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Abstract
Purpose  There is lack of comprehensive analysis evaluating the impact of clinical, molecular, imaging, and surgical data 
on survival of patients with gliomatosis cerebri (GC). This study aimed to investigate prognostic factors of GC in adult-type 
diffuse glioma patients.
Methods  Retrospective chart and imaging review was performed in 99 GC patients from adult-type diffuse glioma (among 
1,211 patients; 6 oligodendroglioma, 16 IDH-mutant astrocytoma, and 77 IDH-wildtype glioblastoma) from a single institu-
tion between 2005 and 2021. Predictors of overall survival (OS) of entire patients and IDH-wildtype glioblastoma patients 
were determined.
Results  The median OS was 16.7 months (95% confidence interval [CI] 14.2–22.2) in entire patients and 14.3 months (95% 
CI 12.2–61.9) in IDH-wildtype glioblastoma patients. In entire patients, KPS (hazard ratio [HR] = 0.98, P = 0.004), no 1p/19q 
codeletion (HR = 10.75, P = 0.019), MGMTp methylation (HR = 0.54, P = 0.028), and hemorrhage (HR = 3.45, P = 0.001) 
were independent prognostic factors on multivariable analysis. In IDH-wildtype glioblastoma patients, KPS (HR = 2.24, 
P = 0.075) was the only independent prognostic factor on multivariable analysis. In subgroup of IDH-wildtype glioblastoma 
with CE tumors, total resection of CE tumor did not remain as a significant prognostic factor (HR = 1.13, P = 0.685).
Conclusions  The prognosis of GC patients is determined by its underlying molecular type and patient performance status. 
Compared with diffuse glioma without GC, aggressive surgery of CE tumor in GC patients does not improve survival.
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Introduction

Gliomatosis cerebri (GC) is defined as a diffuse glioma that 
exhibits an infiltrative growth pattern affecting at least three 
lobes of the brain while grossly maintaining the underly-
ing normal brain architecture [1, 2]. Initially recognized as 

a distinct tumor type in the 2007 World Health Organiza-
tion (WHO) classification, GC was later excluded in the 
subsequent 2016 and 2021 WHO classifications, due to the 
integrated diagnostic approach incorporating molecular 
genetics [3, 4]. Currently, GC is considered as a growth pat-
tern within various types of diffuse gliomas, rather than a 
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distinct pathological entity. However, the incidence of GC 
is relatively higher than anticipated, occurring in up to 8.2% 
of adult-type diffuse gliomas, and individuals with GC gen-
erally exhibit poorer prognosis when compared to diffuse 
glioma of corresponding tumor type [5].

Despite its relatively high incidence and poor prognosis, 
there is a lack of comprehensive evaluation on prognostic 
factors of adult-type diffuse glioma patients with GC. Pre-
vious investigations on prognostic factors of GC were con-
ducted prior to the 2021 WHO classification. Majority of 
these studies did not reflect molecular information of adult-
type diffuse gliomas and compared different tumor types 
which are now biologically distinct and separate tumors 
[6, 7], while other population-based studies on GC lacked 
information of tumor types [8]. Moreover, previous stud-
ies have not adequately addressed the recent paradigm shift 
concerning the extent of resection (EOR) in gliomas [9]. 
Specifically, these studies have failed to distinguish between 
contrast-enhancing (CE) and non-enhancing (NE) tumors, 
thereby overlooking potential differences in survival out-
comes associated with the resection of CE or NE tumors. 
Although achievement of supramaximal resection (addi-
tional removal of NE tumors along with total resection of CE 
borders) is not feasible in GC due to its diffusely infiltrative 
nature, total resection of CE tumor is sometimes feasible in 
GC patients. Nevertheless, the impact of total resection of 
CE tumor remains unclear in GC patients.

In this study, we conducted a comprehensive analysis 
incorporating clinical, molecular, imaging and surgical data 
in GC patients to investigate independent prognostic factors.

Methods

Study population and demographic data

The study was conducted retrospectively, and informed 
consent from the patients were waived by the institutional 
review board of our institution (Approval no.: 4–2023-0045). 
From January 2005 to December 2021, a total of 1,473 adult 
patients diagnosed with diffuse glioma from our institution 
were initially recruited for this study.

