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AI components and principals discussed in this review are 
described below to outline their interconnected relationship 
(Table 1; Fig. 1). AI is the use of technology to simulate 
intelligence and human thought [1]. Machine learning (ML) 
is a subset of AI that uses algorithms to recognize patterns 
and learn from data [1]. Neural networks, inspired from the 
brain’s neural structure, are complex interconnected layers 
of information [1, 2]. Deep learning is a type of ML algo-
rithm that leverages neural networks to iterate its knowl-
edge base and performance [1, 3]. Similar to deep learning, 
radiomics is another approach that is often used for radio-
graphic analysis. However, it is trained with a pre-defined 
feature set that generates model variables, and the model 
can be based in linear regressions or ML algorithms [3]. 
Computer vision (CV) leverages different imaging hardware 
(like cameras and microscopes) along with ML and other 
algorithms to understand and analyze images [1]. Often, CV 
is used in radiomic feature preparation. Natural language 
processing (NLP) is a different type of AI that leverages 
ML (and deep learning) to understand and create text [4]. 

Introduction

Advanced technologies, generally under the umbrella of 
artificial intelligence (AI), are having a profound impact 
on the practice of medicine and particularly with neuro-
oncological patient care. A brief definition of the different 
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Abstract
Purpose Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report 
reviews the cutting-edge technologies impacting tumor treatment and outcomes.
Methods A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing 
AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for 
neurosurgical care of brain or spinal tumors.
Results Treatment of central nervous system (CNS) tumors is being improved through advances across AI—such as AL, CV, 
and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated 
tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide 
histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgi-
cal simulations, can enhance training feedback and regimens.
Conclusion While limited generalizability, bias, and patient data security are current concerns, the advent of federated learn-
ing, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in 
the future.
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Augmented reality (AR) superimposes virtual informa-
tion into the real world, while virtual reality (VR) creates 
an entirely new world [5]. Importantly, both AR and VR 
systems utilize AI, including ML and CV, to process and 
construct these environments [5]. Collectively, these differ-
ent tools are dramatically improving medicine, especially 
within neuro-oncology.

The innovative nature of neurosurgery, along with the 
recent computing advances discussed above, has led to 
further clinical integration of impactful AI tools. Brain and 
spinal tumor treatment, in particular, has benefitted from 
platforms powered by ML, CV, and AR/VR. From pre-
operative prognostication and planning to intra-operative 
pathologic identification and post-operative surgical feed-
back, AI is enhancing patient care at every step of neuro-
oncologic treatment (Fig. 2). Moreover, AR/VR platforms 
are creating immersive surgical training supplements, with 
real-time feedback. In this review, we discuss AI tools cur-
rently improving the field of surgical neuro-oncology.

Preoperative care

A diagnosis of a Central Nervous System (CNS) tumor 
can be challenging for patients and their families. The ini-
tial patient encounter, including obtaining a diagnosis and 
prognosticating likely outcomes, helps shape the patient’s 
experience with the healthcare system and can guide their 
medical decisions. AI is improving this process through har-
nessing tremendous quantities of data–nearly 1/3 of all data 
in the world is in the electronic health record (EHR)–and 
finding associations with pathology and outcomes [6, 7].

Leveraging AI has improved non-invasive, imaging-
based diagnosis of CNS tumors, which benefits from rapid, 
early identification and treatment. Radiomics is a quanti-
tative approach using AI to extract features, or variables, 
from radiographic images and to use these features to 
build predictive models [3]. In cranial imaging, multiple 
studies have demonstrated that radiomic approaches can 

Table 1 Defining relevant AI concepts
Term Definition
Artificial Intelligence (AI) The use of technology to simulate intelligence and human thought [1]
Machine Learning (ML) A subset of AI that uses algorithms to recognize patterns and learn from data [1]
Deep Learning A type of ML algorithm based in neural networks to iterate knowledge base and model performance [1, 3]
Neural Networks Complex, interconnected nodes of information and algorithms inspired by the brain’s neural structure [1, 2]
Computer Vision (CV) Computerized image analysis that leverages AI, including ML, along with other image capturing hardware 

