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of the Knee Angle from EMG Signals  
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The performance of a binary particle swarm optimization-based feature selection (BPSOFS) for 
predicting the class of the knee angle (KA) from myoelectric signals in lower limb movements was 
examined. Surface EMG (sEMG) signals were recorded from the vastus lateralis and biceps femoris 
muscles while performing a task of standing up from and sitting down on the chair. The knee angle was 
measured using a goniometer and quantized into five levels/classes. The sEMG signals were segmented 
using overlapped windowing. Twenty features per muscle were extracted and fed to a support vector 
machine (SVM) classifier. Grid selection was done to set the parameters of the classifier. In our study, 
the KA was first divided into five levels/classes, and the KA class was predicted from the features of 
sEMG signals using the SVM classifier. Subsequently, BPSOFS was implemented, and the classification 
accuracy was measured using a reduced feature set. The performance of three different initialization 
techniques, namely small, large, and mixed initializations, were compared. A paired t test was applied 
to compare the performance of the SVM classifier with BPSOFS and with the SVM classifier using all 
the features. The results indicated that BPSOFS achieves a classification accuracy of 90.92% utilizing 
only 30% of the total features (P > 0.05).

Keywords: lower limb movements, knee joint angle, surface electromyography, feature selection, 
particle swarm optimization, support vector machine.
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INTRODUCTION

Feature selection involves finding a subset of the 
x features from a set of the X features, x < X, without 
significantly decreasing the classification/prediction 
accuracy. Feature selection offers many advantages, 
such as a reduced training time, a smaller storage 
requirement, and simple data visualization [1]. Such 
selection is a rather complex task. For the same 
data, many different feature subsets achieving the 
same prediction accuracy may be found [2].

There are complex interactions among features. 
An individually relevant feature can become 
redundant when working together with other 
features. The selection of such a feature results 
in redundancy, which degrades the classifier 
performance. A feature that is weakly relevant can 
significantly improve the classification accuracy 
(CA) if it is complementary to some other features. 
Therefore, the removal of such a feature may result 
in a poorer feature subset. Although many feature 
selection algorithms have been proposed, most of 
them suffer from either high computational cost due 
to a large search space or the problems of stagnation 
in the local optima. Therefore, an efficient global 
search technique is needed to address feature 
selection tasks.

Particle swarm optimization (PSO) is a simple 
optimization technique inspired from the social 
behavior of birds flocking and fish schooling. 
Birds and fish adjust their physical movements to 
avoid predators, seek food and/or mates, optimize 
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environmental parameters (e.g., temperature), 
etc. The most important advantage of PSO is its 
simplicity. It can be materialized using very few 
lines of code, requires only elementary mathe
matical operations, requires less memory, and is 
characterized by a high speed [3].

Several myoelectrically controlled techniques 
for managing the upper limb prosthetic/orthotic 
devices were proposed within the last two decades. 
Some of those were based on time domain features 
(TDFs) [4–7], some others utilized frequency 
domain features (FDFs) [8], and some used time-
frequency analysis, such as short-time Fourier 
transform (STFT) [9] or wavelets [10, 11]. In the 
case of the lower limb, the research has been limited 
to predicting the locomotion modes, such as level-
ground walking and ascending/descending via 
ramps and stairs [12–16]. Prediction of the knee 
angle (KA) plays a vital role in the performance 
of the prosthetic, estimating the intended posture. 
Prediction of the KA from EMG signals using 
pattern recognition was proposed [17–19]. In our 
present study, feature selection using a binary 
particle swarm optimization (BPSO) technique has 
been studied for predicting the KA from surface 
electromyographic (sEMG) signals recorded from 
the vastus lateralis (VL) and biceps femoris (BF) 
muscles of the lower limb.

The rest of the paper is arranged as follows. The 
PSO technique is briefly explained, the methodo
logy adopted in the present study is discussed, and, 
finally, the results are presented.

