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Three-Dimensional Representation  
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In this theoretical study, two-joint equilibrium muscle contractions were simulated to determine the 
end-point forces created by the hand of the human right upper limb within the horizontal plane. For 
invariable frontally directed end-point forces, 3D surfaces simulating joint torques (JTs) at the shoulder 
and elbow joints are reconstructed by defining the characteristic angles (CAs) between the frontal axis 
and lines from the joint axes to the end-point. The 3D shoulder JTs are presented by planes oriented 
perpendicularly to the sagittal plane with a downward sagittal skewness; the elbow JT surfaces are 
essentially nonlinear, showing higher gradients within the left half of the working space. Oppositely 
directed end-point forces demonstrate the invariance of the JT surfaces that turn about the zero-torque 
plane while keeping their shapes. Differences between the JTs in the same curvilinear trajectories of 
the movements (concentric circles) are also analyzed; generation of unvaried (frontally directed) and 
changed (tangential) end-point forces are compared. Despite the fact that a symmetric pattern in the 
shoulder JTs is maintained, a transition from the frontal to tangential forces essentially influences the 
asymmetric pattern of the elbow JTs. The obtained results are discussed with regard to the control of 
multijoint movements of the limbs in humans.

Keywords: motor control, two-joint movements, upper limb, joint torques, muscle synergy, central 
commands.
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INTRODUCTION

Interrelations between the spatial/time parameters 
of the movements, forces developed by the muscles 
in the course of such movements, and motor 
commands coming to these muscles form a crucial 
set of problems in the studies of mechanisms 
controlling limb movements.  Application of 
theoretical and simulation approaches for resolving 
such problems is undoubtedly expedient. 

In a significant part of the movement control 
studies, relatively fast movements are subjected 
to the analysis. Methods of kinematics and dyna
mics are mostly applied in this case. As an example  

of such an approach, the method proposed by 
Hollerbach [1], allowing the researcher to consider 
multijoint movements using internal models of the 
intersegmental dynamics, should be mentioned. The 
so-called inverse internal model is usually applied 
to consider the relations between mechanisms 
transforming the analyzed movements and central 
programs addressed to the muscles in these 
movements [2–4]. Control signals in such models are 
based on information on the muscle torques defined 
by inverse dynamics equations. At least partly, the 
inverse dynamics is formulated through second-
order differential equations defining velocities and 
accelerations for different upper limb segments. 
An alternative method based on the theories of 
position-dependent control [5–7] could be suitable 
for the analysis of rather slow movements or steady 
states (e.g., under conditions of isometric muscle 
contractions), when purely equilibrium states of 
the system of motor control can be applied for the 
interpretation of interaction of the body with the 
environment. As an example of such approach 
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is the equilibrium point hypothesis proposed by 
Feldman (for review, see [7, 8]). One of the advan
tages of the static models is the possibility of 
taking into consideration nonlinear properties of 
the neuromuscular system, in particular that of 
muscle hysteresis [9]. It is much more difficult to 
incorporate nonlinear elements into models of rapid 
movements; this is mainly restricted by the necessity 
of using linear differential equations. Errors in the 
modeling might be strongly influenced by both 
incorrect identification of the mechanical parameters 
(inertia and geometry of the limb segments) and 
underestimation of nonlinear components in the 
muscle dynamics.

Recording of slow movements of the upper or 
lower limb with parallel recording and analysis of 
EMGs of the involved muscles is ordinarily used 
to estimate the relationships between the movement 
per se  and central commands providing its 
performance. Such an approach becomes especially 
effective when the test movements can be repeated 
many times and, later on, averaged. Recently, slow 
circular movements of the hand with a fixed wrist 
have been studied during the action of elastic loads 
acting tangentially with respect to the movement 
trajectory [10]. Such an experimental model 
allowed us to define the torques acting around 
the shoulder and elbow joints (joint torques, JTs), 
the respective calculations were based on values 
of the load and lengths of the arm segments. The 
above study demonstrated the existence of a strict 
correspondence between the shoulder and elbow 
JTs and intensities of EMGs recorded from the 
appropriate muscles. During a complete movement 
period, each of the torques includes two components, 
positive and negative, which correspond to the 
activities of the extensor muscles, respectively. 
Timings and relative durations of both torque and 
EMG waves for different joints are dissimilar. In 
addition to analytical computation of the torque 
waves [10], a geometrical method was proposed 
to define exact positions of the points, where JTs 
change their signs [11]. To distinguish various 
combinations of activity in the flexors and extensors 
acting upon different joints, traces of the movements 
within phases of the latter performed with coinciding 
(flexor-flexor, extensor-extensor) and opposing 
(flexor-extensor, extensor-flexor) synergies of the 
muscles operating different joints were proposed to 
be analyzed separately [10–13]. A similar procedure 
for estimation of the interrelationships between JTs 
and EMGs has been extrapolated on nearly isometric 

muscle contractions [14, 15], when a tested subject 
should slowly change the direction of the end-point 
force. For circular turnings of the force vector, 
changes in the shoulder and elbow JTs demonstrated 
sinusoidal patterns and equal durations of the 
positive and negative components. 

