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Abstract
Purpose Stereotactic body radiotherapy (SBRT) has proven to be a highly effective treatment for selected patients with 
spinal metastases. Randomized evidence shows improvements in complete pain response rates and local control with lower 
retreatment rates favoring SBRT, compared to conventional external beam radiotherapy (cEBRT). While there are several 
reported dose-fractionation schemes for spine SBRT, 24 Gy in 2 fractions has emerged with Level 1 evidence providing an 
excellent balance between minimizing treatment toxicity while respecting patient convenience and financial strain. 
Methods We provide an overview of the 24 Gy in 2 SBRT fraction regimen for spine metastases, which was developed at 
the University of Toronto and tested in an international Phase 2/3 randomized controlled trial. 
Results The literature summarizing global experience with 24 Gy in 2 SBRT fractions suggests 1-year local control rates 
ranging from 83-93.9%, and 1-year rates of vertebral compression fracture ranging from 5.4-22%. Reirradiation of spine 
metastases that failed prior cEBRT is also feasible with 24 Gy in 2 fractions, and 1-year local control rates range from 
72-86%. Post-operative spine SBRT data are limited but do support the use of 24 Gy in 2 fractions with reported 1-year 
local control rates ranging from 70-84%. Typically, the rates of plexopathy, radiculopathy and myositis are under 5% in those 
series reporting mature follow up, with no cases of radiation myelopathy (RM) reported in the de novo setting when the 
spinal cord avoidance structure is limited to 17 Gy in 2 fractions. However, re-irradiation RM has been observed following 
2 fraction SBRT. More recently, 2-fraction dose escalation with 28 Gy, with a higher dose constraint to the critical neural 
tissues, has been reported suggesting improved rates of local control. This regimen may be important in those patients with 
radioresistant histologies, high grade epidural disease, and/or paraspinal disease. 
Conclusion The dose-fractionation of 24 Gy in 2 fractions is well-supported by published literature and is an ideal starting 
point for centers looking to establish a spine SBRT program. 
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Introduction

Spinal metastases are a common manifestation of advanced 
cancer, manifesting in up to 30% of patients. Of all bone 
metastases, 70% are located in the spine and symptomatic 
spinal metastases may be the initial manifestation of malig-
nancy in 12–20% of cases [1–3]. In addition, 10–20% of 
patients with spinal disease will develop malignant epidural 

spinal cord compression (MESCC) which may result in 
severe pain and debilitating neurologic deficits [4].

Painful spinal metastases have been traditionally treated 
with conventional external beam radiotherapy (cEBRT), 
with adjuvant palliative cEBRT in those requiring initial 
surgery [5]. However, cEBRT is associated with low rates 
of complete pain response (CPR) that range from 10 to 
20%, and efficacy with respect to local control is limited 
[6–8]. In the modern era, patients with metastatic disease 
are surviving longer, and there are increasing demands on 
radiation oncology to provide a treatment that controls sites 
of metastatic disease while preserving quality-of-life and 
systemic therapy administration. This rationale is of greater 
importance in those histologies considered radioresistant, 
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those with paraspinal and/or epidural disease (mass-type) 
and patients who have undergone surgery, given the poor 
results associated with cEBRT [9, 10].

Recently, the Canadian Cancer Trials Group (CCTG) 
symptom control-24 (SC.24) phase 2/3 randomized controlled 
trial (RCT) proved superiority with 24 Gy in 2 Stereotactic 
Body Radiotherapy (SBRT) fractions, as compared to 20 Gy 
in 5 cEBRT fractions, with respect to 3- and 6-month CPR 
rates post-radiation [11]. However, there is variability in spine 
SBRT dose-fractionation schemes with no RCTs interrogat-
ing the optimal approach with respect to pain control, local 
control and adverse events [9]. High-dose single-fraction 
approaches have been found to be associated with high rates 
of local control at the expense of an increased risk of verte-
bral compression fracture (VCF), while 3–5 fraction regimens 
commit patients to a more prolonged treatment course that 
may be less biologically effective, particularly for radiore-
sistant histologies [12, 13]. As compared to 5 cEBRT frac-
tions, 24 Gy in 2 SBRT fractions was not only efficacious but 
yielded less financial strain on patients and has been globally 
adopted [14–18]. This review will provide an overview of the 
technical details and planning parameters specific to spine 
SBRT, and summarize the current literature in those series 
reporting outcomes following 24 Gy in 2 SBRT fractions.

