. 3AI) can give us some general 
information about the model transformations of real 
and artificial signals. Essential discontinuities of the 
derivatives d(F–E)/dF within a middle time range are 
present only in both sinusoidal F–E signals, which 
are asymmetric and are absent in the symmetrical 
input signals modeled by the Gaussian curves (Fig. 
3B). After multiplying the MCT by the stiffness, the 
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discontinuities in the integrands of Eq. (6) disappear 
(Fig. 3CI, II). The final calculation of the theoretical 
Eth curves shows the same asymmetry as in the real 
EMG records, showing a lag in both phases of the 
force change (Fig. 3DI). The reverse order of the 
F–E sinusoids causes a phase advance of the CCs 
(Fig. 3DI), while symmetrical input signals also 
correspond to symmetrical CC responses.

Gaussian fitting procedure in the T-model. 
Figure 4 clearly shows that real F–E curves usually 
contain several wave components of different 
amplitudes and durations. To visualize the signal 
conversion process described previously at different 
stages, we tried to smooth the original F–E curves 
before running the main computations. Using the 
Gaussian curves in the fitting procedure greatly 
simplifies this process and makes it quite clear. 
Four or five Gaussian curves (G1,2

i in Fig. 4CI) 
are usually well suited for a satisfactory fit of the 
CC curves. Firstly, the position and amplitudes of 
the individual Gaussian components were chosen 
by eye in such a way that they corresponded to 
the most pronounced peaks of the signals under 

study. Then, the curves representing a sum of the 
components (G1=∑ G1

i; G2=∑ G2
i in Fig. 4DI) were 

superimposed on the original signals. By varying 
the amplitude, width, and position of the constituent 
Gaussian components G1,2

i, it was usually possible 
to achieve the satisfactory agreement between these 
curves and original F–E curves in several iterations. 
Computation of the MCT and integrand in Eq. (6) 
does not differ from the previously described ones; 
therefore, the theoretically defined corresponding Eth 
and Eth(G) curves are well suited to each other (Fig. 
4, line III). The software used in this study allows 
us to observe the evolution of the Eth curves and 
the wave components in the integrands in Eq.  (6) 
as the parameters of the Gaussian waves change, 
thus gaining an idea of a possible influence of the 
various wave components of the F–E curves on the 
Eth curves. For example, we can observe how small 
changes in various Gaussian waves (central position, 
amplitude, and width), which model the shapes of 
the F–E curves, cause corresponding changes in the 
overall shape of Eth. When comparing the integrands 
of Eq. (6) calculated for Gaussian approximations of 

Fig. 3. Testing of the T-model with artificial F–E signals, sinusoidal (lines I, II) and Gaussian (line III). A–D) Calculation procedures 
are the same for all test signals, as indicated in line I. The corresponding real records from the experiment shown in Fig. 2A, B are 
also superimposed on line I (red lines).
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the F–E curves and their direct analogs (Fig. 4AIII, 
BIII), the approximated reactions are somewhat 
simpler and do not look like smoothed copies 
of the original curves. The simulated Gaussian 
records include approximately three–four distinct 
oscillations compared to seven to nine ones in 
the original records. At the same time, the most 
important parts of the integrands, which belong both 
to their original entries and to the corresponding 
Gaussian approximations, are associated with waves 
of the greater amplitudes at the beginning and end. 
The first large waves in the I2(G) and I2 records (red 
lines in Fig. 4AIII, BIII) provide a more pronounced 
and durable lag between the E2(G) and E2 curves 
compared to the E1(G) and E1. In contrast, at the 
end of the force action interval, such a lag becomes 
more clearly expressed in curves E1

th(G) and E1
th, 

so that the corresponding waves in integrands I1(G) 

and I1 become more distinct compared to I2(G) and 
I2, respectively.