The experimental models with visually controlled 
two-joint movements showed that, at least for 
sufficiently slow movements, our knowledge of the 
system statics might be important for the analysis 
and/or prediction of the commands coming to the 
muscles from the CNS. In our preceding paper 
[13], theoretical reconstruction of the JT patterns 
has been proposed for arbitrary end-point forces 
with the related analysis of JTs during consecutive 
changes in the joint angles. The model we have 
used assumes that the velocities of changes in 
the central commands to the muscles operating 
different joints coincide with each other for slow 
isolated movements at the proximal (shoulder) 
joint; therefore, the respective commands can 
be considered isotropic. On the contrary, such 
velocities showed twofold differences for isolated 
movements at the distal (elbow) joint; this might 
indicate an anisotropic character of the commands 
to the muscles belonging to different joints. In 
this our communication, we continue the analysis 
of the equilibrium states of JTs using Cartesian 
presentation of the latter, for which the end-point 
positions in the working space are tested along 
parafrontal and parasagittal traces. This approach 
allowed us to present JTs in a 3D form, which makes 
comparison of the JTs related to different end-point 
forces more representative.

In conclusion, we would like to point out that 
the analysis of torque patterns in the multijoint 
limb movements may include as a basic element 
the torque modeling for the two-joint systems. Our 
knowledge of the torques can significantly simplify 
and expand the neurophysiological analysis of 
movements in humans using more traditional EMG 
methods. It may be particularly useful to combine 
information on the patterns of the torques and 
EMGs for describing and predicting the synergistic 
interaction of various muscles in real human 
movements. 

Computer Simulations. Computations and 
graphical plotting in this study were performed 
using Origin 8.5 software (OriginLab Corporation, 
USA). The respective formulas were computed 
using an internal software language based on 
operations with the worksheet columns; dimensions 
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of the worksheets used were 1000 rows (standard) 
and from 6 to 15 columns. Changes in the fixed 
parameters in the formulas were provided by 
replication of basic worksheets.

RESULTS

Description of the Model. The equation shown 
below was obtained in our previous study [13] in 
the course of simulation of the equilibrium states of 
two-joint movements for the case where lengths of 
the upper and lower arm segments are equal to each 
other:

( )sin  s s sM Fh θ γ= − ; ( )sin .e eM FL θ γ= −    (1)

Equation (1) includes apparent expressions for 
the torques acting around the shoulder and elbow 
joints. Those combined actions evoke generation of 
an isometric force F(θ) at a given end-point of the 
working space. For a given force magnitude |F| and 
arm geometry (Ls = Le = L), the end-point force F(θ) 
is completely defined by the characteristic angles 
(CAs) γs and γe; the length parameter hs is equal to 
the distance from the shoulder joint axis to the end-
point H (Fig. 1A). In accordance with Fig. 1A, the 
distance between the shoulder axis and the hand is 
defined as follows: 

 [cos ( ) cos( )]s s s e sh L γ α γ γ= − + − ;	 (2)

where the γe and γs CAs are defined depending on 
the joint angles ae and as:

( )
( )

1 sin sin
tan ;

cos cos
s s e

s e s e
s s e

α α α
γ γ α α

α α α
−  + +

= = + 
+ +  

.

  

(3)

In accordance with Fig. 1A, the coordinates of the 
end-point H, which are presented implicitly in Eq. 
(1), may be determined by the following expression:

 cos ;  sin .x s s y s sH h H hγ γ= = 	 (4)

Changes in the CAs along Parafrontal and 
Parasagittal Lines. Table 2 presents the sequence 
of procedures defining the CAs γs and γe for various 
hand positions along the parafrontal and parasagittal 
lines; a schematic representation with exact 
positioning of the lines and results of simulation 
is shown in Fig. 2. Pairs of the CAs, γs and γe, 
which have been defined along the parafrontal and 
parasagittal lines, correspond completely to each 
other. This fact demonstrates an exact coincidence 
of the knot points and opens a possibility to merge 
two sets of the curves into 3D surfaces (Fig. 3). It 
should be noted that projections of the surfaces onto 
the basic orthogonal planes completely coincide 
with the initial 2D curves. A symmetric character 
of the γs surface (Fig. 3A) corresponds to both 
parafrontal and parasagittal sections (Fig. 2A, B, 
row 2). Parafrontal γs sections show the rotational 