Indications

Selecting patients most appropriate for spine SBRT is criti-
cal as it is more resource intensive compared to cEBRT [19]. 
Patient and disease factors must be taken into consideration 
and involves a thorough evaluation of pain severity, neuro-
logical status, spine instability, presence and grade of epidural 
disease, tumor histology, systemic therapy options, overall 
metastatic burden, performance status and life expectancy. 
Zeng et al. performed an analysis of 605 patients treated with 
spine SBRT and found that having polymetastatic disease, a 
non-breast or prostate primary, ECOG performance status ≥ 2, 
poor neurological status, pain and paraspinal disease were 
significant predictors of shorter survival [20]. Based on the 
SC-24 RCT, only patients with a life expectancy of more than 
3 months should be considered candidates for spine SBRT, as 
at 1-month the CPR rates were equivocal.

There have been well-established framework published 
in literature to inform clinical decisions and patient selec-
tion when considering spine SBRT [21, 22]. Specifically, the 
neurologic, oncologic, mechanical and systemic (NOMS) 
decision framework serves as an excellent guide to facilitate 
decision making in the care of patients with spinal metasta-
ses [23]. This is a multidisciplinary approach that incorpo-
rates radiation/medical oncology, surgery and interventional 
radiology, and integrates the use of spine SBRT within the 
decision-making tree for emerging practices.

Evaluating spinal stability is essential to administering 
spine SBRT safely and maintaining patients’ quality of life. 
The Spinal Instability Neoplastic Score (SINS) can help guide 
clinicians in selecting those patients who may be better suited 
for upfront surgical intervention [24]. Frank spinal instability 
based on a SINS > 12 should warrant assessment by a spine 
surgeon and can be considered in those with potential insta-
bility with a SINS of 7–12. In the SC-24 RCT, patients with 
frank instability were excluded. For patients with a baseline 
VCF, cement augmentation in conjunction with local tumor 
ablative procedures is becoming more prevalent and may be 
utilized in order to optimize pain control and maintain stabil-
ity long-term [25, 26]. As evaluated by the Bilsky criteria, 
patients with high-grade epidural disease should be referred 
for surgical decompression, followed by postoperative spine 
radiotherapy as appropriate [27, 28]. Furthermore, with the 
advancement of minimally-invasive surgery, the combination 
of separation surgery and planned SBRT is emerging as an 
effective approach for the purposes of maximizing ablative 
dose to the target disease while minimizing toxicity and surgi-
cal complications [29, 30].

Technical specifications

Simulation

Spine SBRT is a precision-driven treatment technique that 
delivers high doses of radiation to metastatic lesions while 
minimizing dose to surrounding organs-at-risk (OAR), the 
most critical being the spinal cord and nerve roots, together 
referred to as the critical neural tissues (CNT). Near-rigid 
body immobilization with acceptable visualization of the 
CNT is essential for safe and effective treatment delivery. 
For lesions in the upper spine (cranial to T5), a thermoplastic 
mask immobilizing the head and shoulders is typically imple-
mented. For lesions in the spine below this level, a device that 
maximizes repositioning accuracy and intrafraction stability 
is recommended such as the BodyFIX dual vacuum-assisted 
body cushion (Elekta AB, Stockholm, Sweden).

