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Introduction

Glioblastoma (GBM) is the most common malignant brain 
tumor in adults, comprising 15% of all intracranial tumors, 
45–50% of all primary brain tumors, and 55–57% of all 
gliomas [1, 2]. This World Health Organization (WHO) 
grade IV astrocytic neoplasm is characterized by its aggres-
sive and diffusely infiltrative nature, which portends its 
poor prognosis [3]. Despite genomic, technologic, thera-
peutic, and operative advancements in the treatment of 
GBM, it remains invariably fatal, with an average overall 
survival (OS) of 15–18 months and just 6.8% of patients 
surviving 5 years after diagnosis [1, 2, 4, 5]. The role of 
surgery in the treatment of GBM and other similar-behaving 
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Abstract
Purpose Intraoperative magnetic resonance imaging (iMRI) has been efficacious in maximizing resection of high-grade 
gliomas (HGGs). In this single-institution study of patients with HGGs who underwent resection using iMRI, the authors 
present a volumetric-based survival analysis to evaluate progression-free survival (PFS) and overall survival (OS), as well 
as the impact of additional resection on survival.
Methods This retrospective analysis included patients with HGGs who underwent resection using iMRI from 2011 to 2021. 
Volumetric analyses of T1-weighted contrast-enhancing (T1W-CE), T2-weighted (T2W), and T2W fluid-attenuated inver-
sion recovery (FLAIR) MRI sequences were assessed at preoperative, intraoperative, immediate postoperative, and three-
month postoperative timepoints. Statistical analyses were carried out using log-rank and multivariable Cox proportional 
hazard regression analyses.
Results A total of 101 patients (median age 57.0 years) were treated. In keeping with prior studies, statistically significant 
associations between greater EOR and longer PFS and OS were seen (p = 0.012 and p = 0.006, respectively). The results dem-
onstrated significant associations between lower preoperative T2W, 3-month postoperative T2W, and 3-month postoperative 
FLAIR volumes with longer PFS and OS (p = 0.045 and p = 0.026, p = 0.031 and p = 0.006, p = 0.018 and p = 0.004, respec-
tively), as well as associations between lower immediate postoperative T2W and immediate postoperative FLAIR volumes 
with longer OS (p = 0.002 and p = 0.02). There was no observed association in either PFS or OS for patients undergoing 
additional resection after initial iMRI scan (p = 0.387 and p = 0.592).
Conclusion This study of 101 patients with new or recurrent HGGs shows three-month postoperative T2W and FLAIR 
imaging volumes were significant prognosticators with respect to PFS and OS.
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IDH wild-type high-grade gliomas (HGGs) has been exten-
sively studied and refined in recent decades, with particu-
lar attention towards so-called “cytoreductive surgery” or 
improved extent of resection (EOR) [6–9]. Numerous stud-
ies have demonstrated that greater EOR is independently 
associated with longer progression-free survival (PFS) and 
OS, symptom palliation, and improved quality of life in 
patients with both low- and high-grade gliomas [7, 10–16]. 
Although much attention has been paid to EOR as an inde-
pendent prognosticator, several recent studies have argued 
that contrast-enhancing residual tumor volumes (CE-RTVs) 
are a more important predictor of survival after HGG resec-
tion—because EOR is significantly influenced by preopera-
tive tumor volume [17–21]. Accordingly, several assistive 
technologies—including intraoperative magnetic resonance 
imaging (iMRI) and fluorescence-guided resection using 
5-aminolevulinic acid—have been developed to safely 
improve EOR and decrease CE-RTV [22–28].

Since its introduction in the mid-1990s, iMRI has been 
demonstrated to maximize EOR and survival while reducing 
CE-RTV in patients with HGGs when compared with con-
ventional stereotactic navigation alone [24, 26, 27, 29, 30]. 
Many of these studies have focused primarily on the rela-
tionship of survival parameters (i.e., PFS and OS) with EOR 
or immediate CE-RTV measurements [29, 31–33]. We pres-
ent a single-institution analysis of patients with HGGs who 
were treated surgically over a 10-year period using iMRI. 
In this study, we compared pre-, intra-, immediate post-, 
and three-month postoperative T1-weighted (T1W) and 
T2-weighted (T2W) imaging volumes and their relationship 
with PFS and OS. Further, we examine those patients who 
underwent additional resection after initial iMRI scans, the 
likelihood of positive pathologic margins, and the relation-
ship of additional resection with PFS and OS.

