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Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions characterized by 
impairments in reciprocal social interactions, communication skills, and stereotyped behavior. Since 
EEG recording and analysis is one of the fundamental tools in diagnosing and identifying disorders in 
neurophysiology, researchers strive to use the EEG signals for diagnosing individuals with ASD. We 
found that studies on ASD diagnosis using EEG techniques could be divided into two groups in which 
where analysis was based on either comparison techniques or pattern recognition techniques. In this 
paper, we try to explain these two sets of algorithms along with their applied methods and results. Lastly, 
evaluation measures of diagnosis algorithms are discussed. 
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INTRODUCTION

Autism spectrum disorders (ASDs) are pervasive 
neurodevelopmental conditions characterized 
by impairments in reciprocal social interactions, 
communication skills, and stereotyped behavior 
[1]. ASDs are composed of five disorders, 
namely, autism, pervasive development disorder-
not otherwise specified (PDD-NOS), Asperger’s 
syndrome (AS), childhood disintegrative disorder 
(CDD), and Rett’s disorder (RD) [2, 3]. Different 
states place different emphases on studies of ASD. 
For example, developing countries pay much less 
attention to this topic. The major part of studies on 
the prevalence of ASD has been reported in North 
America and European countries [4]. Based on new 
scientific investigations, the incidence of ASDs has 
grown in recent years. For example, it has been 
estimated that, on average, 157 of 10,000 primary 
school children have ASD in the United Kingdom 
[5]. Also, the prevalence rate of ASD among 
British adults has been estimated at 98 of 10,000 
[6]. Likewise, the prevalence rate of ASD among 
8-year-old children was estimated at 90 of 10,000 
in a research performed in the United States [7]. 
During 1966 to 2008, the prevalence rates of autism, 

PDD-NOS, and AS were estimated at 20, 30, and 2 
of 10,000, respectively [8]. Based on a preliminary 
research, the prevalence rates for Iranian children 
were found to be 19 and 5 of 1,000 for autistic 
and AS disorders, respectively [9]. Moreover, in 
another study, the number of Iranian university 
students with ASD was shown to be 120 of 10,000. 
Additionally, the number of men (as compared with 
that of women) was significantly higher [10]. 

The diagnosis of ASD is not an easy process and 
generally requires certain behavioral and cognitive 
characteristics [11]. Today, researchers are trying 
to find ASD diagnostic approaches through 
electrophysiological and neuroimaging techniques. 
Since EEG recording and analysis is one of the 
fundamental tools in diagnosing and identifying 
disorders in neurophysiology, researchers strive to 
use the EEG technique for diagnosing individuals 
with ASD. A group of studies has shown that EEG 
signals of individuals with ASD are relevant to 
age- and intelligence quotient (IQ)-matched control 
subjects based on different conditions. In these 
studies, comparative methods and statistical criteria 
have been used to analyze the results. In became 
possible to identify some characteristics of the brain 
signals that explicitly differentiate between the 
EEG signals of normal individuals and individuals 
with ASD. However, it is noteworthy to mention 
that these studies have provided identical results 
only sometimes. The next group of researchers 
has taken giant steps in diagnosing ASD by using 
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pattern recognition and classification techniques 
able to separate the brain signal patterns of normal 
individuals from those affected with ASD. In other 
words, the results of these studies provide high-
performance diagnostic algorithms. Therefore, 
we found that research on brain signal processing 
of individuals with ASD could be divided into 
two groups where analysis was based either on 
comparison techniques or on pattern recognition 
techniques (Fig. 1). These two groups of studies 
represent developmental progress in ASD detection 
over the decade. 

In this paper, we try to present an overview of 
the recent research on EEG-based diagnosis of 
ASD. Moreover, this overview provides a rather 
comprehensive outlook on ASD. We divided the 
performed studies in ASD analysis into the two 
above-mentioned main groups. In each group, we 
describe the principal of the presented algorithms, 
evaluation measures of ASD detection and diagnosis, 
and the results reported. Moreover, we mention the 
strong and weak points of the algorithms presented 
in the literature. 

ASD ANALYSIS BASED ON EEG 
COMPARISON TECHNIQUES 

In the studies of ASD diagnosis based on 
comparison techniques, a comparison between 
the EEG signals of normal individuals with those 
affected with ASD in terms of their age and IQ is 
carried out. Two main factors are considered in the 
process of EEG signal comparison. Firstly, what 
types of characteristics are being examined? In 
the EEG signals, valuable information that needs 
to be extracted and compared is concealed. The 
extracted information is called “features,” and each 
one of these features is obtained by using various 
signal processing methods and different scenarios. 

Secondly, what statistical method should be used 
to measure the difference between the ASD-related 
EEG and non-ASD samples according to the 
characteristics? 

In each study, an appropriate statistical method 
based on comparison models, examined factors, and 
related hypotheses are used for ASD detection. In the 
majority of these statistical techniques, like analysis 
of variance (ANOVA) and the t-test, the results of 
the compared processes are denoted by the index P 
(probability of the zero hypothesis). If the value of P 
is less than the preset significance level (P < alpha), 
it represents a statistically significant difference in 
the evaluated characteristics of samples. In each 
process, the significance level is determined based 
on the acceptable error level. In most studies, values 
of 0.01 or 0.05 are considered for the alpha value. 
When the P value is only slightly greater than  
0.05, such a situation can be interpreted as the 
absence of a significant difference between the 
compared values but as the presence of a clear trend 
toward such difference. 