Inclusion criteria comprised: 1) grade 2 to 4 diffuse glio-
mas confirmed by histopathology, 2) known IDH mutation, 
1p/19q codeletion, and O6-methylguanine-DNA methyl-
transferase promoter (MGMTp) methylation status, and 3) 
aged ≥ 18 years. Exclusion criteria included: 1) not fulfill-
ing the radiologic and/or histologic diagnostic criteria for 
GC (n = 1,112), 2) lack of diagnostic information necessary 
to assign a specific WHO diagnosis, leading to diagnosis 
of IDH-wildtype diffuse glioma, not otherwise specified 

(n = 112), 3) diagnostic work-up results not readily allowing 
a WHO diagnosis, despite successful performance of diag-
nostic testings, leading to diagnosis of IDH-wildtype dif-
fuse glioma, not elsewhere classified (n = 21), 4) follow-up 
loss within 3 months (n = 93), and 5) presence of H3 K27M 
alteration in midline-located tumors, leading to diagnosis of 
diffuse midline glioma, H3 K27-altered (n = 36).

A total of 99 patients with GC were included as our study 
cohort. Figure 1 shows the patient flowchart.

Molecular analysis

All patients were diagnosed according to the 2021 WHO 
classification [4]. Both innumohistochemical (IHC) analy-
sis and peptide nucleic acid-mediated clamping polymer-
ase chain reaction (PCR) were performed to detect IDH1/2 
mutation. In IDH1/2-negative patients on IHC analysis, 
IDH1/2 status was confirmed by PCR. MGMTp methyla-
tion was evaluated by methylation-specific PCR. Fluores-
cent in situ hybridization analysis was performed to detect 
1p/19q codeletion. All patients underwent evaluation for 
IDH1/2 mutation, 1p/19q co-deletion, and MGMTp meth-
ylation status.

ATRX loss and p53 expression were assessed by IHC 
analysis. ATRX loss was defined as less than 10% expres-
sion of positive tumor cells and more than 50% of nuclei 
stained for p53 was considered positive expression for p53. 
The presence of H3 K27M mutant protein was evaluated 
in midline located tumors. TERTp (telomerase reverse 
transcriptase promoter) mutation (C228T and C250T) was 
determined using a pyrosequencing assay. Since 2015, tar-
geted next-generation sequencing (NGS) was performed 
using Illuminal Trusight Tumor 170 panel including EGFR 
gene amplification and chromosome + 7/-10 [10, 11].

In 32 (32.3%) patients, IDH mutation status was deter-
mined based on IHC and PCR results without targeted NGS 
results. ATRX loss, p53 protein expression, TERTp muta-
tion, EGFR amplification, chromosome + 7/-10, and TP53 
information were available in 88 (88.9%), 70 (70.7%), 81 
(81.8%), 71 (71.7%), 39 (39.4%) and 68 (68.7%) patients, 
respectively.

MRI Protocol

Preoperative and postoperative brain magnetic resonance 
images (MRI) including T1-weighted, T2-weighted, fluid-
attenuated inversion recovery (FLAIR), post-contrast 3D 
T1-weighted images, post-contrast FLAIR and diffusion 
weighted images were acquired in a 3-T unit (Achieva or 
Ingenia; Philips Healthcare). Detailed parameters for MRI 
protocols are listed in Supplementary Material S1.
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Imaging analysis

GC was defined in cases in which radiological and/or pathologi-
cal findings were present: 1) T2-weighted and FLAIR images 
showing diffuse infiltration of tumor involving three or more 
consecutive lobes with relative preservation of the underlying 
anatomical architecture, and 2) pathological analysis confirming 
glial cell proliferation indicative of an infiltrative glioma [12].

Baseline preoperative MRIs were reviewed by two neuroradi-
ologists (Y.W.P. and S.S.A., with 11 and 18 years of experience) 
in consensus. In preoperative MRI, the type of GC (either type 
1 or type 2), location (supratentorial or infratentorial), presence 
of contrast enhancement, necrosis, hemorrhage, cystic change, 
presence of diffusion restriction, leptomeningeal metastases, 
and proportion of CE tumor > 5% were labeled. Type 1 GC 
encompassed gliomas characterized as GC without a discern-
able CE mass, while type 2 GC comprised of GC with formation 
of a discrete CE mass, according to the previous criteria [2].