Particle swarm optimization (PSO) is a popu
lation-based search algorithm that was proposed by 
Kennedy and Eberhart in 1995 [3]. This algorithm 
is based on the principle that each solution can 
be represented as a particle in the swarm. The 
position of the thi particle within the search space 
is represented by a vector ( ),1 ,2 , , , ,i i i i Dx x x x=  , 
where D  is the dimensionality of the search space. 
To search for an optimal solution, each particle 
moves within the search space with a velocity v ; 
the velocity of the thi  particle is represented by the 
vector ( ),1 ,2 , , , ,i i i i Dv v v v=  . Each particle updates 
its velocity on the basis of its past experience and 
the past experience of the swarm. The velocity of the 
particles is updated in consideration of its previous 
best position bestP  and the swarm’s previous best 
position bestG . The velocity of the particle is 
updated according to Eq.1 

( ) ( ) ( )( ) ( )( ), , 1 1 , , 2 2 , ,1i d i d i d i d g d i dv t w v t C r P x t C r P x t+ = ⋅ + − + −

		 ( ) ( ) ( )( ) ( )( ), , 1 1 , , 2 2 , ,1i d i d i d i d g d i dv t w v t C r P x t C r P x t+ = ⋅ + − + − ,	 (1)
where 1  r and 2  r  are random functions having 

a value between 0 and 1,  w  is the inertial weight, 
,g dP  is the bestG  position in the swarm, ,i dP  is the 

bestP  position of the thi  particle, 1C  is the personal 
learning factor, and 2 C  is the social learning factor. 
The velocity ,i dv  is limited within the predefined 
range [  , min maxv v ]. The value of  maxv  regulates the 
resolution of the search space between the present 
and the target positions [20]. The value of maxv  
must be kept within 10–20% of the dynamic range 
of the particle’s position [21]. The position of the 

thi  particle is updated according to Eq. 2.
	      ( ) ( ), , ,1 1i d i d i dx t x v t+ = + + , 	 (2)
Kennedy and Eberhart [22] proposed a discrete 

version of PSO and named it binary PSO (BPSO). 
In this technique, each particle moves within a state 
space restricted to 0 and 1 on each dimension [22]. 
The velocity of the thi  particle ,i dv  is obtained 
similar to the continuous PSO, as in Eq. 1, with a 
modification that , i dx , ,i dP , and ,g dP  are integers 
either 0 or 1. The particle position is obtained using 
Eq.3:

	
( ) ( ) ( )( )3 1 ,

,

1 ,
1

0
i d

i d

r F v t
x t

Otherwise

 <+ = 


        (3)
	

where ( )1F x  is a sigmoid function evaluated 
according to Eq.4 and r3() is a random number 
within the range [0.0,1.0]. 

METHODS

Twelve male subjects (S1–S12) with a mean age 
of 31.08±3.15 years, body mass 81.42±9.5 kg, and 
height 1.72±0.08 m gave informed consent to take 
part in this study. Subjects were initially made to sit 
on a chair and then were asked to perform ten sets 
of stand-ups from chair and sit-downs on the chair 
at a reasonable rate. Five trials were performed daily 
with a rest period of 15 min between successive 
trials. This routine was carried out for 5 days for 
each subject. Figure 1 shows the block diagram of 
the KA prediction system.

Data collection. The sEMG signals from the 
VL and BF of the lower limb were collected using 
the Nexus-10 biofeedback system that provided 
sampling at 2048 samples/sec. The justification 
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for selecting these two muscles was explained 
earlier [23]. Bipolar Ag/AgCl electrodes with a 
20-mm interelectrode distance were used to obtain 
the sEMG signal. The SENIAM recommendations 
for the placement of electrodes were followed 
[24]. The sensor locations for muscles used in the 
present study are given in Table 1. The KA was 
measured using a precision potentiometer-based 
goniometer. The voltage signal at the output of the 
goniometer was digitized using the NI-6009 data 
acquisition system and NI LabView 2013 software. 
The measured KA was low pass-filtered using a 4th 
order IIR Butterworth filter (FC = 2 Hz). 

Feature extraction. The random nature of the 
EMG signal makes the instantaneous value of 
the EMG inappropriate for control purposes [25]. 
Classification of the patterns using raw myoelectric 
signals results in a poor classification accuracy, 
which is unsatisfactory for the prosthetic control 
purposes [26]. Therefore, sEMG signals were 
segmented using moving windows for the data 
analysis, and features were extracted. The current 
study used an overlapped windowing technique with 

a window size of 256 msec and a window increment 
of 128 msec. The justification of the window size 
was explained in the previous work [14]. Twenty 
EMG features were evaluated for each muscle. 
Table 2 gives the details of the features used in the 
present study. All the features obtained for a window 
together constitute a feature vector. The feature 
vector  WF  for the thW  window is given by Eq.5.

	      1,1 , 2,20, , , ,W i jF f f f =    , 	 (5)
 where i  represents the muscle number, and j  is 

the feature number.
An attribute/feature having a greater numerical 

range has a fair chance of dominating other attri
butes having lower numerical ranges. To prevent 
this, the feature vector is normalized using a min–
max normalization technique, mathematically given 
by Eq.6:

	          ( ) i i
norm

i i

f minF i
max min

−
=

− , 	 (6)

where imax  is the maximum value, and imin  is 
the minimum value of the thi  feature respectively, 
and if  is the value of the thi  feature. 