Methods

Patient population and study design

The study was a retrospective review of a prospectively 
maintained database of patients with HGG treated surgically 
using a 3.0T iMRI at the University of Utah and the 1.5T 
iMRI at the Huntsman Cancer Institute over a 10-year period 
from December 2011 to October 2021. The initial cohort 
consisted of 125 total patients with pathology-proven GBM 
(isocitrate dehydrogenase [IDH] wild-type or IDH mutated) 
or WHO grade III anaplastic astrocytoma (IDH wild-type 
only) who underwent resection using iMRI. Exclusion 
criteria included patients who did not have progression or 
survival data, IDH1/2 or O6-methylguanine-DNA meth-
yltransferase (MGMT) biomarker data, or those patients 

whose tumors were determined to be IDH1/2 mutant. 
Patients were also excluded if they lacked imaging data 
available at the time points of interest: preoperative MRI 
with and without gadolinium contrast, iMRI with and with-
out gadolinium contrast, immediate postoperative MRI 
with and without gadolinium contrast, and three-month 
postoperative MRI with and without gadolinium contrast. 
For patients who underwent more than one iMRI scan, the 
last scan performed was used to obtain the volumetric data 
for analysis. A total of 24 patients were excluded from the 
analyses based on these exclusion criteria. The final patient 
cohort used in the analyses included 101 patients with new 
or recurrent IDH wild-type HGGs. Patient demographics, 
progression and survival data, pathological reports with 
tumor-specific markers, and imaging records were obtained. 
Although many other patients with HGG were treated surgi-
cally during the study’s 10-year duration, a large number 
were resected using conventional stereotactic navigation 
and/or 5-aminolevulinic acid fluorescence-guided resection, 
thus precluding them from the present study cohort.

Data collection

Minimum MRI sequences obtained included axial T1W 
non-contrast, axial T1W post-contrast, axial T2W, axial 
T2 fluid-attenuated inversion recovery (FLAIR), and axial 
diffusion-weighted imaging (DWI) with apparent diffusion 
coefficient sequences. Preoperative, intraoperative, immedi-
ate postoperative (within 24 h of surgery), and three-month 
postoperative scans were downloaded from the hospital 
picture archiving and communication system to an OsiriX 
DICOM viewer (Pixmeo SARL, Bernex, Switzerland). 
Radiological volume data from each time point of interest 
included T1W non-contrast hyperintense volumes, T1W 
contrast-enhancing (CE) tumor volumes, T2W hyperintense 
volumes, and FLAIR hyperintense volumes.

Clinical variables were collected in prospective fashion, 
and survival data were updated retrospectively. Clinical 
variables included age, sex, primary presenting sign/symp-
tom, tumor location (lobe and laterality), date of surgery, 
date of progression, recurrence status, date of death, preop-
erative and 1-month postoperative Karnofsky Performance 
Scale (KPS) scores, whether patients underwent subsequent 
resection after the initial iMRI scan and whether these 
residual margins were positive on pathological analysis, and 
tumor-specific markers (i.e., MGMT, TP53, PTEN, EGFR, 
and MIB-1).

