
455
0090-2977/19/5106-00455 © 2019 Springer Science+Business Media LLC

Role of T-Type Ca2+ Channels  
in Painful Diabetic Neuropathy
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Numerous investigations implicate pronounced changes in the functioning of T-type Ca2+ channels 
localized on the somata of primary nociceptor units in the development and maintenance of painful 
diabetic neuropathy. This review highlights the role of T-type Ca2+ channels of nociceptive afferents 
in the processing of pain signals under diabetic conditions, as well as suggests a promising therapeutic 
strategy to treat painful diabetic neuropathy.
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INTRODUCTION

According to reports of the International 
Diabetes Federation, about one-tenth of the world 
population will suffer from diabetes by 2035, and 
the majority of those patients will live in low- 
and middle-income countries. In line with this 
prognosis, the prevalence of diabetes in Ukraine 
has reached epidemic proportions; the respective 
population increased by almost 60% during the last 
11 years. At least 55% of the funds allocated to 
patients with diabetes in Ukraine are spent for the 
treatment of diabetic complications [1], including 
painful diabetic neuropathy (PDN). Diabetic 
neuropathy is one of the earliest, most frequent, and 
troublesome complications of diabetes; it occurs 
in about 60 to 70% of diabetic patients [2], among 
which approximately one-third suffer from severe 
burning, “electric,” or stabbing pain [3–5]. Thus, 
diabetic neuropathy constitutes a major public 
health problem for diabetic patients. Ukraine is a 

country with a high incidence of PDN; however, 
basic research in the field of PDN in this country 
is hampered by the lack of resources and state-of-
the art techniques. The awareness, understanding, 
and treatment of diabetic neuropathies are limited 
since their molecular mechanisms are still poorly 
understood, despite the growing number of studies 
throughout the world. Well-targeted basic research 
in the field of diabetic neuropathy is desperately 
needed for the development and faster introduction 
of new treatment strategies.

Upregulation of T-Type Calcium Channels in 
Primary Nociceptors Contributes to PDN

PDN is associated with alterations in the neuronal 
excitability of primary nociceptors and efficacy of 
synaptic transmission between these units and a 
population dorsal horn (DH) neurons of the spinal 
cord [6–8]. Low voltage-activated T-type Ca2+ 
channels (T-channels) are abundantly expressed 
in primary nociceptors [9–11]; these channels are 
responsible for the regulation of both neuronal 
excitability [8, 12, 13] and presynaptic release of 
glutamate [10, 14, 15]. Numerous pharmacological 
studies supported the role played by T-channels of 
primary nociceptors in the course of processing of 
pain signals [6, 7, 11, 16–19]. Besides, both global 
knock-out [20] and selective knock-down [21, 22] 
of CaV3.2 T-type channels in sensory neurons have 
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strongly validated the involvement of these channels 
in nociceptive signaling. Thus, T-channels represent 
a possible attractive pharmacological target for the 
treatment of pain syndromes resistant to currently 
available analgesics [6, 7, 11, 17, 23]. Numerous 
investigations implicate pronounced changes in 
the functioning of T-channels in the somata of 
peripheral nociceptors within the development and 
maintenance of PDN. Moreover, selective local 
knock-down [22, 24] or pharmacological blocking 
of T-type channels in vivo [24, 25] effectively 
reversed mechanical and thermal hyperalgesia in 
diabetic neuropathy of type 1 and type 2 diabetes. 
However, the exact mechanisms that link diabetes-
induced T-channel upregulation in nociceptive 
neurons with PDN remain elusive, in particular 
due to a lack of necessary experimental approaches 
to study T-channel functioning in afferent fibers. 
Suggested mechanisms of how upregulation of 
T-type current intensifies pain perception include 
lowering the threshold for action potential (AP) 
generation in primary nociceptors [8], promoting 
spontaneous activity of secondary sensory neurons 
[26] and facilitating synaptic transmission between 
DRG neurons and DH neurons [10]. The recently 
established role of Cav3.2 T-type channels in 
electrical firing of secondary excitatory neurons 
located in lamina II of the spinal cord gray 
matter suggests that lowering the threshold of 
AP generation and increased probability of burst 
firing in these neurons may also contribute to PDN 
pathogenesis [27]. A scheme summarizing the 
involvement of T-type channels in PDN is presented 
in Fig. 1. 