Computed tomography (CT) simulation is acquired 
with 1-mm slice thickness, and this is coupled with mag-
netic resonance imaging (MRI) simulation which consists 
of axial thin-slice volumetric T1 and T2 sequences with 
1–2 mm slice thickness. MR images acquired around the 
time of treatment planning are essential to provide accurate 
visualization to assist with delineating the extent of the tar-
get lesion, as well as the CNT. The MRI should cover the 
affected segments and at least one vertebra above and below 
the target level. In the cervical spine, this can be expanded 
to two levels above and below given the short height of the 
individual cervical vertebral segments.
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If a CT myelogram is required for accurate delinea-
tion of the CNT, it is recommended that the myelogram 
is performed just prior to simulation in order to acquire a 
simulation CT myelogram, as opposed to a diagnostic CT 
myelogram that is fused to the planning CT. Importantly, a 
treatment planning MRI is still required for disease visuali-
zation. Rarely, the level of artifact is too significant despite 
the MRI and CT myelogram and in such cases, treatment 
with cEBRT is recommended. Lastly, there have been con-
cerns with respect to dosimetric compromises associated 
with the hardware, however, a recent phantom based study 
confirms that the effect is negligible [31].

Volume and OAR delineation

Gross tumor volume (GTV) is defined as the gross dis-
ease within the spinal segment, including any epidural or 
paravertebral extension. MRI should be used to assist with 
contouring of the gross tumor, with the T1 non-gadolinium 
sequence most helpful in determining the extent of intra-
osseous disease. The T1 gadolinium enhanced sequence 
may be used in selected cases to better identify the extent of 
para-spinal disease.

 Delineation of the clinical target volume (CTV) should 
be conducted using the international consensus guidelines 
based on anatomical classification. Current published guide-
lines inform reproducible contouring for metastases of the 
cervical, thoracic and lumbar spine, in addition to sacral 
lesions and in the post-operative setting [32–34]. Figure 1 
illustrates an intact spine SBRT case with the CTV and plan-
ning target volume (PTV) delineated. For paraspinal disease, 
it is recommended to use a 5-mm anatomically respectful 
margin to any soft tissue extension in order to encompass 
possible microscopic disease. In addition, in cases with 
epidural disease, a 5-mm margin will be adapted in the 
cranio-caudal direction within the spinal canal given that 
the axis is at risk of spread [21]. Recently, an analysis of 283 
patients with 360 spine metastases treated with SBRT was 
conducted for the purposes of validating the aforementioned 
contouring guidelines [35]. After adjusting for confounding 
variables, they found that deviation from guidelines was the 
strongest predictor of inferior local control. Marginal fail-
ure rate was 42% among those with deviations, the majority 
of which were in the adjacent vertebral compartment that 
should have been included if the treatment had been con-
touring guideline-compliant. These data support covering 
adjacent vertebral compartments as stipulated in consensus 
recommendations. 

Use of a simultaneous integrated boost technique can be 
considered, particularly when using single-fraction dose 
prescriptions. Certain institutions deliver a lower integral 
dose to the CTV and boost the GTV with the intention of 

maintaining local control while minimizing rates of VCF 
[36]. Dosing can vary depending on technique, ranging 
from 8 to 18 Gy in 1 fraction to the low-dose volume and 
18–24 Gy in 1 fraction to the high-dose volume [36–38].

For postoperative cases, the CTV is based on the treat-
ment planning MRI. However, the preoperative MRI extent 
of disease should be accounted for, as it was shown by Chan 
et al., that the patterns of recurrence are determined by the 
preoperative extent of disease as opposed to the post-oper-
ative residual [39]. As the majority of patients are operated 
on due to MESCC, this typically leads to either a donut or 
horseshoe CTV shape (Fig. 2). Redmond et al. have reported 
on post-operative contouring guidelines and the Interna-
tional Stereotactic Radiosurgery Society have provided rec-
ommendations on the technical and clinical considerations 
specific to post-operative SBRT [33, 40]. Important consid-
erations include the surgical hardware as it causes artifact 
that can compromise visualization of the CNT and disease 
extent. In our experience, an optimized T2 weighted axial 
image can overcome the limitations from the T1 sequence. 
Similarly, a CT myelogram is rarely required. From the sur-
gical perspective, avoiding cross links at the levels requir-
ing treatment, limiting screws in the index segments and 
implementation of carbon fiber implants can significantly 
reduce artifacts.