EEG Signal Features for ASD Analysis. 
EEG Rhythms. In ASD analysis, EEG rhythms 
are the most commonly used features based on 
the comparison technique. The EEG rhythms, 
according to their frequency bands, are usually 
divided as follows. The delta rhythm corresponds to  
2-4 Hz, theta rhythm, to 4-8 Hz, alpha rhythm and mu 
rhythm, to 8-13 Hz, beta rhythm, to 13-30 Hz, and 
gamma rhythm, to frequencies higher than 30 Hz. 
In some studies, the proposed boundaries between 
the above ranges can be slightly (insignificantly) 
different. The EEG rhythms play a crucial role for 
perceiving brain functions. For example, it appears 
that working memory-related processes are marked 
as fluctuations in the EEG theta frequencies [12-
14]. Concerning the cognitive processes, three alpha 
subrhythms have recently been found, the lower-1 
alpha (with 6-8 Hz oscillations) corresponding to 
cognitive processes named “alertness,” the lower-2 
alpha (with 8-10 Hz oscillations) that seems to be 
related to attentional demands [15], and, finally, the 
upper alpha (with 10-12 Hz oscillations) that seems 
to be related to stimulus features and/or semantic 
processes of memory [16-19]. 

The so-called mu rhythm typically is maximal 
over the sensorimotor cortex at the resting state 
and is attenuated upon voluntary movements or 
somatosensory stimulation. This rhythm is slightly 
affected by visual stimulation. In other words, the 
mu rhythm suggests the presence of sensorimotor 
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comparison techniques
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F i g. 1. Categorization of the reported researches.



185Diagnosing Autism Spectrum Disorders Based on EEG Analysis

processing in the front parietal networks, whereas 
the classical alpha rhythms suggest the initial visual 
processing in the occipital networks [20]. 

Desynchronization of the beta rhythm usually 
occurs during motor activities. The synchronization, 
however, occurs immediately after the movement 
(beta rhythm rebound) [21]. These processes 
represent the action of the motor cortices [22-25]. 
The reactions of the beta rhythm have also been 
recorded when observing other movements and 
during motor imagery. Additionally, the gamma 
band is observable during visual and/or auditory 
motor tasks [26-31]. 

Absolute Power or Relative Power. The absolute 
spectral power (ASP) within a given frequency band 
corresponds to the area underneath the spectral 
curves for the respective frequency band. The 
relative spectral power (RSP) is a percentage value 
that compares the absolute power within a given 
frequency band to the total (integral) absolute power 
for the entire frequency range. In other words, the 
relative power or the band relative intensity ratio 
(RIR) can be defined for each frequency band i as.

 
(1)

Coherence. Coherence is a benchmark of coupling 
between two different time series in the frequency 
domain. The estimated coherence can indicate the 
“coupling” of the functional association between two 
brain regions [32]. The coherency between two EEG 
channels gives the linear relationship of these two 
channels at a specific frequency. Mathematically, 
the coherence is calculated as

;   (2)

 ,   (3)

where Xi(f) and Xj(f) are the (complex) Fourier 
transforms of time series xi (t) and xj (t) of channels 
i and j, respectively. Sj (f) is the cross-spectrum 
function where the operator “*” means complex 
conjugation, and  means the expectation value. 
In practice, the expectation value can only be 
estimated as an average over a sufficiently large 
number of epochs [33]. The estimated coherence 
is a value within the range [0, 1]. If the value of 
the coherence function is calculated as zero (i.e., 
in the frequency fo, Cij (fo) = 0), it indicates that the 
activities of signals in this frequency are linearly 
independent. At the same time, a value of 1, i.e.,  
Cij (fo) = 1, gives the maximum linear correlation for 
this frequency [34]. Figure 2 shows a model of the 
applied analysis based on the coherence measure in 
two groups of children (ASD and non-ASD) [35]. In 
this analysis, the dotted and solid lines, respectively, 
show significant differences with P < 0.05 and  
P < 0.01 in terms of the coherence values for three 
frequency bands (gamma, alpha, and beta) between 
these two groups.

Mu Wave Suppression. The properties of the 
mu frequency band can be used as a technique 
to investigate the functioning of the so-called 
mirror neurons in humans [36]. At the resting 
state, the synchronous action of the neurons in the 
sensorimotor cortex creates large mu oscillations. 

A B C

F i g. 2. A model of the 
applied analysis based on the 
coherence measure [35] .
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When individuals execute or observe a movement, 
the power of these mu oscillations is attenuated. This 
phenomenon is called mu wave suppression [36-39]. 
The amplitude reduction of mu oscillations indicates 
desynchronization of the underlying neurons, 
reflecting greater levels of active processing during 
motor movement and observation [38, 39]. 