(cameras, microscopes, etc.) [1]
Radiomics An approach to radiographic analysis that harnesses pre-defined feature sets to generate variables, which 

can power linear regressions or ML models (including deep learning models) [3]
Natural Language Processing 
(NLP)

A type of AI that utilizing ML, including deep learning, to analyze language and create text [4]

Augmented Reality (AR) A process that utilizes AI, including ML and CV, to superimpose virtual information into the real world [5]
Virtual Reality (VR) Like AR, VR also uses ML and CV to create an entirely new, virtual world [5]

Fig. 2 AI technologies influence care in a variety of ways throughout a 
neuro-oncological patient’s experience, from their pre-operative visits 
to their surgery and beyond

 

Fig. 1 AI is a broad term with many interconnected concepts. While 
machine learning (ML) and natural language processing (NLP) are 
separate fields, they both leverage tools from each other, including 
deep learning (DL). Similarly, computer vision (CV) utilizes ML and 
DL but also many tools outside of the AI umbrella
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recognize radiographic abnormalities much more quickly 
and accurately than radiologists [8–10]. In oncology, these 
approaches for imaging analysis can identify genetic abnor-
malities and extract predictive information with a high 
degree of accuracy [11]. Using this approach, Pease and 
Gersey et al. employed the Maximum Relevance Mini-
mum Redundancy technique to identify the most relevant 
glioblastoma features to build a robust predictive pipeline, 
which estimates MGMT methylation, EGFR amplification, 
and molecular subgroup [11]. Differentiating tumor patholo-
gies with radiomic models can help predict overall survival 
and accurately detail tumor genetics [11–13].

While radiomic MRI analysis benefits from expert 
level feature identification, this process requires a higher 
time commitment, and deep learning is a more automated 
approach [11, 14]. Allowing the computer to learn on its 
own, even identifying features unnoticeable to the human 
eye, has similarly resulted in powerful pre-operative genetic 
predictions. Cluceru et al. employed this approach to develop 
a glioma subtype classifier [15]. This model leveraged tradi-
tional T2 images with diffusion weighted images to concur-
rently evaluate for IDH mutations and 1p19q codeletions 
[15]. In a similar approach, Shu et al. identified Ki-67 to 
predict aggressive pituitary adenoma invasiveness [16]. 
This information can dictate treatment by better outlining 
available targeted therapies and surgical need. Applying a 
deep-learning strategy beyond primary tumors, Grossman et 
al. distinguished between metastasized small cell and non-
small cell cancers [17]. Since small cell cancer is usually 
more aggressive but not typically surgically treated, bet-
ter differentiating it from non-small cell cancer can vastly 
alter patient care [17]. Indeed, both radiomics-based and 
deep learning-based MRI analysis provide a non-invasive, 
pre-operative characterization of primary and metastasized 
tumors that leads to better treatment.

Beyond tumor classification, AI tools have led to accu-
rate prognostic models. These models are needed to guide 
clinical care, appropriately treating those with a chance for 
favorable outcomes and avoiding unnecessary or painful 
procedures with little chance for a prolonged quality of life. 
ML and neural network models–through capturing com-
plex, nonlinear relationships and interaction effects in large 
datasets–can improve predictions compared to traditional 
statistical techniques in oncology patients. For example, 
in brain metastasis patients treated with stereotactic radio-
surgery, Oermann et al. demonstrated neural network mod-
els with common clinical data such as gender, tumor type, 
and performance status significantly outperformed regres-
sion approaches by nearly ten points in the area under the 
receiver operating curve [18]. Other models, such as the one 
developed by Muhlestein et al. to identify high risk patients 
or those likely to have nonhome discharge, may assist with 

preoperative counseling and medical optimization [19]. In 
one of the largest efforts to date, ML models outperformed 
clinical oncologists predicting 3-month mortality in a multi-
institutional cohort of thousands of patients with metastatic 
cancer [20]. Here, Zachariah et al. used traditional clinical 
variables easily obtainable in the EHR to build this model 
with a tree boosting approach [20].