T-model: analysis of the EMG pattern related 
to elbow extension. In our previous experimental 
paper [17], a great diversity in the CCs coming to 
different muscles of the elbow and shoulder joints 
was demonstrated. Slightly different EMG responses 
are observed in the elbow extensors and shoulder 
muscles when compared to the preceding example 
of the elbow flexors. For EMG responses of the 
extensors of the elbow joint, a more pronounced 
difference can be noted between the records 
associated with the movements of muscle shortening 
and lengthening evidenced by Fig. 5, which shows 
the response of the elbow extensor muscle triceps 
longus (TricLg) recorded in the same experiment 
as the responses of the elbow flexor BicBr in Figs. 
1, 2, and 4. A more pronounced difference between 

Fig. 4. Gaussian approximation of the signals in the T-model. A) Superposition of the normalized signals under study, which were 
earlier presented in Fig. 2A, C; the differences F1, 2–E1, 2 are shown in B). Sum of four Gaussian components (G1,2

i) (C, D) provides 
an approximation of the F–E differences used for modeling the central commands E1,2

th. Lines II and III show the successive stages 
of modeling with the approximated F-E differences G1,2; the I1,2 and E1,2

th records obtained with the approximated and original F-E 
records are compared in line III.
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the CCs corresponding to muscle shortening and 
lengthening is seen when comparing the areas under 
the E2 curves in the BicBr and TricLg reactions. 
(Figs. 2DI and 5DI). At a rising phase of the force 
in the shortening movements, the TricLg muscle 
demonstrates almost a complete absence of the 
time lags, which, however, clearly appeared in the 
respective lengthening traces (compare pairs of 
the traces E1, F1 and E2, F2 in Fig. 5AI, DI). The 
proposed procedure of the E(t) restoration based on 
Eq. (6) works quite satisfactorily, and theoretically 
defined Eth(t) traces are not sensitive to high-rate 
signal oscillations at various stages of computations. 
Such oscillations are clearly seen if an additional 
filtering procedure is applied at the stage of the 
MCT computations (red lines in Fig. 5BII, DII). 
Further calculation of the integrands in the integral 
parts of Eq. (6) for the smoothed and original MCT 
retains the common features of such a difference 
(Fig. 5AIII, DIII), which almost disappears at the 
final stage of determining Eth (Fig. 5A–D, line 
III). Considering shapes of the filtered integrands 
(Fig. 5AIII), it should be noted that a “triangled” 

shape of the CCs, which sometimes is encountered 
in EMG responses of the elbow extensors and both 
flexors and extensors of the shoulder [17], may be 
connected with rather durable sections (3–4 sec) of 
an almost linear drop of the integrands. However, 
a noticeable curvature of the growing part of the 
CCs with an expressed lag in relation to the force 
curves (Fig. 5DIII) corresponds to the oppositely 
directed curvature of the corresponding parts of the 
integrands.

T-model using the additive correction pro
cedure. The whole process of converting waves 
F(t) into E(t) includes a chain of the basic steps 
for calculating the muscle stiffness S(t) and MCT, 
M(t), as well as their multiplication S(t)M(t) in 
the final calculation by Eq. (6). Figures 2 (lines II 
and III) and 5 (lines II and III) demonstrate these 
event chains for the respective real signals. The 
essential discontinuities that are present at the S(t) 
and M(t) records after the respective differentiation 
procedures, coincide with zeroes of each other; 
therefore, after multiplication of these components 
in the integrands, I(t)=S(t)M(t), the discontinuities 

Fig. 5. T-model with real EMG records from the elbow extensor m. triceps long (TricLg). The EMGs are compared during shortening 
(A, B) and lengthening (C, D) movements; the presentation scheme, colors, and designations are shown in Fig. 2.
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disappear. However, when considering the sets 
of normalized parameters (F, L, E), the range of 
changes of the integrands in Eq. (6) constitutes only 
several hundreds, whereas the muscle stiffness is 
changed by a several hundred times wider range 
(Figs. 2 and 5). Thus, S(t) and I(t) vary within 
different limits; so, M(t) cannot be considered an 
element of any corrective procedure that only 
slightly changes muscle stiffness. Therefore, if we, 
instead of the preceding multiplicative correction, 
consider some kind of additive correction, the object 
of correction must be changed in comparable limits 
as the already defined integrand I(t). The force 
velocity ( )dF t

dt
 covers exactly the same range as 

the integrand in Eq. (6) (Fig. 6BII). Therefore, 
by analogy with Eq. (6), introducing an additive 
correction term (ACT), A(t), we can consider the 
following expression:

         ( ) ( ) ( ) ( )
0

,        0
t F

E t F t A d t T
τ

τ τ
τ

 ∂
= − + ≤ ≤ ∂ 

∫ .	 (10)

Similarly to the previously described procedure, 
Eq. (10) is transformed into the following form:

	          ( ) ( ) ( ) ( )
0

t F
A d F t E t

τ
τ τ

τ
 ∂

+ = − ∂ 
∫ .	 (11)

Differentiating both sides of Eq. (11), A(t) can be 
determined directly:

                            ( ) ( )E t
A t

t
∂

= −
∂

.	 (12)

The preceding two methods of theoretical 
reconstruction of the force traces F(t) into the 
CCs Eth(t) are compared in Fig. 6. Columns A and 
B describe the calculations by Eqs. (6) and (10), 
respectively. In both cases, we applied Gaussian 
approximation of the input signals; therefore, G(F–
E) was further used in the first method, while G(A) 
was used in the second method (Fig. 6, line I). The 
corresponding curves that determine the integrands 
in Eqs. (6) and (10) (Fig. 6, line II), despite their 
similarity, also cause the resulting dependencies 
Eth(M) and Eth(A) to diverge. Joint averaging of the 

Fig. 6. Comparison of T-models using the multiplicative and additive correction methods. A and B) Gaussian approximations are 
applied to the input signals of the multiplicative (M) and additive (A) correction terms, and the respective curves are lighted by red 
and blue colors. The Eth(M) and Eth(A) curves resulting from the simulation are shown in panel BIII, which also shows the result of 
their joint averaging.
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two methods can improve the quality of the resulting 
model prediction (Fig. 6BIII). 

Manual fitting of the integrands in the 
integral term of the T-model. The quality of 
CC prediction by the T-model after preliminary 
Gaussian approximation of the P–E curves (Fig. 4) 
even improves somewhat if a similar “manual” 
approximation procedure is repeated for the 
integrands themselves (Fig. 7).

The fitting procedure in this case, as is shown in 
Fig. 7 (line III), turned out to be very sensitive to 
changes in the amplitudes of individual Gaussian 
components. Such changes cause stationary shifts 
of the simulated E-curves within the remaining time 
of the test, even after termination of their action 
inside the locally changed integrands I(G). These 
interrelated changes in the I(G) and E(G) signals may 
demonstrate a fine tuning of the fitting procedure. 

Vertical dashed lines pointing out extrema points 
along the integrand curves can help us to visualize 
the action of local waves in the integrand signals on 
respective turnings of the resulting Eth curve. This 
can be especially useful when modeling processes 
are performed under conditions of incomplete 
information about biomechanical constraints.

T-model under changing force waves. The 
experimental data presented in this study were 
obtained using a setup that allowed us to change 
the force waves in the biofeedback mode and to 
simultaneously leave the trajectory and velocity of 
the movement itself unchanged. Such experiments 
should be carried out in the future; here, we consider 
only their possible analysis (Fig. 8). If the F-wave 
is summed with small sinusoidal signals having 
the same period as its duration, then the resulting 
signals will show a smooth deformation, shifting 

Fig. 7. Gaussian fitting of the integrands in the multiplicative correction procedure. A and B) Sum of the four (A) and five (B) 
Gaussian components (G1,2

i) was used for additional fitting procedure applied to the earlier calculated integrands I1(G) and I2(G), 
which are shown in Fig. 4AIII. The corresponding curves modeling the EMG activity related to opposite directions of the movements 
are highlighted in color; red and blue lines correspond to the tests with predominant muscle shortening and lengthening, respectively; 
original EMG records are shown in line II by thick black lines. A procedure of “manual” selection of the parameters of the Gaussian 
curves (G1,2

i), the sum of which (G1,2) provides an almost perfect match of the model (E1,2
th) and experiment (E1,2). Line III demonstrates 

results of the amplitude changes of the first and third Gaussian components in G1 (shown by arrows). The optimal and “artificially 
shifted” reactions are shown by red and black (thick, thin) lines. Note a correspondence between the thick and thin lines in I1 and E1

th 

in line III. Vertical dashed lines in panels with lines I and II indicate the extrema points of I1 and I2.
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their maxima to the left or to the right, depending on 
the amplitude and sign of the sinusoidal components 
(Fig. 8BI). Areas of the new force waves will 
not change, thus satisfying the normalization 
conditions given by Eq. (4). In view of the fairly 
close correspondence between the normalized E 
and F waveforms, it might be assumed that areas 
of the modified E+δE waves will also not change 
significantly, demonstrating the same shifting 
trends as those of the F+δF waves. If we then try 
to calculate the transformed waves E+δE according 
to Eq. (6), then, in the first approximation, one can 
assume that the integrands I1,2 (Fig. 8AI) will remain 
unchanged, since they are based on the difference 
F–E; therefore, supposedly very similar additions 
δF and δE can cancel each other out. The results of 
the modeling are shown in Fig. 8B as the sets of the 
curves E1