Evaluation of extent of resection (EOR)

Bi-dimensional perpendicular measurement of the CE 
and NE tumor was performed in baseline and immediate 

postoperative imaging taken within 48  h. The EOR of 
CE and NE tumors was each labeled as either gross total 
removal (GTR) or non-GTR, and further categorized as GTR 
of both CE and NE tumors, GTR of CE tumor and non-
GTR of NE tumor, non-GTR of both CE and NE tumor, 
and biopsy reflecting recent recommendations integrating 
gliomas with or without contrast enhancement [13, 14].

Clinical data analysis

Clinical data including age, sex, date of diagnosis, initial Kar-
nofsky performance status (KPS), date of death or last follow-up 
were collected from the electronic medical record. All patients 
underwent adjuvant treatment conforming to the recommended 
guideline according to each tumor type [15, 16]. In case of radio-
therapy, radiation fields included the extent of gliomatosis cer-
ebri. Overall survival (OS) was defined as the duration from the 
initial surgery until death or last follow-up date.

Statistical analysis

Univariable and multivariable Cox proportional hazards 
regression modeling for OS was performed in the entire GC 

Fig. 1   Patient flowchart. GC = gliomatosis cerebri; IDH = isocitrate dehydrogenase; MGMTp = O6-methylguanine-DNA methyltransferase pro-
moter; NOS = not otherwise specified; NEC = not elsewhere classified
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patients and subgroup of GC patients with IDH-wildtype 
glioblastoma. Variables of interest on the univariable Cox 
proportional hazards regression models (P < 0.05) were 
included in the multivariable Cox proportional hazards 
regression modeling using backward elimination according 
to the likelihood ratio. Subgroup analyses was additionally 
performed in GC patients with CE tumor portion in IDH-
wildtype glioblastoma, to determine if GTR of CE tumor 
improves survival. Survival rates were determined using the 
Kaplan–Meier method and curves which were compared 
using the log-rank test. For continuous variables, the cutoff 
point for Kaplan–Meier plots was determined using sur-
vMisc package. Statistical significance was set at P < 0.05. 
The data was analyzed using R version 4.3.2 including sur-
vMisc package [17, 18].

Results

Patient characteristics

Among 1,211 adult-type diffuse glioma patients, 99 
adult-type diffuse glioma patients with GC (age range 
18–89 years, 45 females and 54 males) were included. The 
median follow-up period was 54.0 months (95% confidence 
interval [CI] 33.2–121.1). Majority of the tumor types were 
IDH-wildtype glioblastomas (n = 77, 77.8%), followed by 
IDH-mutant astrocytomas (n = 16, 16.2%) and oligoden-
drogliomas (n = 6, 6.0%). GTR of both CE and NE tumors 
was not achieved in any of the patients due to the extensive 
infiltrative nature of GC. All patients underwent standard 
treatment according to the molecular type and grade [15]. 
The detailed patient characteristics of the study cohort are 
summarized in Table 1.

Survival analysis in entire GC patients

The median OS was 16.7 months (95% CI 14.2–22.2) in 
entire patients. On univariable analysis, older age, sex, 
higher KPS, CNS WHO grade 4, IDH-wildtype, no 1p/19q 
codeletion, MGMTp methylation, GC type 2, presence of 
contrast enhancement, proportion of CE tumor > 5%, necro-
sis, diffusion restriction, cystic change, and hemorrhage were 
significant predictors of OS. On multivariable Cox analysis, 
higher KPS (HR = 0.98, P = 0.004), no 1p/19q codeletion 
(HR = 10.75, P = 0.019), MGMTp methylation (HR = 0.54, 
P = 0.028), and hemorrhage (HR = 3.45, P = 0.001) remained 
as independent prognostic factors. The univariable and 
multivariable Cox analysis results are show in Supplmen-
tary Table 1. Figure 2 shows the Kaplan-Meir curves in 
entire GC patients according to molecular type of tumors 

(log-rank test, P < 0.001). Figure S1 shows Kaplan-Meir 
curves in entire GC patients according to KPS (log-rank 
test, P = 0.001), 1p/19q codeletion (log-rank test, P = 0.001), 

Table 1   Characteristics in the adult-type diffuse glioma patients with 
GC

CE = contrast-enhancing; CI = confidence interval; EGFR = epidermal 
growth factor receptor; EOR = extent of resection; GC = gliomato-
sis cerebri; GTR = gross total removal; IDH = isocitrate dehydroge-
nase; IQR = interquartile range; KPS = Karnofsky performance scale; 
MGMTp = O6-methylguanine-methyltransferase promoter; NE = non-
enhancing; OS = overall survival; TERTp = telomerase reverse tran-
scriptase promoter; WHO = World Health Organization