Both upregulation of the T-channel density 
and changes in their biophysical properties have 
been shown in primary nociceptors isolated from 
animals suffering from PDN [8, 12, 22, 25, 28–32]. 
Moreover, as was mentioned above, selective 
knock-down [22, 24] or pharmacological blocking 
of T-channels [24, 25] reversed pathological 
changes in the sensory processes under conditions of 
neuropathies related to type 1 and type 2 diabetes. 
Thus, it appears that activation of different metabolic 
[33, 34] and peripheral signaling cascades [35–38] 
are eventually responsible for the modulation of 
T-channels in primary nociceptors in both type 1 and 
type 2 PDNs. Regardless of the precise mechanisms 
of this modulation [11, 16, 17] upregulation of 
T-channels in nociceptive DRG neurons appears to 
be causally linked to the maintenance of PDN [22, 
24, 25], representing a possible perfect target for 

its treatment. Nevertheless, particular molecular 
and cellular mechanisms that link the T-channel 
upregulation with the pathological pain processing 
in PDN are practically unknown, preventing the 
development of targeted therapies devoid of side 
effects. In this short review, we further consider 
possible molecular mechanisms involved in 
diabetes-induced T-channel upregulation and the 
role of T-channels in central axons and terminals of 
the primary nociceptors in gating pain transmission 
to the DH neuronal networks during PDN. 

F i g. 1. Involvement of the T-type Ca2+ channels in painful 
diabetic neuropathy.
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Potential Role of T-Type Channels in Neuro
transmitter Release in Central Terminals of the 
Nociceptive DRG Neurons

To date, the majority of studies have used the 
cell bodies of primary sensory neurons in vitro as a 
model system for examining functions, modulation, 
and dysfunction of T-channels [6, 7, 11, 16–19]. 
Although convenient, this model suffers from 
significant limitations in representing physiological 
processes that take place in sensory axons and 
in central and peripheral terminals, i.e., in the 
cell structures critically important for detection 
and processing of sensory information. In the 
variety of different neuronal cell types, including 
primary nociceptive neurons, T-channels act as 
a major Ca2+ entry pathway within the range of 
membrane potential close to its resting value [31]. 
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These channels support low-threshold exocytosis 
in neuroendocrine cells [39–43] and contribute 
to presynaptic release of neurotransmitters [14, 
15]. These channel structures are expressed in 
presynaptic active zones [14] and are associated 
with some of the proteins of the vesicle release 
machinery [44–47]. T-channels were recently 
shown to be expressed in the superficial DH 
parts and co-localized with markers of primary 
nociceptors [10, 19]. It was also shown recently 
that the Cav3.2 subtype of T-channels is abundantly 
expressed in thin unmyelinated fibers of the dorsal 
roots [19]. It is important that these channels are 
present in presynaptic terminals within the DH 
[19]. The presence of T-channels in the presynaptic 
areas substantiates  their  emerging role in 
neurotransmitter release in the central terminals of 
nociceptive DRG neurons. This role is additionally 
indirectly supported by electrophysiological results 
demonstrating T-channel-dependent regulation of 
miniature spontaneous excitatory activity in DH 
neurons [38] (including those projecting to the 
supraspinal structures [10]). These findings also 
suggest that presynaptic T-channels are essential for 
pain processing at the spinal cord level. However, 
the roles of presynaptic T-channels of DRG neurons 
in presynaptic [Ca2+]i signaling and in the regulation 
of synaptic transmission to the DH neurons, as 
well as molecular and cellular mechanisms of their 
involvement in pain processing, are still not well 
understood. Importantly, the exact mechanisms 
that causatively link diabetes-induced T-channel 
upregulation in nociceptive neurons [12, 22, 28–32] 
with diabetic neuropathic pain [22, 24, 25] also 
remain elusive.

Molecular Mechanisms of T-Type Channel 
Upregulation in PDN

The complexity of T-type channels regulation 
under diabetic conditions ensues from pathological 
changes in homeostasis of the diabetic patients. The 
primary pathological shift in homeostasis leading to 
upregulation of T-type channels is the development 
of hyperglycemia. The latter causes overexpression 
of the channels at the plasma membrane of neurons 
through increased N-glycosylation of the channel 
alpha-subunits, as well as of auxiliary subunits 
[33, 34, 48, 49] (for a review, see [50]). Secondary 
pathological changes in homeostasis induced by 
hyperglycemia (such as ischemia, hypoxia, acidosis, 
and inflammation) have not been evaluated as factors 
of T-type channels upregulation in diabetes. In the 