F i g. 1. Definition of the basic geometric parameters of the model (A) and schematic presentation of the parafrontal (B) and parasagittal 
(C) sections.
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symmetry about point γs(0) = π/2, satisfying the 
following conditions: 

( ) ( ).s sx xγ π γ− = − 	 (5)

In contrast, the γe surface (Fig. 3B) and related 
sections in Fig. 2 show no symmetry. At the same 
time, it seems interesting that a strong sagittal 
symmetry has appeared in the difference of the CAs 
(γe – γs), as can be seen in the bottom row of Fig. 2 

panels. The symmetry is displayed with respect to 
a parasagittal plane passing via the shoulder joint.

In general, 3D surfaces γs(X) and γe(X) will not 
depend on the type of initial 2D sections, with no 
dependence on the type of the traces, orthogonal or 
curvilinear [13]. Possible variations are explained 
by different boundaries of the working space 
accepted in these tests, as well as by differences 
between steps of changes in the argument.
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F i g. 2. Changes of the characteristic angles (CAs) γs and γe and their differences (γe -γs) in various hand positions within the working 
space. The positions are changed along the parafrontal (A) and parasagittal (B) traces shown in the upper panels; the lines (fa, sb) pass 
through an interval consisting of 0.1 of the radius of the working space (R = 1). Some of the traces, as well as the corresponding angle 
curves, are marked by the line thickness for better distinguishing. Dashed lines in the upper panels can help one to create an impression 
about more realistic boundaries of the real movements; note that some parts of the traces (therefore, the related segments of the curves 
on the plots) are located outward with respect to the movement boundaries.
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Analysis of the JTs Creating the End-
Point Forces in the Frontal Direction. Figure 4 
illustrates the JTs that should be created to produce 
the end-point forces directed in a parallel manner 
with respect to the frontal plane, i.e., when θ = 0 
in Eq. (1). The torques are defined separately for 
the parafrontal (A-C) and parasagittal (E-F) traces in 
accordance with the procedures described in Table 1  
and Eq. (1). The shoulder JT is characterized 
by linear parafrontal and parasagittal traces  
(Fig. 4A, D); thus, the JT has a planewise shape. 
The plane is inclining in the sagittal direction, and 
the JT gets negative values within the entire working 
space. In contrast, orthogonal traces at the elbow 
JT demonstrate much more complicated nonlinear 
shapes; the torques are predominantly negative, 
being positive within restricted areas at the left part 
of the working space (compare Me traces f0.1 – f0.4 and 
s-0.1 – s-0.9 in Fig. 4B, E). Using the parafrontal and 
parasagittal traces (Fig. 4B, E), it is possible to build 
a 3D surface for the elbow JT (Fig. 5); considering 
the simplicity of the shape of the shoulder JT, its 3D 
reconstruction has not been shown.

The JTs simulate the necessary force reactions of 
the body, which are directed toward creation of a 
given end-point force in any point of the working 
space. The torque 3D surfaces are smooth; they can 
have linear or nonlinear shapes, which are defined 
by their dependence on the JTs (on the CAs entering 
Eq. (1)). When it is necessary to generate the end-
point forces, which are invariable within the entire 
working space, shapes of the torque surfaces will be 
crucially dependent on the force direction defined 
by angle θ, while changes in the force magnitude 

T a b l e 1. Sequences of the Procedures Used to Determine the CAs γe and γs in Various Hand Positions within the Working Space. 
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would only shift them in the vertical direction. For 
isometric muscle contractions or sufficiently slow 
movements, a tight relation between the EMGs 
magnitudes and corresponding JTs does exist  
[10, 14, 15]. Therefore, it might be assumed that, 
upon some kind of “activation” of 3D surfaces 
resembling each other in their shape, definite parts 
of the torque surfaces also do exist. Such “activation 
surfaces” are actually related only to the equilibrium 
states in the system. One can propose the following 
description of the steady states and transition 
between these states within the working space. If 
an initial end-point possesses coordinates (x, y), 

and the unit vector r  defines the direction toward 
the nearest targeted point of the movement, then 
activation inflows to the muscles can be defined as 
follows:

( ) ( ) ( ) ( ) ( ) ( )1 2
s, , , , , , s s

s s s s s x y
M ME x y r E x y E x y r a M x y b r r
x y

 ∂ ∂
= + = + + ∂ ∂ 

 

( ) ( ) ( ) ( ) ( ) ( )1 2
s, , , , , , s s

s s s s s x y
M ME x y r E x y E x y r a M x y b r r
x y

 ∂ ∂
= + = + + ∂ ∂ 

 

;	 (6)

( ) ( ) ( ) ( ) ( ) ( )1 2
e, , , , , , ,e e

e e e e e x y
M ME x y r E x y E x y r a M x y b r r
x y

 ∂ ∂
= + = + + ∂ ∂ 

 

( ) ( ) ( ) ( ) ( ) ( )1 2
e, , , , , , ,e e

e e e e e x y
M ME x y r E x y E x y r a M x y b r r
x y

 ∂ ∂
= + = + + ∂ ∂ 

 

,	 (7)

F i g. 4. Computation of the shoulder and elbow JTs (Ms and Me, respectively) related to generation of the steady end-point forces in 
the frontal direction (θ = 0); the torques are defined for the parafrontal (A, C) and parasagittal (B, D) end-point transitions. Panels E 
and F show results of numerical differentiation of the Me(X) and Me(Y) dependences. Calibration of the torques is given in arbitrary 
units defining the action of the unit force applied normally to the lever of the unit length.
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where as and bs are the coefficients of transfor
mation of the torque-activation level.

The components Es
(1) and Ee

(1) in Eqs.(6, 7) 
correspond to initial points at the torque surfaces; 
the components Es

(2) and Ee
(2) define changes in the 

torques at the assumed direction of the movement. 
Positive/negative values of the torque correspond 
to predominant activation of the flexor/extensor 
muscles; coactivation of the antagonists has not 
been taken into account in this case.

An example of the hypothesized “activation 
surfaces” returns us to a consideration of the above 
case of the frontal end-point forces (Figs. 4 and 5). 
The negativity of Ms signifies that only the shoulder 
extensors are involved in any movement within the 
working space. For the parafrontal movement traces, 

( )20,  1, 0, and 0; s
x y s

M r r E
x

∂
= = = =

∂
the activity of the 

extensors is not` changed: Es = Es(1). In contrast, 
any movement in the sagittal direction would be 
defined by a linear increase in the negativity of 

Ms: 
( )21, 0,  1, and  s

x y s s
M r r E b
y

∂
= − = = = −

∂
. As far as 

the Me surface is curvilinear, its derivatives eM
x

∂
∂

 

and eM
y

∂
∂

 should be determined in accordance 

with the shape of the surface. In a general case, the 
derivatives in Eq. (7) obtain predominantly nonzero 
values, except for local extrema at both Me(X) and 
Me(Y) traces.

All parafrontal sections of the Me surface are 
characterized by the rotational symmetry with 
respect to the points where the traces cross the 
parasagittal plane passing via the shoulder joint. 
This leads to the symmetry of the derivatives 

eM
x

∂
∂  with respect to the same plane (Fig. 4E). 

Faster changes in the parafrontal Me traces in 
proximity to the zero X coordinate may be one of 
the reasons for a significant rise in the amplitude of 
component Ee

(2) in Eq. (7). Differences in the slopes 
of the left and right parts of the Me surface during 
parasagittal movements (Fig. 4D, F) may lead to 
a conclusion that any movement at the right part 
of the surface will require lesser gradients of the 
central commands addressed to the muscles. The 
pattern of the derivative traces (s0.1 – s0.9 in Fig. 4F) 
shows that gradients of the Me torques are smaller 
at the right part of the working space. Therefore, 
component Ee

(2) in Eq. (7) will be smaller for the 
movement trajectories within the right part of the 
working space. 

From the functional aspect, a more expressed 
steadiness of Me within the right half of the working 
space may lead to relative simplicity of the central 
programs for the movements produced at the right 
from the shoulder joint, i.e., within a preferred zone 
of movements for the right upper limb. For the left 
limb, a similar simplicity in the central programs 
will be present within the left part of its working 
space. The above consideration relates, however, 
only to the elbow joint; due to the symmetry of the 
Ms plane, such a side-dependent difference is not 
typical of the shoulder joint.