Unfortunately, manual EHR analysis can be tedious. 
Thus, large language models—using similar techniques to 
ChatGPT—offer the promise to harness the complex data 
stored in free text clinical notes. Jiang et al. demonstrated 
that NLP algorithms could successfully predict a variety of 
relevant hospital tasks including disposition, comorbidi-
ties, and increased length of stay in an “all purpose predic-
tion engine” [21]. Within oncology, Muhlestein et al. and 
Nunez et al. used this approach to successfully improve 
nonhome discharge and survival prediction from patient 
notes [4, 22]. One benefit of these NLP approaches is the 
relatively simple aspect of data extraction from the EHR [4, 
22]. Future approaches will utilize multiple data sources to 
help guide the patient course from diagnosis to prognosis. 
For example, Pease and Gersey et al. developed a ‘report 
card’ that packaged likely diagnoses, genetic alterations, 
and survival curves in a clinically applicable tool [11]. 
Applications such as this can provide more information to 
providers, so that they are best prepared to guide potential 
conversations with patients and their families, should they 
seek more information on their clinical course [11]. As data 
availability increases, these pre-operative tools will lead to 
objective prognostication and optimal treatment plans that 
can improve patient care.

Surgical planning

Advances in CV were amongst the first AI methods to be uti-
lized in the clinical space, and these have shown great prom-
ise for planning of intervention and following treatment 
response. This has been especially apparent in stereotactic 
radiosurgery (SRS) thanks to sophisticated segmentation 
algorithms such as the U-net [23]. Recently, Lu et al. used 
computer vision to automatically identify tumor borders in 
several different pathologies [24]. This improved contour-
ing accuracy—especially for inexperienced clinicians—and 
improved efficiency by roughly 30%. In a cohort of patients 
with only brain metastases, Bousabarah et al. had similar 
segmentation accuracy but model performance was limited 
somewhat by lesion size [25]. Performing similar to expert 
clinicians, Hsu et al’s automated ML pipeline was able to 
track treatment response [26]. Additionally, similar results 
were obtained from Peng et al. in the pediatric brain tumor 
population [27]. Using MRIs from pediatric patients with 
medulloblastoma and high-grade gliomas, the authors were 
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a convolutional neural network on SRH tumor data [33]. In 
less than three minutes, this comprehensive clinical pipeline 
can provide expert-level tumor analysis of pathologic diag-
nosis and grade during surgery [32, 33].

Compared to histological analyses, molecular-level 
tumor classification historically required days to weeks for 
complete analysis, which can provide critical tumor sub-
type information, like MGMT methylation or IDH muta-
tions. Nanopore DNA sequencing is a rapid technique that 
has accelerated DNA methylation profile determination, but 
unfortunately large nanopore-based datasets are nonexistent 
[30]. To overcome this limitation, Vermeulen et al. devel-
oped stimulated nanopore data to train their neural network 
classifier, Sturgeon [30]. This approach allows Sturgeon to 
perform a methylation analysis intra-operatively and clas-
sify tumor subtypes in less than 90 min [30].

Analysis pipelines harnessing ML have made histologi-
cal and molecular-based tumor identification readily avail-
able within the typical surgical window. However, neural 
network-based classification is limited by tissue quality [30, 
32, 33]. While these tools are readily compatible in clini-
cal settings, the quantity and purity of tumor in resected tis-
sue samples directly influences performance [30, 32, 33]. 
With reasonable hardware requirements for clinical imple-
mentation, this approach can provide a critical supplement 
when neuropathologists are not readily available [30, 32, 
33]. Ultimately, ML based tumor classification produces an 
accurate, rapid tumor diagnosis, which can positively direct 
surgical decision-making and improve patient outcomes.