Characteristics Patients with GC (n = 99)

Clinical findings
  Age at diagnosis, years (95% CI) 57.4 (28.7–73.5)
  Sex (female) 45 (45.5)
  KPS (IQR) 80 (50–90)

Histopathological and Molecular findings
  WHO grade
    Grade 2 12 (12.1)
    Grade 3 9 (9.1)
    Grade 4 78 (78.8)
  Molecular classification
    Oligodendroglioma 6 (6.0)
    IDH-mutant astrocytoma 16 (16.2)
    IDH-wildtype glioblastoma 77 (77.8)
  Other molecular markers
   IDH mutation 22 (22.2)
   1p/19q codeletion 8 (8.1)
   MGMTp methylation 41 (41.4)
   TERTp mutation, present/tested 68/81 (84.0)
   EGFR amplification, present/tested 14/71 (19.7)
   Chromosome + 7/-10, present/tested, 3/39 (7.7)
   TP53 mutation, present/tested, 20/68 (29.4)
   ATRX loss, present/tested 23/88 (26.1)
   p53 protein expression, present/tested 16/70 (22.9)

MRI findings
GC type

  GC type 1 22 (22.2)
  GC type 2 75 (75.8)
  Infratentorial location 3 (3.0)
  Presence of contrast enhancement 83 (84.8)
  Presence of necrosis 70 (70.7)
  Leptomeningeal metastases 14 (14.1)

EOR
  GTR of both CE and NE tumors 0 (0)
  GTR of CE and non-GTR of NE 

tumors
36 (36.4)

  Non- GTR of both CE and NE tumors 44 (44.4)
  Biopsy 19 (19.2)

Death 65 (65.7)
Median OS (95% CI) 16.7 (14.2–22.2)
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MGMTp methylation (log-rank test, P = 0.005), and hemor-
rhage (log-rank test, P < 0.001).

Survival analysis in GC patients with IDH‑wildtype 
Glioblastoma

The median OS was 14.3 months (95% CI 12.2–61.9) in 
IDH-wildtype glioblastoma patients. On univariable analy-
sis in GC patients with IDH-wildtype glioblastoma (n = 77), 

older age, higher KPS, presence of CE tumor, proportion of 
CE tumor > 5%, diffusion restriction, and hemorrhage were 
significant predictors of OS. On multivariable analysis, high 
KPS (HR = 0.98, P = 0.042) was the only independent prog-
nostic factor for OS. The univariable and multivariable Cox 
analysis results are show in Table 2. Figure 3(a) shows the 
Kaplan-Meir curve in GC patients with IDH-wildtype glio-
blastoma according to KPS (log-rank test, P = 0.027).

Fig. 2   Kaplan–Meier curve for 
overall survival of entire GC 
patients based on molecular 
type of tumor. CI = confidence 
interval; IDH = isocitrate dehy-
drogenase; OS = overall survival

Table 2   Univariable and 
multivariable cox analyses of 
risk factors for stratifying OS 
in IDH-wildtype glioblastoma 
patients with GC

CE = contrast-enhancing; CI = confidence interval; EOR = extent of resection; GC = gliomatosis cerebri; 
GTR = gross total removal; HR = hazard ratio; KPS = Karnofsky Performance Scale; MGMTp = O6-methyl
guanine-methyltransferase promotor; NE = non-enhancing; OS = overall survival

Variables Univariable Multivariable

HR (95% CI) P HR (95% CI) P

Clinical findings
  Older age 1.04 (1.02–1.06) 0.001 1.02 (1.00–1.05) 0.092
  Sex (female) 0.90 (0.68–1.18) 0.435
  Higher KPS 0.98 (0.96–0.99) 0.004 0.98 (0.97–1.00) 0.042

Molecular findings
  MGMTp methylation 1.01 (0.57–1.77) 0.986

MRI findings
  GC type 2 2.45 (0.88–6.80) 0.086
  Infratentorial location 0.97 (0.29–3.20) 0.959
  Presence of CE tumor 4.77 (1.16–19.67) 0.031 - -
  Proportion of CE tumor > 5% 4.59 (1.40–15.03) 0.012 - -
  Necrosis 2.00 (0.94–4.27) 0.072
  Diffusion restriction 3.50 (1.09–11.26) 0.035 - -
  Cystic change 0.83 (0.11–6.05) 0.855
  Hemorrhage 3.09 (1.36–7.04) 0.007 2.24 (0.23–5.41) 0.075
  Leptomeningeal metastases 1.12 (0.50–2.48) 0.786