The PTV is typically a margin of 2 mm but this will vary 
depending on immobilization used, technology available 
and expertise with the approach. If there is overlap with 
OAR, the PTV is not modified and coverage will be dic-
tated by dose limits to OAR. For treatment planning pur-
poses, the OAR may be subtracted from the PTV to cre-
ate an OPT_PTV which can be used for optimization. Li 
et al. reported on the utility of near-rigid body immobiliza-
tion in their analysis of cone-beam computed tomography 
(CBCT) setup variability for 102 spinal metastatic lesions 
[41]. They recommended that a 3-mm margin for planning 
target volume (PTV) and OAR be used when using a ther-
moplastic mask for immobilization, and a 2-mm margin for 
semi-rigid vacuum body fixation, though this was without 
a 6 degrees-of-freedom couch. A technical evaluation of an 
institutional approach has been reported using the HexaPOD 
couch (Elekta AB, Stockholm, Sweden) [42]. A total of 42 
patients were treated with spine SBRT and each underwent 
4 total CBCTs. After the initial correct CBCT setup, 90% 
and 97% of shifts were observed within 1 mm and 1 degree, 
respectively, and based on a 1-mm and 1 degree correction 
threshold, the target was localized within 1.2 mm and 0.9 
degree with 95% confidence. From these data, a 2 mm PTV 
was established as the institutional standard and has shown 
to be safe in SBRT with up to 3 contiguous vertebral seg-
ments [43]. When treating > 3 vertebral bodies, a 3 mm PTV 
margin should be used.
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Ultimately, optimizing local control while maintaining 
dose limits to OAR will be achieved by a rapid dose fall-
off between target disease and the CNT. Given the close 
proximity of the high-dose gradient, precise contouring of 
surrounding structures is critical to ensure safe treatment 
delivery and it is recommended that OAR delineation be 
based off of guidelines and protocols for contouring [44, 45]. 
The spinal cord and/or thecal sac should be contoured based 
on the T1 and/or T2 axial MRI image data sets fused to the 
planning CT [46]. Nerve roots will be contoured at the level 
of the brachial plexus and lumbosacral plexus. There is yet 
to be consensus on nerve root tolerance but generally dose is 
limited to < 105% of the prescription dose. If there is direct 
encroachment of the nerve roots by tumor, target coverage 
is not compromised to spare the nerves though hotspots on 
the nerve roots should be avoided.

A planning organ-at-risk volume (PRV) is expanded from 
the spinal cord contour and the dose limit is applied to this 
volume. Based on cord imaging analyses, a 1.5–2 mm mar-
gin is required as a cord PRV to account for motion during 
spine SBRT [47, 48]. For spinal segments below the level 
of the spinal cord, or at the transition of the cord to cauda 
equina, the thecal sac is contoured without a PRV.

Treatment planning and delivery

For de novo irradiation, a maximum point dose (Dmax) con-
straint to the spinal cord PRV and/or thecal sac should range 
between 17 and 19.3 Gy in 2 fractions [49, 50]. In cases 
of reirradiation, the Dmax to the spinal cord PRV and/or 
thecal sac is 12.2 Gy, which may be increased to 14.6 Gy 
in cases with epidural disease [50–52]. Dose delivered to 
the spinal cord PRV and/or thecal sac is optimized to the 
Dmax constraint (i.e., 17 Gy in 2 fractions), with the second-
ary objective of maximizing isotoxic dose to the PTV. The 
SC.24 protocol required a Dmax of 17 Gy with an allowed 
deviation of − 5% and 0% over 17 Gy [11]. Of note, the use 
of Dmax as a planning metric is system-dependent and is 
affected by which treatment planning system, dose calcula-
tion engine and dose grid size used. For our center and treat-
ment planning system, Dmax has been consistently applied 
for all SBRT treatments.