Imaging and volumetric analysis

Using the OsiriX DICOM viewer, three authors (N.T.G., 
J.C.H., and R.L.J.) measured the quantitative volumes by 
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using contours of axial T1W or T2W imaging. CE-RTVs 
were calculated by subtracting T1W non-contrast hyperin-
tense volumes from T1W-CE volumes to subtract out post-
operative blood products. Volumetric data for each patient 
was measured after surgery. The EOR was calculated using 
the following formula: [preoperative CE tumor volume – 
CE residual tumor volume / preoperative CE tumor volume] 
× 100%. The initial iMRI scans were performed only after 
a gross total resection was achieved intraoperatively using 
both stereotactic neuronavigation and visual inspection with 
the microscope and with the attending surgeon’s indepen-
dent approval. To obtain a more granular understanding 
of tumor resection for each patient at different timepoints 
of their care, ratios were calculated for individual patients 
using postoperative/intraoperative and three-month postop-
erative/intraoperative T1W-CE, T2W, and FLAIR imaging 
volumes. The ratios were calculated to better understand 
relative disease burden for each patient at their various time-
points of treatment and to determine whether there was any 
relationship of these variables with PFS or OS.

Statistical analysis

All data analyses were performed using Jupyter Notebook 
software v4.4.0 in Python v3.6.8 programming language 
(Project Jupyter, open source; Python Software Founda-
tion, Fredericksburg, VA) or using GraphPad Prism v9.4.1 
(GraphPad Software, San Diego, CA). Descriptive statistics 
were obtained to define the patient cohort, including analy-
ses of PFS and OS using T-test or Chi-square test. Patients 
were separated into groups that were above or equal to 
and below the median imaging volumes for all survival 
analyses. Using a log-rank test, imaging volume distribu-
tions were analyzed for their relationships with PFS and 
OS. A log-rank test was performed to examine EOR and 
its relationship with PFS and OS, as well as the relation-
ship between further resection (after initial iMRI scan) and 
PFS and OS. Multivariable Cox proportional hazard regres-
sion analyses were also carried out for the imaging volumes 
from T1W-CE, T2W, and FLAIR sequences at the time-
points of interest to assess their relationship with PFS and 
OS. Lastly, we examined the relationships between PFS and 
OS and the following imaging volume ratios using log-rank 
tests: immediate postoperative/intraoperative volumes and 
three-month postoperative/intraoperative volumes for T1W-
CE, T2W, and FLAIR sequences. A two-tailed p < 0.05 was 
deemed statistically significant in all analyses.

Results

Patient and tumor characteristics

Patient characteristics and survival data for the 101 patients 
with GBM (IDH wild-type only) or anaplastic astrocytoma 
(IDH wild-type only) surgically resected using iMRI are 
shown in Table 1. The median age was 57 years old (range 
22.9–85.0 years); younger patients had significantly bet-
ter PFS and OS (p = 0.015 and p = 0.002, respectively). 
Although preoperative KPS was not significantly associ-
ated with PFS, it was associated with OS (p = 0.04). Post-
operative KPS was significantly associated with both PFS 
and OS (p = 0.0015 and p = 0.0002, respectively). The 
median PFS for the patient cohort was 7.8 months (range 
0.13–101.2 months), and the median OS was 14.0 months 
(range 0.13–101.2 months) (Fig. 1a). The most common 
location of tumors was the temporal lobe (31/101; 30.7%), 
followed by the parietal lobe (28/101; 27.7%) and frontal 
lobe (27/101; 26.7%). The tumor location was significantly 
associated with PFS (p < 0.001). Tumors were roughly equal 
with respect to laterality (right: 52/101; left: 49/101).

Tumor and surgery characteristics are shown in Table 1. 
Of the 101-patient cohort, 42 patients (41.6%) were newly 
diagnosed, and 59 patients (58.4%) had recurrent disease 
and had undergone prior maximal safe resections. Recur-
rence was significantly associated with decreased PFS and 
OS (p = 0.019 and p = 0.04, respectively). Separate log-
rank analyses were performed for newly diagnosed HGGs 
and recurrent HGGs and are included in Online Resource 
Table 1 and Online Resource Figs. 1 and 2. All patients 
were IDH1/2-wild type (101/101; 100%), and the major-
ity of patients were MGMT unmethylated (67/101; 67.7%). 
MGMT promoter methylation was associated with longer 
PFS and OS (p = 0.03 and p = 0.08, respectively). Of patients 
with available data, 49/81 (60.5%) were EGFR non-
amplified, 73/90 (81.1%) had a TP53 mutation, and 48/71 
(67.6%) carried a PTEN mutation. The mean MIB-1% was 
40% (range 5.0–95.0%). EGFR amplification status, TP53 
mutation, PTEN mutation, and MIB-1% were not associ-
ated with PFS or OS. The median EOR was 93.6% (range 
11.4–100%), with 52 patients (51.5%) undergoing further 
resection after the initial iMRI scan. Of those 52 patients, 
46 (88.5%) had pathology-proven positive margins on sub-
sequent resection. EOR was significantly associated with 
both PFS and OS, but further resection after initial iMRI 
was associated with neither.
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longer PFS and OS is seen with below-median T1W-CE 
tumor volumes at all timepoints.