Comparison of the JTs for Oppositely Directed 
End-Point Forces. The same trajectories of real 
movements can be performed under the action of 
essentially dissimilar external forces requiring 
the generation of corresponding end-point forces; 
therefore, the equilibrium JTs, as well as the related 
motor commands, will also be dissimilar in these 
cases. Figure 6 describes changes in the equilibrium 
JTs for the parafrontal movement traces when the 
end-point force changes its direction to the opposite 
one; four mutually perpendicular directions of 
the forces were compared. For the forces directed 
frontally (Fig. 6A), reversion of the zero-force 
direction results in change in signs of both shoulder 
and elbow torques in each point of the working 
space. Patterns of the parafrontal traces Ms(X) and 
Me(X) do not change in this case, and both torque 
surfaces turn around the zero-torque plane. Similar 
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parafrontal and parasagittal traces shown in Fig. 4C, D.
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turnings of the torque surfaces appear for other 
pairs of oppositely directed forces (Fig. 6B, C, D). 
It can be concluded that, for movements performed 
with the creation of constant end-point forces, 
the equilibrium torque surfaces are specifically 
dependent on the force direction; for opposite force 
directions, the turning symmetry is shown with 
respect to the zero-torque plane.

The JTs at Circular Movement Traces. Together 
with parts of the linear traces described above, 
circular trajectories (or their parts) may also be 
of interest for simulation of the real movement 
trajectories. Figure 7 illustrates a comparison of the 
tangential and frontal end-point forces for a family 
of the concentric circles; a scheme of estimation 
of the JTs in the case of tangential forces is shown 

in Fig. 7A. Coordinates of the moving point at the 
circular trace with the radius ρ and center O(x0, y0) 
are defined as follows:

= O + cos ; = O + sin .	 (8)
For a counterclockwise circular movement, the 

φ angle changes toward the positive direction; the 
external force Fe and the force created by the hand 
F are directed along the tangent to a circle at the 
end-point H. The slope of the force to the abscissa 
is determined by angle θ, which is connected with 
angle φ by the expression     / 2θ ϕ π= ± .

The CAs and torques can be defined in 
accordance with the earlier-described procedures. 
By introducing an auxiliary value µ = x/y, it is 
possible to determine CAs in the following sequence 
of computation: 

-0.1 -1.0 -1.0

-0.5 -0.5

-0.5 -0.5 -0.5

0.5

-1.0

1.01.0

-1.0

0.0
0.0

0.0
0.0

0.0
0.0

0.5 0.5

0.0
0.0

-0.5 -0.5

-1.0 -1.0

-1.0 -1.0

-1.0 -1.0

-1.0 -1.0

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

0.0

-0.5 0.0 0.5

0.0 0.00.0 0.0

0.5

0.0 1.0 1.0

0.5 0.50.5 0.5

1.0
Ms Ms

Me Me

Ms Ms

Me Me

Ms Ms

Me Me

Ms Ms

Me Me

X X

X X

X X

X XX X

X X

X X

X X

θ = 0° θ = 90°

θ = 45° θ = 135°

θ = 180° θ = 270°

θ = 225° θ = 315°

parafrontal traces, various θA C

B D

F i g. 6. Comparison of the JTs for four pairs of the end-point forces that are opposite to each other during the same transitions along 
the parafrontal traces (A–D). The following pairs of the forces are compared: 0, 180° (A); 45, 225° (B); 90, 270° (C), and 135, 315° 
(D); the torques are calibrated in arbitrary units (as explained in the legend to Fig. 4).



4833D Representation of Joint Torques in Two-Joint Upper Limb Movements

2 2 2  1sh x y y µ= + = + ;	 (9)

1 1

2

1sin sin
1

s
s

y
h

γ
µ

− −
  
 = =   +   

;	 (10)

2
1 1 1cos cos ;

2 2
s

e s
yh

L L
µ

γ γ − −
 +   − = =      

	 (11)

2
1 1

2

11sin cos .
21

e
y

L
µ

γ
µ

− −
   +
   = +
   +   

	 (12)

Experiments corresponding to the scheme in 
Fig. 7A were described in a paper of our group 
published earlier [10]. A high degree of correspon
dence between the averaged EMGs and JTs was 
observed in these experiments; positive waves 
of the JTs correlated well with activity of the 
flexors, whereas negative ones corresponded to 
EMG waves generated by extensors. Figure 7D 
shows the simulated torques Ms and Me for the case 
of tangential end-point forces applied along the 
circular paths shown in Fig. 7B. Now, we consider 
a movement in the counterclockwise direction. 
This movement is begun at φ = 0 (axis OOy). The 
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equilibrium state is defined by equation Fe – F = 0;  
a slow counterclockwise movement is provided 
when the Fe is greater than the F. At the beginning 
position, Ms traces are negative, while Me ones are 
positive. With increase in the radii of the circles, 
the start points of both sets of curves are shifted 
in the negative direction. Traces Ms(φ) comprise 
identical sinusoids shifting in the positive direction 
with a decrease in the radii; Me(φ) curves change 
their shape, keeping the extremal values. Each of 
the Me(φ) and Ms(φ) curves shows the periodicity 
coinciding with the period of motion. 