Cordance. Cordance is a measurable EEG factor 
to determine cerebral blood flow perfusion and 
metabolism. In fact, this factor incorporates both 
relative and absolute power measures to produce 
characteristics that more strongly correlate with 
local cerebral perfusion than each separate measure 
[40]. The cordance is calculated based on an 
algorithm consisting of three steps: firstly, the values 
of EEG power are calculated by an arrangement of 
reattributional electrodes. The reattributed power is 
the average of power values from pairs of electrodes 
that share a common electrode. [41]. In the second 
step, the values of relative and absolute power of 
each individual EEG recording are statistically 
standardized among the electrode sites engaging a 
z-transformation for the each electrode site s for 
the corresponding frequency band f. In this way, 
the values of Anorm(s,f) and Rnorm(s,f) are determined. 
Finally, the values of cordance for each electrode 
site s and its corresponding frequency band f are 
determined by the following relation [42]:

),(norm),(norm),( fsfsfs RACordance +=  (4)

Multi-Scale Entropy. Multi-scale entropy 
(MSE) is a computational method for quantifying 
the complexity of a time series by calculating 
the sample entropy (SE) over several time scales 
utilizing a coarse-graining procedure [43, 44]. The 
SE is a measure of irregularity of a time series in the 

EEG time series x = {x1,...xi,...xN}, defined as the 
negative of the logarithmic conditional probability 
that two similar sequences of m consecutive data 
points will remain similar at the next point (m+1) 
[45-47].

,   
(5)

where Cm (r) =    , A is the number of pairs (i, j)  
with |xi

m – xj
m|<r, i ≠ j, and B is the number of all 

probable pairs , where |xi
m – xj

m|<r denotes  
the distance between vectors xi

m and xj
m within 

dimension m, r, is the permissible distance between 
two vectors (in terms of the standard deviation 
fraction of the time series), and N is the length of 
time series. For MSE analysis, the EEG time series 
x = {x1,...xi,...xN} is coarse-grained into consecutive 
time series {yj

τ} corresponding to the scale factor 
(SF) τ. Firstly, the original time series is divided 
into nonoverlapping windows of length τ, and then 
the data points inside each window are averaged. 
Therefore, each coarse-grained time-series is 
defined as

 , .   (6)

Eventually, SE is calculated for each time series 
{yj

τ} [47]. Figure 3 illustrates the diagram of the 
coarse-graining procedure [44].

Algorithms Based on Comparison Techniques. 
The reported studies in the comparison-based 
algorithms could differ from each other regarding 
several views, including (i) age and IQ of the 
participants in each experiment, (ii) conditions 
under which the EEG signals have been recorded, 
(iii) the features that have been extracted and 
compared in both groups and in each experiment, 
and (iv) the factors that affect the results of every 
experiment. We briefly explain below the conditions 
and factors examined in each study along with their 
results for state-of-the-art studies that have been 
presented in the literature. For example, Daoust et 
al. [48] investigated EEG recording of nine persons 
with ASD (ages 12 to 53 years) and eight control 
IQ-matched participants (ages 8 to 56 years) under 
two conditions, REM sleep and wakefulness. In this 
study, the power spectral analysis was performed 
for four frequency bands: delta (0.75-3.5 Hz), 
theta (4.0-7.75 Hz), alpha (8.0-12.75 Hz), and beta  
(13.0-19.75 Hz). The report of these authors [48] 
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indicated that individuals suffering from ASD, 
when being in REM sleep in comparison with 
the controls, demonstrated a significantly lower 
absolute beta spectral amplitude in primary (O1,  
O2) and associative (T5, T6) cortical visual areas.  
At the same time, subjects suffering from ASD, 
when compared with the controls, demonstrated 
significantly higher absolute theta spectral 
amplitudes in the left frontal pole region (Fp1) 
in the evening wakefulness but not in the 
morning wakefulness [48]. In another study, 
Oberman et al. [49] recorded EEG signals from  
10 high-functioning individuals of different ages 
(6-47 years) and gender with ASD and matched 
control subjects in a parallel manner with watching 
videos of a moving hand or a bouncing ball and 
against the background of looking to visual noise 
or moving their own hand. Then the mu-frequency 
power at scalp locations corresponding to the 
sensorimotor cortex (C3, Cz, and C4) during the 
self-initiated action and watching action conditions 
was compared to the power under baseline (visual 
white noise) conditions. In other words, the mu 
wave suppression was estimated. Ultimately, the 
report revealed that mu suppression of self and 
observed hand movements in control participants 
was significant. Meanwhile, mu suppression of 
the participants with ASD in self-induced hand 
movements (but not in observed hand movements) 
was significant [49]. Stroganova et al. [50] 
recorded EEG signals from 44 boys with ASD  
(ages 3-8 years) and a corresponding number of age-
matched typically developing boys under conditions 
including sustained visual attention (presentation of 
soap bubbles and computer presentation of a moving 
fish). Then, the authors evaluated the EEG spectral 
powers (SPs) and SP interhemispheric asymmetry 
within delta, theta, and alpha bands in both groups. 
The researchers concluded that boys suffering 
from ASD were in fact a heterogeneous group with 
regard to the alpha and theta SPs. The group yielded 
a high intergroup difference in absolute SPs of 
the prefrontal delta. The left-side broadband EEG 
asymmetry in such children was not typical, and the 
mid-temporal regions had the maximum intensity in 
this regard [50]. 