T2-weighted imaging volumes and survival

The temporal trend of T2W hyperintense volumes is 
depicted in Fig. 1c. In the log-rank analysis of patients 
above and below the median volumes at various timepoints, 
there was no association between intraoperative T2W vol-
umes and PFS or OS (Fig. 2c,d), as well as no association 
found between immediate postoperative T2W volumes and 
PFS (Fig. 2c). However, there was a statistically significant 
association between smaller preoperative T2W volumes and 
longer PFS and OS (p = 0.045 and p = 0.026, respectively; 
Fig. 2c,d). A statistically significant association between 
lower immediate postoperative T2W volumes and better 

T1-weighted contrast-enhancing tumor volumes 
and survival

The median volumes and results of the log-rank analyses 
for the different imaging modalities at specific timepoints 
are summarized in Table 2. The temporal trend of T1W-CE 
tumor volumes for the patient cohort is depicted in Fig. 1b. 
It should be noted that a consistent trend of increase was 
seen in T1W-CE tumor volumes between intraoperative 
and immediate postoperative scans despite subtraction of 
blood products. Using a log-rank analysis of patients above 
and below the median volumes, There were no statistically 
significant associations observed for T1W-CE and PFS 
(Fig. 2a) or OS (Fig. 2b), but a consistent trend towards 

Variables Value p-value
PFS OS

Patient characteristics
Median age in years (range) 57.0 (22.9–85.0) 0.015* 0.002**
Sex
Male 52 (51.5%) 0.66 0.11
Female 49 (48.5%)
KPS
Preoperative, median (range) 78.0 (50–100) 0.13 0.04*
1-month postoperative, median (range) 72.5 (0–100) 0.0015** 0.0002***
Survival
Median PFS in months (range) 7.8 (0.13–101.2) -
Median OS in months (range) 14.0 (0.13–101.2) -
Tumor type
GBM (IDH wild-type) 91 (91%) -
Anaplastic astrocytoma (IDH wild-type) 10 (10%) -
Newly diagnosed HGG 42 (41.6%)
Recurrent HGG 59 (58.4%) 0.019* 0.04*
Tumor Location
Frontal 27 (26.7%) 0.001** 0.09
Temporal 31 (30.7%)
Insular 3 (2.9%)
Parietal 28 (27.7%)
Occipital 10 (9.9%)
Cerebellar 2 (1.9%)
Tumor Laterality 0.58 0.71
Right 52 (51.5%)
Left 49 (48.5%)
Markers/Pathologic Characteristics
MGMT unmethylated 67 (67.7%) 0.03* 0.08
EGFR non-amplified 49/81 (60.5%) 0.96 0.79
p53 mutation 73/90 (81.1%) 0.57 0.87
PTEN mutation 48/71 (67.6%) 0.14 0.10
MIB-1% (range) 40% (5.0–95.0%) 0.81 0.81
Surgery Characteristics
Extent of resection (range) 93.6% 

(11.0–100.0%)
0.012* 0.006**

Further surgical resection (%) 52 (51.5%) 0.387 0.592
Tumor present on additional resection (%) 46 (88.5%) -

Table 1 Baseline patient, tumor, 
and surgical characteristics in 101 
patients with new or recurrent 
HGG who underwent surgical 
resection using iMRI

*p < 0.05; **p < 0.01; ***p < 0.001
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OS (p = 0.002, Fig. 2d), as well as lower three-month post-
operative T2W imaging volumes and longer PFS and OS 
(p = 0.031 and p = 0.006, respectively; Fig. 2c,d).