The points on the movement trajectory, where 
JTs change their signs, are important for timing of 
the central commands controlling the movement 
[10]. These points correspond to the times when 
antagonistic muscles change their state from 
“silence” to “activity” and vice versa. Such points 
Ms

0 and Me
0, which were first determined at the 

simulated torque curves (Fig. 7D), are superimposed 
on the motion trajectories (Fig. 7B). These points 
are located along ellipsoidal curves (described in 
our earlier simulation study using graphical methods 
[11]). The vertical axis of the Ms

0 ellipse coincides 
with the Y axis, which reveals the symmetry of the 
shoulder JTs with respect to the parasagittal plane 
passing via the joint. Such a symmetry of the Ms

0 
ellipse and the specific asymmetry of the Me

0 ellipse 
correspond to the general appearance of the Ms(X) 
and Me(X) loops (Fig. 7D, right panels). A decrease 
in the movement radii makes the Ms(φ) loops 
narrower, shifting them in the positive direction. 
The asymmetry of Me(φ) loops corresponds of the 
right-hand protrusion, which decreases gradually 
with decrease in the movement radii.

For movement traces similar to those described 
above, Fig. 7E shows the JTs defined when the end-
point forces are constant (unchanged) and directed 
frontally. The torque patterns for such forces differ 
noticeably from those described above; however, 
the cyclic elements are still observed in this case. 
Therefore, the cyclic nature of the torques seems 
to be provided by the movement recurrence, and a 
fixed pattern of the end-point forces does not destroy 
such cyclicity. Despite the same patterns of the CAs 
in both cases (Fig. 7C), different end-point forces 
require essentially different torques. Despite keeping 
a sinusoidal form of the Ms(φ) traces for unchanged 
forces, these traces show a fast amplitude drop with 
decreases in the radii of the movement traces. At the 
same time, these traces for tangential forces have a 

fixed amplitude. For the frontal forces, symmetry 
effects in the Ms(X) traces are even more clearly 
expressed due to the addition of the parafrontal 
symmetry (Fig. 7D, E). Interesting changes were 
also observed with respect to the elbow torques. To 
create tangential forces at the circular trajectories, 
the Me traces should consist of oscillations of equal 
amplitude (Me(φ) and Me(X) in Fig. 7D). At the same 
time, during generation of fixed frontal forces, these 
traces become asymmetric, and their amplitudes 
decrease with a drop in the radii of the circles  
(Fig. 7E). When comparing Me(X) traces for the 
tangential and frontal forces, it can be noticed 
that protrusions of the torque loops are directed 
oppositely to each other (Fig. 7D, E). It is possible 
to observe some resemblance between the γe(X) 
and Me(X) loops (Fig. 7C, E); such a resemblance 
has been noted above for the parafrontal traces and 
frontal end-point forces (compare γe(X) in Fig. 2A 
and Me(X) in Fig. 4B). Changes in the end-point 
forces, such as the tangential ones, can influence 
the JTs more noticeably compared with conditions 
of the unvaried forces, and the elbow JTs are more 
significantly subjected to these influences. In any 
case, one can see that the JTs are highly sensitive to 
the pattern of end-point forces.

DISCUSSION

This paper describes further analysis of the JTs in 
two-joint upper limb movements, which was started 
in our previous study [13]. In the latter study, the 
equilibrium JTs were analyzed within the curvilinear 
coordinate system with the joint angles ae and as as 
independent coordinates; in this our communication, 
the same simulation is performed in the Cartesian 
coordinate system. The general pattern of the 
CAs, which are defined now along parafrontal and 
parasagittal traces, agrees with our previous data on 
both symmetrical pattern of the shoulder CAs and 
side-dependent asymmetry of the elbow CAs (between 
the left and right halves of the working space). 
Some apparent differences between the two types of 
distribution of CAs in different coordinate systems 
seem to be mostly related to a discrepancy between 
the used external boundaries of the working spaces in 
these simulations.