Classification

Feature 
selection

PSO-based 
feature selection

Feature 
extraction

Pre- 
processing

Moving 
average

Angle 
quantization 

(0,30,60,90,120)θm
θpred

EMG 
recording

F i g. 1. Block diagram of the system. PSO, particle swarm optimization.

T a b l e 1. Sensor Location for sEMG Recording
No Muscle Sensor position
1 Vastus lateralis (VL) At 2/3 on the line from the anterior spina iliaca superior to the lateral side of the patella
2 Biceps femoris (BF) At 50% on the line between the ischial tuberosity and the lateral epicondyle of the tibia
3 Reference On the tibia bone
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T a b l e 2. sEMG Features Used in the Present Study
No. Feature Name Equation

1 Integral EMG (iEMG)
1

N

i
i

x
=
∑

2 EMG average rectified value (ARV)
1

1 N

i
i

x
N =
∑

3 EMG variance (VAR) 2

1

1
1

N

i
i

x
N =− ∑

4 Simple square integral (SSI) 2

1

N

i
i

x
=
∑

5 Root mean square (RMS) 2

1

1 N

i
i

x
N =
∑

6 Waveform length (WL) 1
2

N

i i
i

x x −
=

−∑

7 Willison amplitude (WAMP)

( )1
2

N

i i
i

f x x −
=

 − ∑
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( ) 1
0
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F x

Otherwise
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= 
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1
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M
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2
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j j j
j j MDF j

P P P
= = =

= =∑ ∑ ∑

11 Mean power (MNP)
1

1 M

j
j

P
M =
∑

12 Total power (TOP)
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=
∑
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 Knee angle quantization. The human knee joint 
has a typical range of motion (ROM) from 0° when 
fully extended to 140° when maximally flexed. 
In the present study, the ROM ranges from the  
KA = 0° when in standing position to the KA = 115° 
when sitting on a chair. The KA is quantized into 
one of the five classes 0 (KA < 15), 30 (15 < KA ≤  
≤  45), 60 (45 < KA ≤  75), 90 (75 < KA ≤  105), 
and 120 (105 < KA). The quantized KA is used as a 
response variable for the classifier.

Classifier. A classifier is a program/algorithm 
that takes input data instances and predicts the class 
they belong to. The present study makes use of a 
support vector machine (SVM) classifier to predict 
one of the five KS classes. The SVM is a kernel-
based approach popular for machine-learning tasks 
involving regression and classification. It was 
successfully used in several applications ranging 
from image processing [27] to speech recognition 
[28] and text classification [29]. 

The performance of the SVM classifier depends 
on a choice of the kernel function. The current study 
uses the RBF kernel. Two parameters applied, the cost 
of penalty C  and the kernel function parameter γ ,  
must be set appropriately. The value choice for C  
influences the classification outcome. A large value 
of C  results in a very low misclassification rate in 
the training phase and a very high misclassification 
rate during the testing phase, whereas a low value 
of C  results in unsatisfactory results making the 
model useless [30]. 

The parameter γ  influences the partitioning 
outcome within the feature space and, thus, exerts 
a much higher influence on the classifier outcomes 
than the penalty factor C . An excessively large 
value for parameter γ  results in over-fitting, 
whereas an unduly small value results in under-

fitting [31, 32]. Both parameters, C  and γ , can be 
appropriately selected by employing a grid search 
[33].

BPSO-based optimal feature selection. In 
the present study, 20 particles were considered. 
Each particle is randomly initialized within an  
n -dimensional space, where  n represents the num
ber of EMG features considered. Three initialization 
strategies have been studied. These are large 
initialization (LI), which initializes each particle 
with random combination of the large number of 
features (80% of total features), small initialization 
(SI), which initializes each particle with a random 
combination of the small number of features (20% 
of the total features), and mixed initialization (MI), 
which initializes 60% of particles with a random 
combination of the small number of features and 
remaining 40% of the particles with a random 
combination of the large feature number. The 
present study was aimed at achieving the maximum 
classification accuracy (minimum classification 
error) by utilizing a minimum number of the 
features. The CA is evaluated mathematically as:

	     ,TP TNCA
TP TN FP FN

+
=

+ + +
	 (7) 

where TP represents the true positive, FP 
represents the false positive, TN represents the true 
negative, and FN represents the false negative. In 
each iteration, the CA is evaluated for each particle. 
The CA obtained is compared with the CA of the 
previous best particle position  bestP . The position 

bestP  is updated to the particle’s position in a 
case the particle CA is better. Similarly, the CA 
obtained is compared with the CA of the swarm’s 
best position bestG , and if the particle CA is better, 

bestG  is updated to the present particle position. The 

T a b l e 2. 
No. Feature Name Equation

15 3rd spectral moment (SM3)
3

1

M

j j
j

f P
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16 Central frequency variance (VCF)

2

2 1

0 0

SM SM
SM SM

 
−  
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17–
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x AR x w−
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particle velocity and position are updated according 
to Eq. 1 and Eq. 3 respectively. The inertial weight 
is varied from maxw  to minw  linearly according to 
Eq. 8:

	   
( ) ,max min

max

w w It
w w

MaxIT
− ⋅

= −  	 (8)

where  It represents the present iteration, and 
MaxIT  is the maximum iteration allowed in the 
present study. The process is repeated until the 
termination conditions are met. Figure 2 shows the 
flowchart of the PSO-based feature selection and 
classifier parameter of the optimization system. 

Initialize NOP, MaxIT

Randomaly initialzed 
particles position and velocity

Set IT=1, P=1

Prepare training data as  
per particle P position

Evaluate cost function

Evaluate particle 
velocity and position

P = NOP

Update PBest and CBest

IT=MaxIT

Terminate

NO

NO

F i g. 2. Flow chart of the binary particle swarm optimization-based feature selection.
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Parameters. The number of particles in the 
swarm was set to 30. The personal learning factor 

1C  and the global learning factor 2  C were set to  
2. The range of velocity [  , max maxv v− ] was kept at 
[−5, 5]. The parameters maxw  and minw  were set to 
0.9 and 0.4 respectively. Ten-fold cross-validation 
was performed on the CA obtained for each subject; 
IBM SPSS Statistics 21 software was used to 
compare the numerical results.

RESULTS AND DISCUSSION

In our study, the sEMG signals and KA were 
measured while performing a simple daily-life 
activity of standing up from and sitting down in a 
chair. Figure 3 shows the EMG signals recorded 
from the VL and RF muscles and KA of subject  
5 during the present study. For appropriate para
meter selection of the RBF kernel, a two-step grid 
selection was performed, and parameters with the 
smallest cross-validation error were selected. In the 
first step, the grid search was performed within a 
wide range 3 310  to1 0−    for C  and 3 310  to1 0−    
for γ  with a logarithmic grid. Tenfold cross-
validation was performed, and the classification 
error was measured. Subsequently, the range in the 
second step was narrowed down to 1 310  to1 0−    
for C  and 0 310  to1 0    for γ  with the logarithmic 
grid.

Figure 4 shows a heat map of the cross-validated 
classification error. The average values of the 
parameters C  and γ  for all subjects came to 160.32 
and 23.00 respectively. Table 3 presents the results 
of ANOVA on the CA obtained at using the three 
initialization strategies (LI, SI, and MI) for subject 
S2. It was found that the results may be considered 
statistically the same ( 0.0675)P = . However, 
the MI is preferred for the rest of the study, as it 
contains a mix of the particles with a large number 
of features, as well as particles with a small number 
of features. The performance of the SVM classifier 
with binary particle swarm optimization-based 
feature selection (BPSOFS) for predicting the KA 
was compared with the performance of an SVM 
classifier fed with all the features. Table 4 presents 
the result of the tenfold cross-validated CA. A 
paired t test conducted on the CA obtained with 
and without feature selection demonstrated that the 
CA obtained with BPSOFS is statistically the same 
with respect to that obtained by using all 40 features  
( 0.05)P > . Table 4 indicates that the feature sub
set evolved using BPSOFS has, on average, 11.5± 
±0.63 features. Thus, BPSOFS obtains statistically 
the same CA when using only around 30% of the 
total features.

Table 5 presents the feature subset selected for 
different subjects and the P value obtained for the 
paired t test between the CA obtained with the same 
SVM classifier using BPSOFS and the CA obtained 
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T a b l e 3. Results of the ANOVA Test on CA Obtained Using Different Initialization Techniques 
Sum of the squares Df Mean square F P

Between groups 0.003 2 0.001 3.430 0.067
Within groups 0.010 27 0.000
Total 0.012 29

F i g. 4. Heat map showing values of the cross-validation error.

using the same classifier but all the features. The 
feature subset is a mix of both time domain and 
frequency domain features. For all subjects, the 
value of P obtained was greater than 0.05, indicating 
that a difference in the CA with the feature set 
selected using BPSOFS is statistically insignificant.