Murias et al. [51] investigated EEG measures 
in 18 male adults with ASD and 18 control male 
adults (18-38 years old) in the resting state with 
the eyes closed. The coherence between pairs of 
electrodes and the relative SPs were evaluated. For 
the ASD group, locally higher coherence was clear 

within the theta frequency range (3-6 Hz). This 
was specifically evident in the temporal and frontal 
regions of the left hemisphere. In the ASD group, 
there was generally reduced coherence for the lower 
alpha subrange (8-10 Hz) in the frontal regions and 
also between the frontal and all other scalp regions. 
In the ASD group, the relative SPs of the ranges 
between 3-6 and 13-17 Hz were significantly higher, 
but this parameter was significantly lower for  
9-10 Hz [51]. 

Moreover, Bernier et al. [52] examined EEGs of 
18 high-functioning adults with ASD and 15 IQ- 
and age-matched typical adults participating under 
four conditions (resting, observation, execution, 
and imitation). The EEG mu rhythm was compared 
between two groups. The experiments illustrated 
that, upon executing an action, both groups exhibited 
significant attenuation of the mu rhythm. When 
observing a movement, however, attenuation of the 
mu waves appeared significantly reduced in the ASD 
subjects [52]. In another study, Orekhova et al. [53] 
recorded EEGs in two independent groups of 3- to 
8-year-old boys with autism (BWA) from Moscow 
(20 boys) and Gothenburg (20 boys) and in the same 
number of age-matched typically developing boys 
(TDB) during sustained visual attention. The mean 
SPs were calculated for three high-frequency bands, 
beta (13.2-24.0 Hz), gamma 1 (24.4-44.0 Hz), and 
gamma 2 (56.0-70.0 Hz). The authors reported that 
a pathological rise was observed in the gamma 
intensity (24.4-44.0 Hz) in both BWA samples. 
Also, there was positive correlation between the 
intensity of gamma activity and the developmental 
delay rate in both BWA subgroups [53]. Coben et 
al. [54] investigated the EEG measures under eyes-
closed resting conditions in 20 children diagnosed 
with ASD and 20 controls matched for gender, age 
(6-11 years old), and IQ. The absolute, relative, 
and total SPs, as well as intrahemispheric and 
interhemispheric coherences, were calculated for 
these two groups. It was found that children with 
ASD differed noticeably in terms of the power and 
inter- and intra-hemispheric coherences. In autistic 
children, an excess theta-relative SP appeared 
especially in the posterior regions of the right 
hemisphere. Meanwhile, the delta SP in the frontal 
cortex was rather low, but the midline beta power 
was high. In the frontal regions of both hemispheres, 
theta and delta coherences were rather small. In 
addition, theta, delta, and alpha hypo-coherences 
were observable in the temporal regions. Finally, 
theta, delta, and beta coherences were rather weak 
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in the posterior regions [54]. 
Martineau et al. [55] compared EEG activity in  

14 right-handed children with ASD and 14 
right-handed age- and gender-matched control 
children (three girls and 11 boys, aged 5 years  
3 months to 7 years 11 months) in the movie watching 
state. The silent movie consisted of four sequences, 
namely (i) no stimulation, “white” (Wh, TV screen 
white), (ii) a no-movement sequence, “lake” (Lk, a 
body of water surrounded by land), (iii) a nonhuman 
movement sequence, “waterfall” (Wf, falling water), 
and (iv) a human movement sequence, “rotating” 
(Ro, a woman performing scissor movements with 
her legs while lying on her back). In this research, 
the logarithm of the absolute spectral power (Ln 
ASP) in each of the following frequency bands, 
theta 1 (3-5.5 Hz), theta 2 (5.5-7.5 Hz), and alpha 1  
(7.5-10.5 Hz), were calculated. It was reported 
that, during observation of human actions in the 
normal children group, EEG desynchronization was 
observable in the frontal and temporal cortices and 
in the motor cerebral cortex areas. However, such a 
desynchronization was not evident in ASD children 
[55]. Raymaekers et al. [36] investigated the mirror 
neuron functioning. The EEG signals were recorded 
from 20 children with high-functioning autism 
(HFA, ages 8-13 years) and a control group of  
19 typically developing age-matched children. The 
testing was based on the paradigm of Oberman et 
al. [49] consisting of four conditions, (i) observing 
a video of a moving hand (hand), (ii) moving own 
hand (self), (iii) watching a video of two bouncing 
balls (balls), and (iv) watching visual white noise 
(baseline). The mu wave suppression was calculated 
as ratios of the 8-13 Hz SP during each of the self, 
hand, and balls conditions relative to the respective 
power under baseline conditions. The report 
indicated that significant mu suppression in both 
self and observed hand movements were evident 
in both groups [36]. In the same year, Lazarev et 
al. [56] investigated the EEG photic driving at 
various stimulation frequencies (intermittent photic 
stimulation at 11 fixed frequencies, from 3 to  
24 sec–1, in 14 autistic boys (6-14 years old) and  
21 control boys matched in age. The interhemispheric 
asymmetry in the total number of driving peaks in 
each group and the difference between autistic and 
control groups in each hemisphere were evaluated 
for each frequency band of the four harmonics in 
the nonvisual areas and the sum of four harmonics 
in both nonvisual and occipital visual areas. The 
researchers deduced that boys with autism showed 

latency abnormalities in the right-side hemisphere 
during the photic driving reactivity, particularly at 
the rapid alpha and beta frequencies of stimulation 
[56]. 