Surgical skills training and evaluation

Surgical skills are constantly developed and refined through 
a surgeon’s career. Traditionally, graduated constructive 
feedback has been the predominant form of learning via a 
model that is driven by mentored, direct verbal feedback 
[34–36]. Substantial variability in the effectiveness of this 
approach is a major limitation to efficient training. The 
evaluation of surgical skills and improvement of training 
regimens may be augmented through novel applications of 
AI, including ML and AR/VR systems. Modern algorithms 
have emerged as powerful tools that may one day be suited 
to power personalized training and performance evaluation 
in surgical practices [37–40]. These technologies can ana-
lyze vast datasets of surgical procedures, identify patterns, 
and optimize training regimens to suit individual learning 
curves [37–40]. AI-driven simulations provide realistic sce-
narios, enabling surgeons to hone their skills in a risk-free 
environment [38]. Additionally, Kiyasseh et al. have used 
ML algorithms to assess a surgeon’s performance, offering 
constructive feedback and facilitating continuous improve-
ment [40].

able to achieve excellent segmentation of tumors both pre- 
and post-operatively. This allowed for less variability in 
assessing treatment response in this challenging group of 
patients. For a more thorough discussion of the use of AI in 
SRS, see the recent review by Lin et al. [28].

The aforementioned progress in tumor segmentation has 
also greatly aided planning of neurosurgical tumor resec-
tions. For example, Musigmann at al manually extracted 
107 features from T1 post contrast MRIs and trained a ML 
model on just these features to predict the likelihood of 
gross total resection, which can influence the use of surgical 
adjuncts like 5-aminolevulinic acid or other intra-operative 
imaging tools [14]. Importantly, the models used had a level 
of interpretability that allowed the researchers to determine 
what features were most predictive of gross total resection, 
which included expected variables such as tumor location 
and shape [14]. While such studies show the potential for AI 
to help guide surgical planning, even more exciting work is 
being done on automating surgery itself. Currently in devel-
opment by Tucker et al. is one such tool that uses a robotic 
laser system to resect brain tumor tissue [29]. It makes use 
of fluorescence to construct an AI model to help guide the 
laser to areas of tumor tissue while also incorporating com-
puter vision to help the operator optimize areas for resection 
[29]. Although the development of these systems is still in 
its infancy, AI methods are set to potentially revolutionize 
surgical interventions for brain tumors.

Intra-operative pathologic classification

While pre-operative tumor genetic predictions aid surgical 
planning, these predictions are commonly confirmed intra-
operatively. A definitive genetic identification is typically 
made in collaboration with a neuropathologist, which can 
be laborious, time-intensive, and subject to variability; how-
ever, this information can have a rapid impact on surgical 
outcomes. For example, optimal tumor resection goals can 
vary between different spinal cord lesions, specific glioma 
subtypes, and teratoid rhabdoid tumors, which benefit from 
definitive tumor identification during surgery [30]. Even 
since the 1990s, neurosurgical teams have harnessed arti-
ficial neural networks to enhance identification speed and 
objectivity [31]. Two recent applications of neural net-
works provide substantial improvements to histological and 
molecular tumor identification.

Leveraging advanced microscopy techniques, Orringer 
et al. introduced a rapid method for tumor imaging, coined 
stimulated Raman histology (SRH). This technique, which 
mimics traditional Hematoxylin and Eosin (H&E) histol-
ogy without requiring staining, allows for tissue structure 
visualization at a microscopic level [32]. Hollon et al. fur-
thered this approach to build a novel clinical tool by training 
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46]. While ‘de-facing’ methods exist for altering MRIs, they 
do not completely protect patients and introduce potential 
artifacts that influence standard MRI analysis [45]. There-
fore, it is important for increased discussion on effective 
patient consent before including their imaging in larger 
databases. Along with the continued development of more 
effective de-identification protocols for data, increased data 
privacy standards are necessary to facilitate patient protec-
tion with growing accessibility to patient data.