Step-and-shoot intensity-modulated radiation therapy 
(IMRT) with > 6 fields or volumetric modulated arc therapy 
(VMAT) are used in the planning of spine SBRT [53]. See 
Figs. 1 and 2 for appropriate dose distributions and dose 
volume histograms for intact and post-operative cases. 
The SC.24 trial mandated that coverage of CTV should be 
at least 80% of the prescribed dose in order to maximize 
isotoxic coverage of the PTV [11]. However, in practice, 
this may not always be achievable, especially in cases with 
smaller spinal segments in close proximity to OAR such as 
in the cervical spine.

Kilovoltage CBCT is used for image guidance prior to 
treatment delivery which is overlaid with the planning CT 
to verify patient position through matching of bony anatomy 
and contours. A robotic couch top with 6 degrees-of-free-
dom is used to allow for correction of translational and rota-
tional errors [42]. If treatment time is longer than 20 min as 
defined by the institutional protocol, or if there is suspected 
patient movement, intrafractional verification imaging may 
be done [42].

Data

De novo radiation

Recently, the CCTG published completed results of the 
SC.24 clinical trial [54]. This was a multicenter, rand-
omized, controlled, phase 2/3 trial including patients with 
spinal metastases from a solid primary tumor with a pain 
score of ≥ 2 on the brief pain inventory and SINS of ≤ 12. 
Patients had no more than three consecutive spinal segments 
in the treatment field and no prior radiotherapy or surgery 
to target segments. Participants were randomized to cEBRT 
which consisted of 20 Gy delivered in 5 fractions or SBRT 
which was 24 Gy in 2 daily fractions. At 3 months, 35% of 
the SBRT arm had CPR, compared to 14% in the cEBRT 
cohort (p = 0.0002), and significance was maintained in 
multivariable-adjusted analysis (p = 0.0003). At 6 months, 
there were significantly more patients who achieved CPR 
with SBRT compared to the cEBRT arm (p = 0.0036). There 
was no difference in radiation site-specific progression-free 
survival between the SBRT and cEBRT arms at 3 months 
(p = 0.18) and 6 months (p = 0.34). There were two observed 
cases of progression to MESCC in the cEBRT arm and none 
in the SBRT arm.

Following completion of SC.24, Zeng et al. examined a 
subset of patients enrolled in the CCTG study and reported 
mature outcomes with continued routine clinical and radio-
graphic surveillance past the designated trial follow-up 
period [55]. With 119 spinal segments (66 patients) in the 
SBRT cohort and 169 spinal segments (71 patients) in the 
cEBRT arm, 12- and 24-month local failure (LF) rates were 
6.1% and 14.8% in the SBRT cohort, compared to 28.4% 
and 35.6% in the cEBRT cohort (p < 0.001). One-year reir-
radiation rates following SBRT and cEBRT were 2.2% and 
15.8% (p = 0.002), respectively, and there was no significant 
difference in the rate of VCF between cohorts.

Data in the de novo setting are summarized in Table 1. 
One-year local control rates ranged from 83% (with renal 
cell carcinoma metastases) up to 93.9%. Rates of VCF were 
from 5.4 to 22% at 1 year. In the largest single-institution 
series of spine SBRT using 24 Gy in 2 fractions, the most 
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Fig. 1  a Axial CT isodose 
distribution for an intact L1 
spine SBRT plan (24 Gy in 2 
fractions) showing CTV (blue 
color-wash), PTV (orange 
color-wash), thecal sac (purple 
color-wash), bowel bag (brown 
line) and kidneys (dark red 
and teal lines). b Sagittal CT 
isodose distribution showing 
CTV (blue color-wash), PTV 
(orange color-wash), thecal sac 
(purple color-wash) and spinal 
cord PRV (green color-wash). 
c Dose volume histogram of 
target volumes and organs-at-
risk for intact SBRT plan
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Fig. 2  a Axial CT isodose 
distribution for a post-operative 
T10 spine SBRT plan (28 Gy 
in 2 fractions) showing CTV 
(blue color-wash), PTV (orange 
color-wash), spinal cord PRV 
(green-yellow color-wash), liver 
(green line), bowel (brown line), 
esophagus (dark red line) and 
stomach (pink line). b Sagittal 
CT isodose distribution showing 
CTV (blue color-wash), PTV 
(orange color-wash), spinal cord 
(yellow line) and spinal cord 
PRV (green-yellow color-wash). 
c Dose volume histogram of tar-
get volumes and organs-at-risk 
for post-operative SBRT plan
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common pattern of failure was progression within the epi-
dural space or paraspinal tissues, and the presence of epi-
dural disease predicted for LF [56].