Thatcher et al. [57] recorded EEGs from  
54 autistic subjects and 241 normal subjects  
(2.6-11 years old) under resting conditions with 
the eyes open. The EEG phase shift and phase lock 
durations were computed for all possible electrode 
combinations; two alpha (8-10 and 10-13 Hz) and 
three beta subranges (13-15, 15-18, and 25-30 Hz) 
were considered. It was recognized that the phase 
shift duration in ASD children in both short (6 cm) 
and long (21-24 cm) interelectrode distances in all 
frequency bands, particularly in the alpha 1 frequency 
band (8-10 Hz), was significantly shorter [57]. Chan 
et al. [58] investigated EEGs of 38 normal children 
and 16 children with ASD (6-14 years old) that were 
recorded under eyes-open conditions. The cordance 
was computed for 19 electrode sites using a three-
step algorithm [44, 46] as a feature. The obtained 
results also demonstrated that cordance patterns of 
the ASD subjects were lower as compared with those 
of normal ones, possibly indicating that perfusion 
within the frontal regions of ASD subjects is lower 
than that in normal ones [58]. 

Lazarev et al. [59] examined photic driving 
coherence during intermittent photic stimulation in 
14 autistic boys (6-14 years old, with IQ 91.4 ± 22.8) 
and 19 normally developing boys who were subjected 
to stimulation of 12 fixed frequencies (3-27 sec–1). 
The number of high coherent connections (HCCs) 
(coherence > 0.6-0.8) was estimated among seven 
leads in each hemisphere. It was found that, unlike 
the spectral characteristics indicating deficit in the 
photic driving reactivity in the right hemisphere, 
the groups were different in terms of the number 
of HCC only in the left hemisphere. Also, there 
was increased prevalence of the frequency in the 
left hemisphere [59]. In the same year, Sudirman et 
al. [60] collected EEGs from six normal children, 
two autism-suffering children, and eight Down 
syndrome children under the actions of two stimuli 
consisting of alternating checkerboard and ripple 
checkerboard. The amplitudes of alpha frequency 
oscillations were compared in the above three 
groups. It was found that the alpha value for normal 
children, in comparison with Down syndrome and 
autistic children, was higher at 10 Hz [60]. 

Isler et al. [61] compared EEG activity in six 
children with ASD and eight age- and gender-
matched control children (5.5-8.5 years old) under 
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visual stimulation (long-latency flash-evoked 
visual potentials). The EEG power and synchrony 
measures (coherence and phase synchrony) were 
computed. In autistic children, as compared with 
normal ones, the interhemisphere synchrony 
demonstrated a 50% reduction in the theta band. 
Also, the synchrony between the hemispheres in 
autistic subjects was not distinguishable above the 
theta band (uncorrelated cortical activity). Despite 
a bilateral power increase, the synchrony between 
the hemispheres mitigated in autistic children. 
The wavelet power in children with autism had a 
more sluggish recovery, a faster primary reaction 
to stimulation, and a greater modularity of state 
at longer latencies. Catarino et al. [47], however, 
assessed EEGs in 15 participants with ASD  
(23.79-42.34 years old) and 15 typical controls 
(21.50-37.77 years old) under a face- and chair-
matching task (stimuli consisted of 30 pictures of 
neutral faces and 30 pictures of chairs.) The multi-
scale entropy and the relative SPs were compared 
in two groups. It was found that the EEG signal 
complexity was lower in the occipital and temporo-
parietal areas in ASD children as compared to the 
control group. There was no significant variation 
between the groups in terms of the EEG power 
spectra [47]. In the same year, Chan et al. [62] studied 
EEGs of 21 children with ASD and 21 children 
with normal development (5-14 years old) facing 
the object recognition task consisting of 24 line 
drawings taken from the objects database (modified 
Snodgrass et al. [63] and validated by Rossion et 
al. [64]). The line drawings were placed in an array 
of six by four layouts displayed on a computer 
screen for 3 min. The participants were required 
to memorize the items for a later recognition task 
consisting of 12 targets mixed with 12 distractors. 
In this research, theta coherence measures  
(4-7.5 Hz) were used to evaluate and analyze EEG 
signals. The authors [62] deduced that ASD children, 
in comparison with normal ones, demonstrated a 
dissimilar pattern of EEG coherence. 