Future

Data consortiums are a growing avenue for centralized cre-
ation and dissemination of large, tumor specific datasets. 
Multi-institutional consortiums, like ReSPOND (Radiomics 
Signatures for PrecisiON Diagnostics) for glioblastomas 
and GLASS (Glioma Longitudinal Analysis) for gliomas, 
have helped create standardized, comprehensive molecular 
and imaging datasets [47, 48]. Likewise, the Brain Tumor 
Image Segmentation (BraTS) Challenge is a global compe-
tition that makes large MRI datasets widely available and 
encourages continuous model improvement and evalua-
tion [44]. However, top performing algorithms tended to 
be isolated to a particular brain region, tumor size, and/or 
image quality, indicating there is still substantial room for 
widely generalizable tumor segmentation models [43, 44]. 
Indeed, many contextual differences exist across health sys-
tems, conditions, and patient populations, which increases 
the complexity of broadly implemented AI tools. Federated 
learning–where models are shared and updated at different 
institutions without centralized sharing of data–has emerged 
as a paradigm to safely enhance training without increased 
data risk [49]. This approach helps expose models more 
broadly to diverse data, and along with expanded central-
ized datasets, has led to vastly improved generalizability of 
AI tools [49].

Robust AI systems promise to revolutionize neuro-onco-
logical treatment through accurate patient prognostication, 
rapid tumor segmentation and histopathologic identifica-
tion, and real-time objective feedback. With growing datas-
ets and increased collaboration for federated learning, these 
tools will become more effective and clinically integrated. 
Even now, re-emergence of glioblastomas following initial 
treatment is predicted with MRI analysis [50–52]. As these 
models improve, the capability to predict future tumor loca-
tions and emergence will drive improved preemptive care. 
Ultimately, these toolkits along with other AI based tools 
will lead to holistic, optimized outcomes and enhance the 
ability of neurosurgeons to treat patients with these chal-
lenging diseases.

Acknowledgements Thank you to Philip Walker for his guidance dur-
ing the literature search for this review.

AR/VR systems are only starting to become more avail-
able with advanced interfaces that are integrated into sur-
gical fields. By providing a low-risk interface for both the 
creation and simulation of surgical tasks, VR environments 
are an increasingly important medium for surgical training. 
In their systematic review, Chan et al. identified 33 virtual 
reality systems that simulated multiple surgical procedures 
while also providing objective feedback, such as force, 
kinematics, distance to target, and other biologic outcomes 
(surgical time, blood loss, volume resected) [38]. This auto-
mated objective feedback allows for the methodical assess-
ment of skills and evaluation of the skill level between users 
(i.e. resident versus attending) [38].

Integrating these technologies within surgical training 
enhances technical skills with the future promising more 
sophisticated simulations and personalized training mod-
ules. The collaboration between medical professionals and 
technology experts is poised to reshape the paradigm of 
surgical education, ensuring that practitioners are equipped 
with the most advanced skills to deliver optimal patient 
outcomes.

Pitfalls

Despite the promise of AI tools to improve neuro-oncolog-
ical care and training, they are limited to the effectiveness 
of their training. A model or platform reflects their underly-
ing data, and unfortunately, many novel AI tools exist with 
underlying bias [41]. While this bias is commonly related to 
racial, ethnic, or socioeconomic factors, there is also risk of 
small or skewed datasets leading to sampling bias [41–43]. 
Since it is difficult to understand how many machine learn-
ing algorithms reach a decision (i.e. they may be considered 
‘black boxes’), it can be challenging to ensure algorithms 
properly reflect the role that social health determinants play 
in care and outcomes [41, 42]. Though larger, more robust 
datasets are slowly emerging in neuro-oncology, most mod-
els are still reliant on smaller, potentially unbalanced data-
sets [14–17, 30, 44]. Therefore, creating robust tools can 
be more challenging, as algorithms can be susceptible to 
anomalies, which may worsen their generalizability. Data 
quality, similarly, varies greatly worldwide and is often 
worse in under-resourced countries, reducing the accuracy 
of AI tools trained exclusively on higher quality inputs [43]. 
Continued efforts to debias AI–with bias mitigation prepro-
cessing, with careful external validation, and with larger, 
more representative datasets–will be crucial for widespread 
clinical efficacy [41, 42].

Advances in AI are not healthcare exclusive, and innova-
tions have also increased the possibility of exploitation. For 
example, working backwards from cranial MRIs, Schwarz 
et al. reconstructed facial images for patient recognition [45, 
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