Reirradiation

In regards to reirradiation, Detsky et  al. examined 43 
patients with 83 spinal segments treated with salvage SBRT 
[57]. Local failure at 6-, 12- and 24-months were 7%, 14% 
and 19%, respectively and overall survival (OS) at 1- and 
2-years were 53% and 36%, respectively. Similarly, Thiba-
ult et al. reviewed 56 spinal metastases in 40 patients who 
were treated with salvage SBRT [58]. Overall, 23% of spinal 
metastases had local failure with a cumulative incidence of 
local failure of 19.4% at 1 year. In both studies, paraspinal 
disease predicted for local failure.

Hashmi et  al. conducted a multi-institutional pooled 
analysis of 215 patients undergoing salvage spine SBRT 
following cEBRT, with 40% of patients receiving multi-
fraction treatment [52]. With a median reirradiation interval 
of 13.5 months and median follow-up of 8.1 months, 6- and 
12-month local control rates were 93% and 93%, respec-
tively. VCF rate of 4.5% and there were no cases of RM.

The Japanese outcomes of spine SBRT reirradiation using 
24 Gy in 2 fractions have also been published [15, 16, 18]. 
At 1 year, local control ranged from 72 to 74% and 1-year OS 
was 61–65%. Rates of CPR varied between 64 and 86% and 
VCF at 1 year was 8–14%. The incidence of RM was 3%.

Post‑op SBRT

Data for post-operative spine SBRT is relatively limited. One 
of the first reports was published by Al-Omair et al. where 
authors analyzed 80 patients treated with post-operative 
SBRT to a median dose of 24 Gy in 2 fractions [59]. At 1 
year, the local control rate was 84% and OS was 64%. Like-
wise, Alghamdi et al. reported on 47 patients who underwent 
postoperative SBRT to 83 spinal metastases and 1-year local 
control was 83% with an OS of 55% [17]. Both studies found 
that a lower grade of post-operative epidural disease predicted 
for local control. Finally, Ito et al. reviewed a Japanese cohort 
of 28 spinal lesions treated with postoperative SBRT in the 
reirradiation setting using 24 Gy in 2 fractions [60]. At 1 year, 
local control was 70% and OS was 63%.

Toxicities

Pain flare

A transient increase in pain shortly after spine SBRT is 
referred to as a pain flare. In published literature, rates of 
pain flare range from 14 to 68% [61–63]. Differences in 

reported rates may be due to how pain flare was defined and 
recorded (i.e., pain diary vs. patient reported outcomes). In 
the CCTG SC.24 trial, incidence of pain flare was found to 
be 43% in the SBRT arm compared to 34% in the cEBRT 
arm, which was not significantly different [54]. Thus, 
SBRT is not perceived to increase the risk of pain flare over 
cEBRT. In terms of risk factors, two studies showed that 
pain flare was more common in patients with a higher per-
formance status and postulated that these individuals were 
taking less baseline analgesics, leading to greater perceived 
pain [61, 63]. In regards to corticosteroid prophylaxis, Khan 
et al. reported pain flare in 19% of patients treated with dexa-
methasone, with no difference between 4 and 8 mg dosing 
[64]. Potential benefits of steroid supplementation should 
be balanced with toxicities of its use and risk of post-dexa-
methasone pain flare.