In 2012, two studies related to ASD/EEG were 
published. Firstly, Lushchekina et al. [65] studied 
EEGs in 5- to 7-year-old children, both normal 
and with early childhood autism, under two resting 
conditions and at a cognitive task. The SPs and 
mean coherence for the alpha, beta, and gamma 
rhythms were compared. It was mentioned that a 
frontal-occipital alpha gradient was considerable 
in both ASD and normal children. For normal 
children, significantly greater SPs and coherence 

of EEG rapid rhythms in the frontal and central 
regions of the left hemisphere under conditions of 
the cognitive tasks were observed compared with 
the baseline ones [65]. Secondly, Mathewson et 
al. [66] investigated EEGs in 15 adults with ASD 
(18.8-51.6 years old) and a matched comparison 
group of 16 unimpaired adults (22.6-47.8 years 
old) under eyes-closed and eyes-open conditions. 
The EEG alpha SP and coherence was computed for 
assessing the participants. Calculations showed that 
there was a difference between the two groups in 
terms of coherence of the eyes-closed EEG alpha 
SP. However, alpha suppression for eyes-open 
conditions was weaker in ASD adults, as compared 
with normal ones. 

ASD ANALYSIS BASED ON PATTERN 
RECOGNITION TECHNIQUES

This method has taken a giant leap in the direction 
of diagnosing ASD based on EEG analysis. The 
researches have used pattern recognition techniques 
to separate ASD and non-ASD brain signal patterns. 
Figure 4 illustrates the general structure of the ASD 
diagnosis algorithms based on the above-mentioned 
techniques. These algorithms consist of two 
main components, feature extraction and feature 
classification. The most commonly utilized tools 
and approaches in these algorithms are described 
below in more detail.

Feature Extraction. The feature extraction stage 
can be considered as a mapping from the initial 
signal space to the feature space in a way that the 
separability may be improved in the new space. 
Different features are extracted by certain methods 
and scenarios from the EEG signals. Eventually, 
the extracted features form a vector that is called 
the “feature vector.” The feature vectors of samples 
are used in the classification stage. Table 1 exhibits 
the effective features that were extracted from the 

EEG signals 
(ASD and 
non-ASD)

ASD  

Non-ASD  

Preprocessing 
(filter, sampling)

Feature 
extraction

Classification

F i g. 4. General structure of diagnostic algorithms based on 
pattern recognition techniques.
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frequency and time domains of EEG signals in the 
ASD diagnosis algorithms.

Classification. Classification is the process 
of assigning a feature vector to one of predefined 
classes or categories in a manner that minimizes the 
error of classification [67]. In the ASD detection 
problem, the two classes are individuals with ASD 
(class 1) and those with no ASD (class 2). This 
process consists usually of applying classifiers on 
the feature vectors of two classes. The essential part 
of this process is to know how a classifier assigns 
one of the two classes to an unknown feature vector. 
Almost all of the classifiers have a training phase by 
a specific algorithm, and then they become capable 
of classifying the samples. In actuality, the above-
mentioned specific algorithms use feature vectors 
that have previously been extracted from EEG signals 
of both groups. There are varieties of classifiers, like 
an artificial neural network, support vector machine 
(SVM), statistical classifier, K-Nearest Neighbor 
(KNN), Linear Discriminant Analysis (LDA), and 
Quadratic Discriminant Analysis (QDA). In fact, 
each one of them has its own strategy. Parameter 
setting in each classifier has a direct impact on its 
performance. We could easily see the significance 
of feature extraction process in the diagnostic 
algorithms because the input of classifiers is formed 
by feature vectors.

Algorithms Based on Pattern Recognition 
Techniques. In this section, we describe the 
algorithms based on pattern recognition techniques 
provided by the researchers in the ASD detection. 
Here, we have tried to bring up important factors 
in each algorithm, including the extracted features, 
methods employed, the type of the utilized classifier, 
and the database. The database implies the EEG 
signals of ASD and non-ASD individuals that have 
been used in the process of designing and evaluating 
the algorithm. Each database has its own parameters, 

such as the conditions of EEG recording, number 
of ASD and non-ASD people, their age range, and 
their IQ. For example, Sheikhani et al. [68] used 
EEG samples of 11 patients (9.2 ± 1.4 years old) 
and 10 control age-matched subjects under eyes-
open conditions. The Lempel-Ziv (LZ) complexity, 
Short Time Fourier Transform (STFT), and STFT at 
a bandwidth (STFT-BW) in the total spectrum were 
extracted from EEG signals and then evaluated by the 
ANOVA test. Finally, the STFT-BW feature showed 
the most difference between these two groups on the 
basis of ANOVA. In this study, the KNN classifier 
has been used to classify a feature vector. This 
algorithm provided 81.0% discrimination between 
normal and autism subjects with the Mahalanobis 
distance [68]. In another study, Behnam et al. 
[69] utilized EEG signals of 10 ASD (6-11 years 
old) and nine age-matched control subjects, which 
were collected under eyes-open conditions. The 
STFT-BW component in the alpha band (8-12 Hz) 
was calculated as a feature, and a KNN classifier with 
the Mahalanobis distance was used. Eventually, this 
algorithm was able to separate the normal subjects 
from the ASD ones with an accuracy rate of 89.5%. 
In this study, aside from providing the diagnostic 
algorithm, the coherence measures between all 
171 pairs of 19 channels in three EEG frequency 
bands (alpha, beta, and gamma) were examined. The 
authors declared that there are more abnormalities 
in the connectivity between the left hemisphere and 
right temporal lobe, as compared with other regions 
[69]. 