In simulations of the JTs, the end-point forces 
F(θ) are directed arbitrarily with possible changes 
of angle θ within the 0 to 2π range. In a given point 



4853D Representation of Joint Torques in Two-Joint Upper Limb Movements

of the working space, the shoulder and elbow JTs 
are completely defined in a single-valued manner 
by Eq. (1). For fixed parameters defining the end-
point force (|F|; θ), both CAs (γs and γe) and JTs 
(Ms and Me) are represented by smooth 3D surfaces 
covering the working space. As an example, we 
have considered 3D surfaces for the case of constant 
end-point forces acting in the frontal direction  
(θ = 0). Interestingly, if both the shoulder and 
elbow CAs exhibit nonlinear shapes, the transitions 
from CAs to JTs in accordance with Eq. (1) lead 
to linearization of the JT at the shoulder joint, 
whereas the elbow JT does not lose the nonlinear 
mode. Therefore, the elbow JT keeps a nonlinear 
shape; moreover, shapes of the surfaces CA and 
JT at the elbow joint even resemble each other. 
The shoulder JT acquires a plane-wise form, what 
seems to be related to the complex interaction of 
the constituent nonlinearities. In any case, the 
simpler linear form of the 3D torque surface at 
the proximal joint in comparison with a nonlinear 
torque surface at the distal joint might be consistent 
with the concept on the existence of a “leading” 
joint in the multisegmental limb movements [16]. 
This hypothesis proposes that planning of a complex 
movement is simplified by choosing one “leading” 
joint, which provides the dynamic basement for the 
entire complex movement. In two-joint upper limb 
movements, the shoulder joint is usually qualified 
as the “leading” one due to the higher inertia and 
stronger musculature of the upper limb link [17–19].

For pairs of oppositely directed end-point 
forces, surfaces of the corresponding JTs keep 
their shapes, turning about the zero-torque plane  
(Fig. 6). Our data allow us to conclude that, at least 
for movements fulfilled with the creation of constant 
end-point forces, the equilibrium torque surfaces 
are specifically dependent on the force direction. 
For opposite force directions, these surfaces show 
a turning symmetry with respect to the zero-torque 
plane. Earlier, we have proposed a classification of the 
force synergies in accordance with functional modality 
of the muscles operating different joints, which are 
activated simultaneously [11]. The coinciding synergy 
corresponds to simultaneous activation of the muscles 
of the same modality at both joints (flexors-flexors; 
extensors-extensors); in the case of opposing synergy, 
muscles of different modality (flexors-extensors; 
extensors-flexors) are simultaneously activated. 
Muscle combinations in both types of effects of 
synergy depend on the direction of the end-point 

force; a change in the direction naturally results in 
the exchange between active and non-active (“silent”) 
muscles. Due to the invariance of the JT surfaces, 
alteration of the force direction does not change the 
synergy effects considered within the framework of the 
aforementioned dichotomy.

Real movement trajectories often contain curvi
linear segments; the latter can be approximated 
by circular traces. In this our study, the JTs are 
defined for the movement paths, including the set 
of concentric circles of different radii. The same 
movements are compared for two types of end-
point force, tangentially directed forces that change 
during the movements and frontally directed forces 
that do not vary within the entire working space. 
Due to the presence of some common features in 
the torque traces of the above two types, essential 
differences are observed as well. The shoulder JTs 
demonstrate obvious symmetry with respect to the 
parasagittal plane passing via the joint, while the 
elbow JTs are essentially asymmetric. It seems to 
be important that torques at the proximal joint are 
characterized by symmetry, and the latter does not 
disappear with changes in both movement pattern 
(parafrontal, parasagittal, or circular traces) and type 
of the generated force (unvaried or changing within 
the working space). On the contrary, torques at the 
distal joint are highly sensitive to both end-point 
positioning and type of the end-point forces. With 
unvaried frontally directed forces, the steepness of 
the elbow torque surface is significantly higher at 
the left part of the parasagittal plane passing via the 
proximal joint. Such an asymmetric pattern of the 
elbow torques may be kept for various movement 
traces (compare Figs. 6 and 7). Vice versa, a 
transition from the frontal to the tangential end-point 
forces evokes strong transformation of the elbow JT 
traces. In the former case, a higher steepness of the 
traces is typical of the left half of the working space; 
in the latter case, this order is reversed (bottom row 
in Fig. 7). Therefore, the pattern of end-point forces 
crucially influences the JTs.

We considered static conditions for the two-joint 
system only for the cases of non-zero end-point 
forces. When the mentioned forces are small or 
absent, the system may formally be in an uncertain 
state; therefore, the end-point positions in the 
working space are not predetermined. The effects 
of uncertainty can also be inherent to low-intensity 
efferent inflows to the relaxed muscles. On the 
other hand, a powerful source of uncertainty effects 
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can be the interaction of agonist-antagonist pairs 
of the muscles or muscle groups, when reciprocal 
changes in the lengths of these muscles during the 
movement can in some cases modify the expression 
of hysteresis aftereffects [9, 20–22]. 