Vertebral compression fracture

VCF is a complication in patients with spine metastases 
that has significant potential of morbidity. Following radio-
therapy there is appreciable risk of VCF, particularly with 
single-fraction spine SBRT. Memorial Sloan-Kettering Can-
cer Center reviewed 62 patients with 71 spinal segments and 
showed a 39% rate of VCF following single-fraction SBRT 
to a dose of 18–24 Gy [13].

Two-fraction dosing appears to be associated with a lower 
risk of VCF. With 24 Gy in 2 fractions, Tseng et al. showed a 
cumulative risk of VCF of 8.5% and 13.8% at 1- and 2-years 
post SBRT in 145 patients with 279 metastases [56]. Lytic 
tumors and spinal malalignment were found to be predictive 
of VCF. In the SC.24 trial, VCF rate was 11% in the SBRT 
arm compared to 17% in the cEBRT arm. The majority were 
grade 1 events with only one grade 3 VCF in SBRT arm. 
Furthermore, Zeng et al. analyzed long term outcomes and 
found that in 79 patients surviving 3 years or more post-
SBRT, VCF rates were 10.4% and 14.4% at 3- and 5-years, 
respectively.

The largest and most comprehensive systematic review 
was conducted by Faruqi et  al. [65]. This included 11 
studies with a total of 2911 spinal segments and reported 
a crude VCF rate of 13.9%. Lytic disease, baseline VCF, 
spinal deformity, older age and > 40–50% vertebral body 
involved with tumor were predictive of VCF. Intervention 
was required in 37% of VCF events, most commonly cement 
augmentation.

Plexopathy and radiculopathy

As long term data matures regarding the delayed adverse 
events of spine SBRT, there is increasing awareness of radi-
ation-induced plexopathy and radiculopathy as the associ-
ated symptoms can be debilitating [66, 67]. Recently, the 
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Hypofractionation Treatment Effects in the Clinic (HyTEC) 
report summarized the risk of radiation-induced brachial 
plexopathy following SBRT [68]. Based on published data, 
an inferior brachial plexus Dmax of 32 Gy in 5 fractions 
and 25 Gy in 3 fractions were associated with a 10% risk 
of brachial plexopathy. Similarly, Lindberg et al. reported 
a rate of 13% of brachial plexopathy following apical lung 
SBRT, with a median biological effective dose (BED) of 
381 Gy (α/β ratio of 3) in those with plexopathy and authors 
suggested keeping the Dmax of the plexus ≤ 130 Gy  BED3 
[69]. In terms of spine data, Ito et al. reported 2 cases of 
upper extremity radiculopathy following spine reirradiation 
with SBRT [16]. One patient had a slight decline in grip 
strength and numbness, while the other experienced muscle 
weakness in the triceps.

Data on lumbosacral plexopathy is limited but is thought 
to be more common than brachial plexopathy following 
spine SBRT. In patients living 3 years or more after spine 
SBRT, Zeng et  al. reported 6 total cases of plexopathy 
(2.2%), 5 in the lumbosacral region [20]. These occurred 
at a median of 35.7 months (range 10.9–41.9 months) post-
SBRT, and most commonly in patients who had multiple 
courses of radiotherapy. Compared to the brachial plexus, 
the lumbosacral plexus descends more vertically as it exits 
the spinal column which can result in a higher volume of 
nerve tissue being irradiated. The combination of serial and 
parallel components of toxicity may contribute to the higher 
risk of plexopathy in this region, and thus, contouring and 
appropriate dose limitation should be employed to the lum-
bosacral plexus and nerve roots.

Radiation myelopathy

RM is a devastating late toxicity of radiotherapy that is 
exceptionally rare with conventional fractionation schemes. 
With the advent of spine SBRT, there were concerns of this 
complication re-emerging, particularly with the inhomoge-
neity of dose adjacent to the spinal cord and uncertainties 
in regards to cord response to extreme hypofractionation. 
However, with proper techniques and quality assurance, the 
risk of RM is very low and modern studies have shown this 
to be a non-issue with appropriate patient selection.