Sheikhani et al. [70] utilized qEEGs of 15 children 
with Asperger’s disorder (10 boys and 5 girls, age 
6-11 years) and 11 normal children (7 boys and  
4 girls in the same age range). The EEG signals of 
two groups of subjects were recorded under nine 
conditions, including the eyes-close state, relaxed 
eyes-open condition, looking at three samples of the 

TABLE 1: Employed Features of EEG Signals in the Frequency and Time Domains

Frequency/time domains Description

Frequency domain

Short Time Fourier Transform at bandwidth (STFT-BW) in the total spectrum [68]
STFT-BW component in the alpha band [69]

Averaged values of spectrogram greater than 70% maximum in the alpha frequency band [70],[35]
Principal Components Analysis (PCA) to Short Time Fourier Transform[74]

Gaussian mixture model (GMM) in frequency domain [72]
Katz’s Fractal Dimensions in delta and gamma EEG sub-bands [71]
Principal Components Analysis (PCA) of the coherence data [75],

raw data, and Fast Fourier Transform ( FFT) [76]

Time domain Modified multi-scale entropy (mMSE) [73]
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Kanizsa puzzle, looking at mother’s picture upright 
and inverted, and looking at a stranger’s picture 
upright and inverted. Average spectrogram values 
greater than 70% of the maximum were employed as 
a discriminating feature on quantitative EEG signals 
in the delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), 
beta (12-36 Hz), and gamma (36-44 Hz) frequency 
bands. For classification of ASD children vs normal 
children, a KNN classifier with the Mahalanobis 
distance was utilized. Experimental results showed 
that the recorded signals under relaxed open-eyes 
conditions in the gamma band, those recorded with 
looking at a stranger’s inverted-condition picture in 
the alpha and beta bands, and the ones obtained with 
participants looking at a mother’s inverted picture 
in the beta band provided the best discriminations 
with accuracy rates of 96.2, 83.3, 70.6, and 77.8%, 
respectively [70]. In the next year, Sheikhani et 
al. [35] gathered qEEG signals from 17 children  
(13 boys and 4 girls, 6 to 11 years) with ASD and  
11 control children (7 boys and 4 girls of the same age 
range) under relaxed eyes-open conditions. Average 
values of the spectrogram (STFT) greater than 70% 
maximum (spectrogram criteria) were calculated 
from quantitative EEG signals in the delta, theta, 
alpha, beta, and gamma frequency bands. Among 
the obtained amounts in each frequency band, 
average values of the spectrogram in the alpha band 
had the maximum difference between two groups, 
and such value was chosen as a feature. Finally, this 
algorithm was able to differentiate sick and healthy 
(control group) individuals with an accuracy rate of 
96.4% [35]. 

Ahmadlou et al. [71] collected EEG signals from 
nine ASD children (6 to 13 years old, mean age of 10.8 
years), and eight non-ASD children (7 to 13 years  
old, mean age of 11.2 years) under resting eyes-
closed conditions. Then, the Higuchi’s fractal 
dimension (FD) and Katz’s fractal dimension were 
computed in all EEG subranges produced by the 
wavelet decomposition, as well as in the entire 
band-limited EEG. Significant FDs in different loci 
and different EEG subranges or band-limited EEG 
for distinguishing ASD children from non-ASD 
children were determined by ANOVA. Finally, three 
characteristics, including Katz’s fractal dimensions 
in the delta (in loci Fp2 and C3) and gamma (in 
locus T6) EEG sub-bands, were chosen among the 
extracted features by ANOVA. The EEG data are 
classified into ASD and non-ASD children groups 
using the radial basis function classifier (RBFNN). 
This classifier yielded an accuracy rate of 90.0% 

for diagnosis of ASD in three-dimensional feature 
space [71]. 

In 2011, two main studies were reported. Firstly, 
Razali et al. [72] used EEG signals from six autistic 
and six control children (each group with age around 
7 to 9 years old) under conditions of the motor 
imitation task (to clench their hands according to 
the video stimuli). A Gaussian-mixture model was 
used as a method of feature extraction for analyzing 
the brain signals in the frequency domain. Then the 
extraction data were classified using Multilayer 
Perceptron (MLP). This algorithm acquired 86.62% 
discrimination between two groups [72]. Secondly, 
Bosl et al. [73] collected an EEG database from  
79 different infants (46 high ASD-risk infants, 
HRA, and 33 controls of five age groups, 6, 9, 12, 
18, and 24 months) under resting state conditions. 
The modified Multi-Scale Entropy (mMSE) was 
extracted as a feature vector. To obtain the best 
classification, the authors examined operations of 
three types of classifiers, including KNN, Bayes, 
and SVM. The differences appeared to be greatest 
at ages 9 to 12 months. In a nutshell, infants were 
classified with above 80% accuracy into control and 
HRA groups at the age of 9 months. The classification 
accuracy for boys was close to 100% and remained 
high (70 to 90%) at the ages of 12 and 18 months. 
For girls, the classification accuracy was highest at 
the age of 6 months but declined thereafter [73]. 