th(F1
i) and E2

th(F2
i). Such a model can serve 

as a prerequisite for further experimental analysis 
based on incomplete biomechanical information. 
Small changes in the force commands in association 
with a stable passive movement program make it 

possible to clarify at least part of the biomechanical 
limitations associated with this motor task.

DISCUSSION

This study is a further development of a 
“thermodynamic” approach [14], which is designed 
to model the functional relationship between the CCs 
coming to the muscle and the mechanical parameters 
defining its contraction. It is quite clear that, within 
the framework of the given experimental approach, 
complete information cannot be obtained about the 
activation patterns for all muscles participating 
in a given movement program. First, the recorded 
EMG activity depends both on the position of the 
electrodes and on some recording conditions; in 
addition, it is also practically impossible to obtain 
records from deeply located muscles; moreover, 
the redistribution of activity between synergists 
and their interaction with antagonists may create 
additional undefined influences (for a review, see 

Fig. 8. Theoretical modeling of the force wave modification. A) Plots of the normalized F and E waves and their theoretical approximation 
by Eq. (6) (records I1,2, F1,2, and E1,2 are taken from Fig. 7). B) Sets of the modeled curves, F1,2

i(t)=F1,2(t) + i0.01sin(2πt/T), T is the 
duration of the force wave; -4 < i < 4; E1,2

th(F1,2
i) are defined by Eq. (6) provided that the integrand dependencies I1,2 (panel AI) are 

not changed.
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[23]). However, information on temporal changes in 
the muscle length and force may also be unavailable 
or incomplete in most cases. Nevertheless, it seems 
that it is possible to speak about a definite progress 
in getting biomechanical information, at least for the 
experimental data served for modeling in the present 
study. In this study, a new methodical approach to 
the movement tests was used, which included a 
complete separation of the movement itself from 
the process of force generation. The movement 
trajectory becomes highly accurate, and it is created 
by a digitally controlled mechatronic device; thus, it 
is sufficient for the subject to follow a preprepared 
force generation program in biofeedback mode; the 
method provides an exact correspondence between 
the force and positioning along the movement trace 
[24]. Additionally, preliminary MRI identification 
of the bones under study has been carried out and 
followed by their 3D printing, which makes it 
possible to determine the positions of the origin 
and insertion points of the muscle tendons [19], 
improving the accuracy of temporal reconstruction 
of the muscle length and force trajectories.

This modification of the T-model is devoted to 
the consideration of circular movements of the 
hands, when flexors and extensors of the elbow 
and shoulder joints create successive force waves 
resembling symmetrical segments of the sinusoidal 
signals [17, 25]. The sum of the forces developed by 
individual muscles creates a resultant force in the 
area of the hand, which is directed tangentially to 
the circular trajectory of the movement. The forms 
of averaged EMGs in synergistic muscles belonging 
to each of the joints often have been shown to have 
fairly close profiles usually differing from each 
other mainly in their intensity. In the same way, one 
can notice a certain similarity in forms of the force 
and EMG waves in each of the studied muscles. 
To compare and analyze the shapes of the studied 
signals, i.e., signals F(t), L(t), and E(t), we proposed 
a procedure for their normalization that consists 
of equalizing the time integrals of equal duration 
coinciding with that of the force wave. After any 
mathematical procedures, models with normalized 
signals easily return to their original scales. 
Normalizations make it possible to reformulate our 
initial consideration of the problem when the signals 
F(t) and E(t) were considered in their real scales. 
Finally, the problem is to obtain information about 
E(t) based on the waveform F(t) and a corrective 
integral component, which should contain some 
preliminary evaluation of possible changes in the 

following force derivatives,
( )
( )

dF t
dL t (muscle stiffness) 

or ( )dF t
dt

 (rate of the force change). In these cases,

the MCT and ACT methods are applied. In both 
cases, the correction terms use information about 

the E(t) waveform in its derivatives 
dE
dF

 (MCT) and 
dF
dt

 (ACT). Within the framework of the approach

used, these derivatives are determined directly, but 
for an unknown finite configuration of E(t), it is 
necessary to make preliminary assumptions. The 
most informative sections are found at the beginning 
of the rising front of the force wave and in the 
middle part of its falling branch, where tendencies 
of delay or advance between the signals E(t) and 
F(t) are formed. We have also noticed that the best 
results of fitting may be achieved by simultaneous 
application of the preceding methods by averaging 
the reconstructed CC models.