In the Japanese study, there were four reported cases of 
RM following reirradiation to the spine, all experiencing 
complete paraplegia [16]. Two patients underwent intraop-
erative radiotherapy and one had carbon-ion therapy which 
are techniques which may ultimately deliver more dose to 
the spinal cord than calculated.

A dosimetric analysis was conducted on 9 patients who 
developed RM following spine SBRT, and these data were 
compared to patients who did not have RM [49]. From 
the dose-volume histogram (DVH) analysis and logistic 
regression model, a thecal sac Dmax of 17 Gy was shown to 

be associated with < 5% probability of developing RM with 
2-fraction SBRT. This was the dose constraint on which the 
SC.24 trial was based in which there were no cases of RM, 
but was limited to a follow-up of 6 months post treatment. 
In the mature outcome analyses of the institutional cohort 
randomized on SC.24, there were no cases of RM with a 
median follow-up of 11.3 months [55].

Recently, a HyTEC report provided recommendations 
for spinal cord and thecal sac constraints based on the past 
decade of spine SBRT experience [50]. This analysis showed 
that the risk of RM with 2-fraction SBRT was 1–5% when 
spinal cord and thecal sac Dmax were limited to 17–19.3 Gy 
in de novo disease [50]. The same dose constraints are sug-
gested to be used in the postoperative setting.

SBRT in the reirradiation setting has also been shown 
to be safe when following recommended constraints. Sah-
gal et al. reviewed 5 patients who developed RM following 
SBRT reirradiation and determined a retreatment thecal sac 
point maximum normalized biologically equivalent dose 
(nBED) of 20–25  Gy2/2 with the retreatment nBED com-
prising no more than 50% of the total nBED [51]. The total 
point maximum nBED for all treatment courses should not 
exceed 70  Gy2/2. Following conventional palliative radio-
therapy, a minimum of 5 months should have elapsed prior 
to reirradiation SBRT.

Alternative SBRT fractionation schedules

Ultimately, there is no consensus on the optimal dose-frac-
tionation schedule for spine SBRT. Single-fraction regimens 
using doses of 16–24 Gy continue to be used in many cent-
ers, as well as 24–27 Gy in 3 fractions and 30–35 Gy in 4–5 
fractions [70–73]. At this time, there is no high-level evi-
dence that supports one fractionation schedule over another. 
Some data suggests that single-fraction SBRT results in a 
higher rate of local control though this may come with a 
higher rate of VCF [56, 74, 75].

Dose escalation is being actively investigated within the 
realm of 2-fraction prescriptions in order to maximize local 
control and clinical outcomes. Recently, a report on a large 
institutional database of patients treated with spine SBRT 
was published, comparing 301 spinal segments receiving 
28 Gy in 2 fractions to 646 spinal segments treated with 
24 Gy in 2 fractions [76]. In total, 11.6% of segments had 
local progression in the 28 Gy cohort, compared to 21.7% in 
the 24 Gy cohort. In the 28 Gy cohort, the cumulative inci-
dence of local failure at 6-, 12- and 24-months were 3.5%, 
5.4% and 11.1%, respectively, while local failure rates in 
the 24 Gy cohort were 6.0%, 12.5% and 17.6%, respectively 
(p = 0.008). There was no significant difference in VCF or 
plexopathy rates between the two comparator groups. This 
suggests that spine metastases may be safely dose escalated 
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to 28 Gy in 2 fractions resulting in improvements in local 
control without an increase in VCF rates, and these data 
will help to inform a prospective dose escalation randomized 
trial.

Conclusion

Spine SBRT is an effective treatment modality to maximize 
oncologic outcomes in patients with metastatic cancer. With 
appropriate patient selection and modern imaging/immobi-
lization techniques, it can be safely delivered with low rates 
of clinically significant toxicity. The dose-fractionation of 
24 Gy in 2 fractions is well-supported by published literature 
and is an ideal starting point for centers looking to establish 
a spine SBRT program. Prospective data on alternative frac-
tionation schedules and dose escalation will help to further 
evolve this approach.
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