EOR 0.726
  GTR of CE and non-GTR of NE tumor Reference -
  Non-GTR of both CE and NE tumors 1.00 (0.54–1.84) 0.324
  Biopsy 1.29 (0.65–2.57) 0.382
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On univariable analysis of subgroup of IDH-wildtype 
glioblastoma patients with CE tumor (n = 69), older age 
and higher KPS were significant predictors of OS. On mul-
tivariable analysis, higher KPS (HR = 0.98, P = 0.044) was 
the only independent prognostic factor for OS. Of note, 
EOR showed no significant association with OS (Table 3, 
P = 0.168; HR = 1.21, P = 0.541 for non-GTR of both CE 
and NE tumors, HR = 2.03, P = 0.060 for biopsy, reference 

group as GTR of CE and non-GTR of NE tumors). The 
median OS were 15.6 (95% CI 11.6–61.9), 12.8 (95% CI 
11.1–45.5), and 11.2 (95% CI 3.3–15.5) months for GTR 
of CE and non-GTR of NE tumor, non-GTR of both CE 
and NE tumors, and biopsy, respectively (log-rank test, 
P = 0.157). Figure 3(b) shows the Kaplan–Meier curve 
in GC patients with IDH-wildtype glioblastoma and CE 
tumor according to EOR.

Fig. 3   a Kaplan–Meier curve for overall survival of GC patients with 
IDH-wildtype glioblastoma based on KPS. b Kaplan–Meier curve 
for overall survival of GC patients with IDH-wildtype glioblastoma 
and contrast enhancement based on EOR. CE = contrast-enhancing; 

CI = confidence interval; EOR = extent of resection; GC = glioma-
tosis cerebri; GTR = gross total resection; IDH = isocitrate dehydro-
genase; KPS = Karnofsky Performance status; NE = non-enhancing; 
OS = overall survival

Table 3   Univariable and 
multivariable cox analysis of 
risk factors for stratifying OS 
in subgroup of IDH-wildtype 
glioblastoma patients with GC 
and contrast enhancement

CE = contrast-enhancing; CI = confidence interval; EOR = extent of resect; GC = gliomato-
sis cerebri; GTR = gross total removal; HR = hazard ratio; KPS = Karnofsky Performance Scale; 
MGMTp = O6-methylguanine-DNA methyltransferase promoter; NE = non-enhancing; OS = overall sur-
vival

Variables Univariable Multivariable

HR (95% CI) P HR (95% CI) P

Clinical findings
  Older age 1.03 (1.00–1.05) 0.032 1.01 (0.99–1.04) 0.066
  Sex (female) 0.80 (0.46–1.39) 0.435
  Higher KPS 0.98 (0.96–1.00) 0.036 0.98 (0.96–1.00) 0.044

Molecular findings
  MGMTp methylation 0.74 (0.42–1.31) 0.306

MRI findings
  Infratentorial location 0.77 (0.23–2.62) 0.680
  Necrosis 1.08 (0.46–2.56) 0.852
  Diffusion restriction 1.05 (0.14–7.65) 0.962
  Cystic change 0.74 (0.10–5.37) 0.761
  Hemorrhage 2.30 (0.88–6.02) 0.090
  Leptomeningeal metastases 0.97 (0.43–2.16) 0.942

EOR 0.168
  GTR of CE and non-GTR of NE tumor Reference -
  Non- GTR of both CE and NE tumors 1.21 (0.66–2.22) 0.541
  Biopsy 2.03 (0.97–4.22) 0.060
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Discussion

Our study comprehensively analyzes the prognosis of GC 
patients reflecting the recent WHO classification encom-
passing clinical, molecular and imaging data. In the entire 
GC patients, higher KPS, presence of 1p/19q codeletion, 
presence of MGMTp methylation, and absence of hemor-
rhage were favorable prognostic factors. In subgroup analy-
sis of IDH-wildtype glioblastoma patients, only higher KPS 
remained as an independent prognostic factor. Of note, GTR 
of CE tumor did not remain as an independent prognostic 
factor. Our findings suggest that the prognosis of GC is 
determined by its underlying molecular type reflecting the 
2021 WHO classification. Furthermore, aggressive surgery 
of CE tumors may not be the preferable surgical approach 
in GC patients and thus the recommended surgical strategy 
of supramaximal safe resection in diffuse gliomas may not 
be applied in GC patients.