Behavioral studies using postural test tasks have 
demonstrated that the tested subjects frequently use 
muscle co-contraction as a strategy for stabilization 
of the limb joints in the presence of external 
loadings [23]. Humans are also able to modulate 
independently the relative balance of co-contraction 
and limb stiffness in different spatial directions 
[24] and at different joints [25]. At the same 
time, co-contraction of the antagonistic muscles 
should inevitably increase the energy costs of real 
movements.

Despite the existence of close relationships 
between the JTs and intensities of EMGs of the 
respective muscles in real circular movements 
performed under conditions of application of 
tangential loads, noticeable EMG activities recorded 
from the elbow and shoulder muscles may often be 
expressed in sites that are out of the borders of the 
correspondent torque waves [10]. This phenomenon 
might be related to a more complicated arrangement 
of the joints compared with that in a simple 
pivotal model used to define the JTs in the above- 
cited study. It seems that the biomechanics of the 
elbow and shoulder joints can introduce additional 
elements of indeterminacy into their torques. A 
complex geometry of the rotational movements in 
the shoulder joint was mentioned in the study of Hill 
et al. [26]; the elbow joint has also been considered 
an assemblage of three interactive joints [27]. 
It should be noted that a simplified model of the 
upper limb muscles as belonging exclusively to the 
elbow or shoulder joints is certainly oversimplified; 
sites of the force applications can be considered 
fixed only for the monoarticular muscles, while 
a procedure of identification of such sites for the 
biarticular muscles is much more complex [28].

From the functional aspect, a more expressed 
steadiness of the elbow JT within the right half of 
the working space may lead to relative simplicity of 
the central programs for the movements produced 
rightward from the shoulder joint (in other words, 
within a preferred zone of movements of the right 
upper limb). For the left limb, similar simplicity of 
programming will be obvious within the left part 
of the working space. If we consider movements 
by two upper limbs within a horizontal plane 

[12], this comment obviously corresponds to our 
everyday experience; it is much more convenient 
to move each arm, left or right, within its “own” 
half of the working space, at the left or right side, 
respectively. Therefore, at least for the elbow 
muscles, such a side preference in the case of the 
frontal and tangential end-point forces might be 
related to essentially lower slopes of the torque 
surfaces within these areas of the working space 
(Figs. 4 and 7). Therefore, any movements within 
the above areas will require smaller changes in the 
central commands coming to the muscles. On the 
other hand, the symmetry effects in the shoulder 
torque surfaces, as well as their planar shapes for 
some types of the end-point forces, mean that our 
results could be consistent with the leading joint 
hypothesis proposed by Dounskaia [16].

Under conditions of relatively slow movements, 
the parameters of the end-point force vector, as 
well as the direction of the intended movement, are 
crucial for defining necessary changes in the JTs. 
For a given end-point force, 3D surfaces of the 
JTs actually “create certain rules” of their change 
in any direction of the subsequent movement. In 
other words, one can consider two projections of 
the real movement trajectory on the shoulder and 
elbow JT surfaces, respectively; these torque traces 
predetermine central commands sent to the muscles 
of corresponding joints. The tight interdependence, 
which exists between the JTs and corresponding 
EMGs [10, 12, 14, 15], allows us to assume the 
existence of some 3D “activation” surfaces that 
could partly resemble shapes of the JTs surfaces. 
Such “activation” surfaces actually are related only 
to the steady (equilibrium) states in the system 
under study, as follows from the equilibrium point 
hypothesis [7, 8]. It seems quite obvious that 
real movements with nonzero velocities would 
introduce significant changes into central commands 
controlling these movements; therefore, the analysis 
of the movements should require application of the 
dynamic methods [1–4].

CONCLUSIONS

The two-joint equilibrium muscle contractions 
providing creation of the end-point forces developed 
by the hand of the human right upper limb at 
positioning within the horizontal plane have been 
simulated. The 3D surfaces of distribution of the JTs 
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are reconstructed for the invariable end-point forces 
directed frontally. The shoulder JTs form the planes 
oriented perpendicularly with respect to the sagittal 
plane, and a downward skewness with respect to 
the sagittal direction is observed. The 3D surface of 
the elbow JT is essentially nonlinear, showing more 
expressed gradients of the torque within the left 
part of the working space for the right upper limb. 
For pairs of oppositely directed end-point forces, 
surfaces of the corresponding JTs keep their shapes 
when turning about the zero-torque plane.
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