Various types of the test signals seem to be useful 
for considering basic principles of the input–output 
relationships in the system under study (Fig. 3). The 
use of sinusoidal or Gaussian signals for testing 
shows the features of the formation of “lagging” and 
“leading” types of the CC to provide a symmetrical 
bell-shaped force signal at the output of the system. 
Using a Gaussian approximation is probably the 
most convenient way to compare different types 
of the CCs, which correspond to identical force 
profiles in oppositely directed movements (Fig. 4). 
The Gaussian models allow us to easily compare 
differences at the rising and falling branches in the 
modeled CCs. The differences are most pronounced 
when the integrands in the corresponding integral 
terms are compared regarding the shortening and 
lengthening movements (Fig. 4AIII).

As our study is based on the analysis of stationary 
configurations of length and force trajectories, the 
T-model may, thus, look somewhat trivial, since its 
integral component contains information about the 
difference between the input and output signals. At 
the same time, the integrand in the multiplicative 
version of the correction (see Eqs. (7) and (8)) 
contains important mechanical characteristics of the 
muscle in a given movement program, such as the 
stiffness and rate of change in the length. We cannot 
vary these parameters in the existing experimental 
data selected for model testing. However, it is 
likely that some important information for the 
modeling process might also be obtained from 
small changes in the movement trajectories, such 
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as their positioning in the operating space or 
velocity variations. The same is concerned with 
changes in the force trajectories, which can be 
provided by varying biofeedback programs of the 
force generation. We can also assume that, for the 
present model approach, a reverse task relating to 
reconstruction of the unknown mechanical variables, 
i.e., the muscle force and/or length, based on the 
direct EMG records is of a definite interest.

In the present study, rather slow movements were 
used for the tests (Fig. 1AI, the maximum speed 
of muscle contraction did not exceed 2.5 mm/sec), 
which corresponded to a range of the so-called 
quasistatic movements [26]. At the same time, the 
force generation process is difficult to treat within 
the framework of the equilibrium point hypothesis 
proposed by Anatol Feldman [26, 27], apparently 
due to strong hysteretic properties of the active 
muscle, both by itself (under conditions of artificial 
stimulation) and when it is included in the spinal 
and long-loop reflex circuits (for a review, see [21, 
23]). Comparison of different directions of circular 
movements demonstrates statistically significant 
differences in CCs to both elbow and shoulder 
muscles [17].

Our present study is, therefore, devoted to 
further development of the “thermodynamic” 
model (T-model) in its application to the analysis 
of our “fresh” experimental data describing 
the time profiles of the CCs coming to the arm 
muscles during circular movements of the hand. 
Initially, the T-model was based on equations that 
determine the relationship between infinitesimal 
changes in main parameters of the movement,  
E (EMG intensity, or CC), F (muscle force), and  
L (muscle length), which, by an analogy with 
classical thermodynamics, are considered exact 
differentials. At present, the T-model is supple
mented with a procedure for rescaling the indicated 
parameters by aligning their time integrals within 
intervals of the force action. To determine the 
integrands in the integral components of the 
corresponding T-models, we chose multiplicative 
and additive correction conditions applied to muscle 
stiffness and force velocity, respectively. The 
Gaussian approximation in the T-model is assumed 
to be capable of being especially effective when the 
available information is limited by the EMG data, 
and the biomechanical status of the movement can 
only be predicted in advance.

This is mostly a theoretical study using earlier obtained 
experimental data. All persons involved in additional motor 
tests and the person subjected to MRI examination gave their 
informed written consent. Thus, this study complies with 
the existing international ethical requirements for works of 
this kind, which was confirmed by the Ethical Committees 
of the Bogomolets Institute of Physiology and the Gdańsk 
University of Physical Education and Sports.
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