corresponding model experiments, however, hypoxia 
was shown to upregulate transcription of T-type 
channel genes [51]. Inflammation may also cause 
an increase in T-type channel gene transcription 
through activation of transcription factor Egr1 
[52, 53], increase of T-type channel expression 
at the plasma membrane through activation of its 
deubiquitination [38], and enlargement of the 
population of DRG neurons expressing functional 
T-type channels [54]. Moreover, hyperglycemia and 
inflammation affect the redox status in the cells, 
while T-type channel activity significantly depends 
on the local redox state in the channel site [55, 56]. 
Diabetes causes an increase in the intracellular 
resting Ca2+ concentration [57], which should 
upregulate stationary (“window”) T-type current 
through CaMKII phosphorylation of the channels; 
this shifts the activation curve to more negative 
potentials [58]. Stationary T-type current increases 
the spontaneous excitability of neurons [26]; so, 
its increase in nociceptive and other types of DRG 
neurons under diabetes conditions may provoke 
spontaneous pain sensations [12, 31]. Upregulation 
of T-type current in DRG neurons may also be 
caused by activation of PKA and PKC [59], which 
proceeds in diabetes through upregulation of the 
cytokine production in immune cells by advanced 
glycation end-products (AGE) [60] and via the 
following cascades: PGE2- PGE2-EPs-cAMP/
PKA [61], HMGB1/AGE-RAGE-PKC [62], and 
bradykinin-PKC [63]. Methylglyoxal accumulation 
in diabetes also induces PKA activation through the 
methylglyoxal–TRPA1-AC1-PKA pathway [64]. It 
is worth mentioning that some of these pathways 
also sensitize TRPV1 receptors in DRG neurons, in 
such a way synergically enhancing pain perception. 
Thus, a number of well-established and putative 
pathways may contribute to diabetes-induced T-type 
current upregulation observed in PDN.

Gene Therapy of PDN
Painful diabetic neuropathy is a chronic and often 

intractable pathological state. Effective clinical 
interventions for this disease are very limited, 
and gene therapy [65] represents a novel and 
promising therapeutic strategy for PDN, especially 
in combination with simple and minimally 
invasive delivery methods (such as subcutaneous 
or intrasciatic injections). At present, there are 
several organic T-channel inhibitors and antisense 
oligodeoxyribonucleotide (AS ODN) constructs 
that are capable of providing analgesia in diabetic 
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neuropathy upon either intrathecal or systemic 
delivery [11, 12, 16, 22, 24, 25, 33, 66], making 
T-channels of DRG neurons important targets for 
further drug development. However, these already 
developed approaches are characterized by lack 
of molecular or cellular target specificity. They 
are based on complicated and/or substantially 
invasive procedures and provide insufficient 
inhibition and  only short duration of therapeutic 
effects and are, thus, not ideal for the respective 
treatment. To address these numerous problems, 
we suggest to use cell-specific viral delivery of 
short-hairpin RNA (shRNA) expression cassettes 
as a delivery tool instead of AS ODN. This 
approach also supports more efficient and long-
lasting transduction into target tissues. The Cav3.2 
isoform of T-channels accounts for up to 90% of 
T-type current in nociceptive DRG neurons [22, 31, 
67]; the presence of these channels is upregulated 
under diabetic conditions [8, 12, 22, 25, 28–32]. 
Thus, a knock-down of the Cav3.2 isoform as the 
most specific molecular target by means of RNA 
interference seems to be the most efficient approach 
for normalizing the T-current in diabetic conditions 
and for decreasing the PDN symptoms. An adeno-
associated virus 6 (AAV6) vector with shRNA 
backbone having a siRNA sequence against Cav3.2 
channels might be used to obtain long-term, cell-
specific, and stable gene RNA interference with 
very limited accompanying toxicity.

Human clinical trials have suggested the safety 
and tolerability of the recombinant adeno-associated 
virus (AAV) technique in gene therapy for several 
CNS disorders [68, 69]. If we take into account the 
AAV6 high affinity for and efficient transduction 
within peripheral axons [70, 71], its ability to drive 
long-term (several months) expression of transgenes 
[72, 73], and its apparent lack of immunogenicity 
[74, 75], AAV6 seems to be a perfect vector for 
peripheral pain gene therapy. Considering specific 
tropism of the AAV6 serotype to a restricted part 
(about 15% of the entire population of DRG neurons) 
of small C-fiber nociceptive neurons, in which 
upregulation of T-channels seems to be causally 
linked to painful symptoms of diabetic neuropathy 
[22, 24, 25, 37], we expect that it will be possible 
to alleviate symptoms of PDN without (or with 
minimum) side effects by delivery of a virus vector 
with shRNA backbone having siRNA sequence 
against Cav3.2 channels. It is also important that 
AAV6 can be successfully delivered via sciatic 
nerve injections [70, 71], injections into branches 

of the latter [71], or even subcutaneous injections 
[70]. This situation substantially simplifies pos
sible treatment procedures. Recent findings with 
respect to intrathecal administration of AAV2/5, 
which target sodium channels in DRG neurons, is a 
proof-of-principle demonstration for a novel therapy 
aimed at preventing diabetic neuropathic pain [76]. 
In conclusion, we consider AAV6-mediated cell-
specific delivery of siRNA constructs, which target 
T-channels in nociceptive DRG neurons, to be a 
novel simple clinically relevant and long-lasting 
treatment of diabetic neuropathic pain.
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