Khazaal Shams et al. [74] collected EEG signals 
from six autistic children and six typical preschool/
school subjects (around 7 to 9 years old) under 
two conditions in the open-eyes state and motor 
task movement (asked to follow the right- and left-
hand movement movie). The feature extraction was 
performed by Principal Components Analysis (PCA) 
to STFT of the EEG signals. Then, MLP is used to 
classify the feature vectors. The results showed 
that the proposed algorithm gives an accuracy rate 
of 90-100% for autism and normal children in the 
motor task and around 90% with respect to detection 
of normal subjects in the open-eyes task [74]. 6

In another study, Duffy et al. [75] gathered EEG 
data from 463 children who were diagnosed with 
ASD and from 571 children considered neurotypical 
controls (ages ranging from 1 to 18 years) in the 
awake and alert states. The spectral coherence was 
calculated; then PCA of the coherence data was 
employed as an objective technique to reduce the 
variable number meaningfully. For 2- to 12-year-
old children, 40 factors of PCA showed highly 
significant intergroup differences (P < 0.0001). 
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Discriminant function analysis (DFA) was used 
for the classification, which yielded a precision 
of 88.5% for the control subjects and 86.0% for 
the individuals with ASD [75]. Alhaddad et al. 
[76] gathered EEG samples from eight children 
with ASD (5 boys and 3 girls, 10-11 years old) 
and four control children (all of them boys,  
10-11 years old) under relaxed condition. The authors 
investigated different preprocessing techniques, 
such as referencing, filtering, windsorizing, and 
scaling, to obtain the best classification accuracy. 
After preprocessing, the raw data and FFT were 
used as features. Finally, the extracted features were 
classified using Fisher Linear Discriminant Analysis 
(FLDA). It was reported that, among the applied 
preprocessing techniques, the Windsor-filtered 
data gave the best performance for both raw data  
(89.97 ± 0.02%) and FFT features (91.64 ± 0.021%) 
[76].

Evaluation Measures of the Diagnosis 
Algorithm. As was previously mentioned, the 
designed classifier in the diagnosis algorithms is 
trained by a dataset, and then the trained classifier 
is able to assign any unknown sample to either the 
ASD class or the non-ASD class. Actually, after 
the design of an algorithm, it will be examined by 
a test dataset having samples of the ASD and non-
ASD individuals already diagnosed by physicians. 
Now, the EEG signals of the individuals enter 
the algorithm (after preprocessing and feature 
extraction), and eventually the algorithm assigns 
one of the two labels (ASD and non-ASD) to the 
EEG signal. If the output of algorithm matches the 
findings of the physicians, the sample has been 
classified correctly. In other words, the algorithm 
performance is calculated as the number of test 
samples identified correctly by the algorithm to the 
total number of the test dataset. Based on the above 
finding, an important question comes to mind: On 
what size of the test dataset is the performance of 
the algorithm based? In fact, the size of the test 
dataset should be large enough until the classifier 
used can generalize the unknown samples. It seems 
that a bigger size of the test dataset gives a higher 
validation of the performance. In other words, the 
algorithm enjoys higher generalization. However, 
due to the limitations of collecting the test dataset, 
the latter is usually rather small in most researches. 
Now, another question may be raised: How we 
can achieve a high generalization algorithm in a 
limited test dataset? The cross-validation methods 
are the answer to this question. By using these 

methods in designing the diagnostic algorithm, 
a highly reliable performance could be obtained 
despite a small database. Some of these methods 
are random subsampling, k-fold, and leave one out. 
Some researchers have used these methods in their 
proposed ASD diagnostic algorithms.

CONCLUSIONS

We presented a review of the studies on ASD 
diagnosis algorithms based on EEG analysis. We 
found that the studies could be divided into two 
groups, analysis based on comparison techniques 
and analysis based on pattern recognition techniques. 
Analysis based on comparison techniques has been 
able to identify, by using statistical methods, some 
of the EEG features differing in the ASD and non-
ASD individuals. Through reviewing the data of the 
studies, we found that the results of these studies 
are dissimilar. Analysis based on pattern recognition 
techniques takes a big leap in diagnosing ASD based 
on EEG signals. In such studies, the researchers 
were able to take advantage of pattern recognition 
techniques to differentiate the brain signal patterns 
affected by ASD from those of non-ASD ones. 
The feature extraction and classification are the 
two main components in the structure of all these 
algorithms. In the feature extraction phase, various 
features with different scenarios are extracted from 
the EEG signals. Among all the extracted features, 
the ones that highlight the greatest difference 
between two groups are selected and used in 
designing the algorithm. Eventually, the classifiers 
assign a label of either ASD or non-ASD to the EEG 
signals by using the extracted features. Each one 
of the diagnostic algorithms reports a performance 
based on a test dataset. It should be noted that the 
degree of generalization and validity of a diagnostic 
algorithm depends on two factors, the size of the 
test dataset used and the type of cross-validation 
methods utilized. 
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