The existing literature [12–16, 34] with regard to 
lower limb movements focuses mainly on predicting 

the locomotion modes, such as level-ground walking 
and ascending/descending ramps and stairs. The 
closest match of the literature data to the results of 
our study is the continuous estimation of the joint 
angles from sEMG signals using a back-propagation 
neural network [18] and that of predicting the KA 
using a multilayer perceptron neural network [17]. 
The leg extension exercise in the Zhang et  al. 
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T a b l e 5. Features Selected with BPSOFS and Results of the Paired t-Test

Subject
 BPSOFS P in the paired  

t-testNumber of the 
features selected Features selected

S1 9 F1, F3, F7, F21, F23, F27, F28, F31, F35 0.05 
S2 12 F1, F3, F5, F8, F11, F15, F21, F23, F27, F28, F31, F35 0.05
S3 12 F1, F3, F5, F8, F11, F15, F21, F23, F27, F28, F31, F35 0.05
S4 12 F1, F3, F7, F8, F11, F15, F21, F23, F25, F28, F31, F35 0.05
S5 12 F1, F3, F5, F8, F11, F15, F21, F23, F25, F28, F31, F35 0.05
S6 14 F1, F3, F5, F7, F8, F11, F15, F21, F23, F25, F27, F28, F31, F35 0.05
S7 11 F1, F3, F7, F8, F11, F21, F23, F28, F31, F35 0.05
S8 13 F1, F3, F7, F8, F11, F15, F21, F23, F25, F27, F28, F31, F35 0.05
S9 11 F1, F3, F7, F8, F11, F15, F21, F23, F27, F28, F31 0.05
S10 12 F1, F3, F7, F8, F11, F15, F21, F23, F25, F27, F31, F35 0.05
S11 12 F1, F3, F5, F8, F11, F15, F21, F23, F27, F28, F31, F35 0.05
S12 12 F1, F3, F7, F8, F11, F15, F21, F25, F27, F28, F31, F35 0.05

T a b l e 4. Results Obtained for Classification with and without BPSOFS

Subject
BPSOFS CA (%) with all features 

(without BPSO)Average number of the 
features selected Average CA (%)

S1 8.9 ± 0.99 92.40 93.99
S2 11.7 ± 1.49 90.32 91.65
S3 11.5 ± 0.97 92.68 93.07
S4 11.9 ± 1.28 86.73 86.92
S5 12.8 ± 0.78 90.92 90.09
S6 13.6 ± 0.84 92.04 92.26
S7 10.8 ± 1.39 92.45 93.57
S8 12 ± 1.15 92.67 93.15
S9 10.5± 1.79 89.67 90.98
S10 11.3 ± 1.82 87.26 89.78
S11 11.4 ± 1.07 91.87 92.40
S12 11.6 ± 0.96 92.06 92.95
Average 11.5 ± 1.63 90.92 91.73

study [18] can be considered a close match to the 
activity (sit to stand) in the present paper. The 
approach adopted in our research work is altogether 
different as the KA range has been divided into 
five levels/classes, and the KA class is predicted 
from features of the sEMG signals. The average 
classification error measured in the present study 
is 9.1%, compared with the average RMS error in 
KA prediction reported by Zhang et al. [18] for leg 
extension using a small load (12.7°). 

Thus, the performance of a BPSOFS in predicting 
the class of the KA from sEMG signals recorded 
from the involved muscles (VL and BF) of the lower 
limb has been studied. The KA was quantized into 
five levels/classes. Twenty features per muscle 
were extracted from the segmented sEMG signal 
and fed to the SVM classifier. A BPSO technique 

was used to select the feature subsets. The results 
obtained indicate that the SVM classifier with 
BPSOFS technique, when using about 30% of the 
total features, achieved the average classification 
accuracy of 90.02%, which is statistically similar to 
that obtained with the SVM classifier using all the 
features ( 0.05P > ). The proposed scheme can be 
used to develop a lower limb exoskeleton.

The research protocol for the current study is in 
accordance with the Helsinki Declaration and was approved 
by the Institute’s research board. All subjects involved gave 
their preliminary written concent.

The authors, I. S. Dhindsa, R. Gupta, and R. Agarwal, 
declare that the research was conducted in the absence 
of any conflicts with respect to commercial or financial 
relationships and those between the co-authors.
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