Previous studies on GC before the molecular era were 
restricted by the lack of integrated diagnosis comprising 
molecular information as well as small sample size [12, 
19–21]. Previous studies lacked molecular information 
such as IDH mutation or 1p/19q codeletion status which are 
essential in diagnosing molecular types of adult-type diffuse 
gliomas [22], and may have analyzed misclassified tumor 
types based solely on histopathology. Thus, the prognostic 
implication of GC in line with the current 2021 WHO classi-
fication in adult-type diffuse glioma remains to be unveiled. 
Moreover, results from population-based studies should be 
interpreted with caution [8, 23]; population-based database 
prevents direct access to imaging, which may include incon-
sistently defined GC. Herein the imaging review of experi-
enced neuroradiologists as well as clear and consistent defi-
nition of GC likely improved the reliability of our results.

Previous studies on patients with GC showed that perfor-
mance status and molecular profile significantly affects prog-
nosis [6, 7, 20, 24–26], which is also a consistent finding in 
glioma patients without GC. This finding is in line with our 
study results showing higher KPS, presence of 1p/19q code-
letion, and presence of MGMTp methylation associated with 
longer OS in adult-type diffuse glioma patients with GC. Pres-
ence of 1p/19q codeletion indicates the diagnosis of oligo-
dendroglioma, which is well-acknowledged for its relatively 
favorable prognosis [27], while MGMTp methylation is a well-
known molecular marker in gliomas predicting better response 
to alkylating chemotherapeutic agents [28, 29]. In terms of 
imaging findings, presence of hemorrhage was significantly 
associated with poor prognosis in our study. Intratumoral hem-
orrhage may reflect the underlying tumor aggressiveness; it 
may be a result of tumor coagulopathy, or arise from dysplastic 
neoangiogenic vessels traversing necrotic areas or from large 
vessels that are invaded by the tumor [30–32].

In IDH-wildtype glioblastoma patients with GC, only 
preoperative KPS remained as a significant prognostic fac-
tor in our study. Of note, GTR of CE tumor did not show 
significant impact on survival within IDH-wildtype glio-
blastoma patients with CE tumor. To date, it is unclear 
whether extent of resection provides any survival benefit 
in GC. Majority of studies on GC mostly lacked results 
on surgical approach, owing to the fact that GC patients 
in these datasets predominantly underwent biopsy and 
analysis of the impact of surgical approach on survival was 
not possible [7, 20, 33–36]. Previous studies that provided 
results on surgical approach show discrepant results; several 
single-institutional studies [21, 37, 38] or population-based 
analysis [23] showed that extent of resection did not provide 
any survival benefit, while two meta-analyses showed that 
surgical resection was associated with improved outcomes 
[25, 39]. These studies were performed prior to the molecu-
lar classification, and lacks separate labeling of CE and NE 
tumors. Recent surgical guidelines separately label the EOR 
of CE and NE tumors, and recommend aggressive surgery 
of CE tumor when feasible [13, 40]. In patients with GC, 
neurosurgeons from our institution aim total resection of 
CE tumor when amenable. Thus, only 19.2% of GC patients 
from our dataset underwent biopsy while 36.4% of patients 
underwent GTR of CE tumor, enabling reliable prognostic 
analyses of extent of resection. However, this aggressive 
surgical approach failed to reach statistical significance on 
survival in GC patients. Our finding may provide solid evi-
dence to the recommendation that IDH-wildtype patients 
with GC should be biopsied only [40].

This study has several limitations. First, this study 
is a retrospective single center study with a relatively 
small sample size. Despite the large number of adult-
type diffuse glioma patients the sample size of patients 
with GC was small owing to the relatively low inci-
dence of GC. Second, a substantial proportion (19.2%) 
of patients underwent limited diagnostic biopsy, which 
may possibly lead in undersampling of tumor. Third, 
we did not conduct volumetric assessment and analyses 
of EOR.

Conclusion

In conclusion, the prognosis of GC patients is determined by 
its underlying molecular type and performance. Compared 
with supramaximal resection recommended in IDH-wildtype 
glioblastoma patients without GC, aggressive surgery of CE 
tumor portion in GC patients may not improve survival and 
thus further studies should be conducted to address this 
issue.
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