T2-FLAIR weighted imaging volumes and survival

The temporal trend of FLAIR hyperintense volumes is 
shown in Fig. 1d. On log-rank analysis of patients above 
and below the median volumes, there was no association 
between preoperative or intraoperative FLAIR volumes and 
PFS or OS (Fig. 2e,f) nor between immediate postoperative 
FLAIR volumes and PFS (Fig. 2e). A statistically signifi-
cant association between smaller immediate postoperative 
FLAIR volumes and longer OS (p = 0.02, Fig. 2f), as well 
as smaller three-month postoperative FLAIR volumes and 
better PFS and OS (p = 0.018 and p = 0.004, respectively; 
Fig. 2e,f).

Volumetric-based multivariable Cox proportional 
hazard regression analyses

A summary of the median volumes and results of the mul-
tivariable Cox proportional hazard regression analyses for 
the different imaging modalities at specific timepoints is 
summarized in Table 2. There was a statistically significant 
association between smaller intraoperative and three-month 
postoperative T1W-CE tumor volumes and PFS (p = 0.04 
and p < 0.005, respectively). Only smaller three-month 
postoperative T1W-CE tumor volumes were significantly 
associated with better OS (p < 0.005). There was no asso-
ciation seen for preoperative, intraoperative, or immediate 
postoperative T2W imaging volumes with PFS or OS. How-
ever, there was a statistically significant association between 
lower three-month postoperative T2W imaging volumes and 
PFS and OS (p < 0.005 and p = 0.01, respectively). Finally, 
no association was observed for preoperative, intraopera-
tive, or immediate postoperative FLAIR imaging volumes 
with PFS or OS; however, a statistically significant associa-
tion was seen between three-month postoperative FLAIR 
imaging volumes and PFS and OS (p < 0.005 and p = 0.04, 
respectively).

Fig. 1 (a) Scatter plot showing median values and interquartile range 
for PFS and OS in the 101-patient cohort with new or recurrent IDH 
wild-type HGGs. Median values are represented by a dashed line. 
Error bars represent the interquartile range. Temporal trends of median 
T1W-CE (b), T2W (c), and FLAIR (d) imaging volumes (cm3). T1W-
CE, T2W, and FLAIR tumor volumes from preoperative (red), intra-
operative (green), immediate postoperative (blue), and three-month 
postoperative (purple) MRI scans. The median value is represented by 
a colored circle. Error bars represent the interquartile range for each 
of the volumes
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Fig. 2 Relationship of T1W-CE (a, b), T2W (c, d), and FLAIR (e, 
f), imaging volumes on PFS and OS. Log-rank analyses of preop-
erative, intraoperative, immediate postoperative, and three-month 

postoperative imaging volumes—separated above and below the 
median—and their relationship with PFS and OS

 

1 3

560



Journal of Neuro-Oncology (2022) 160:555–565

Table 2 Imaging volumes and their relationships with PFS and OS at the timepoints of interest
Imaging Sequence Timepoint Median volume in cm3 (range) Log-rank p-values Multivariable Cox regression 

p-values
PFS OS PFS OS

T1W-CE tumor volumes Preop 15.2 (0–83.8) 0.229 0.07 0.35 0.87
Intraop 0.62 (0–17.1) 0.529 0.402 0.04* 0.52
Immediate postop 2.54 (0.0–21.1) 0.397 0.303 0.33 0.22
3-months postop 1.7 (0.0–150.0) 0.135 0.088 < 0.005** < 0.005**

T2W imaging volumes Preop 66.4 (2.2–310.1) 0.045* 0.026* 0.19 0.86
Intraop 38.6 (0.1–324.8) 0.296 0.105 0.67 0.99
Immediate postop 49.3 (0.34–331.2) 0.054 0.002** 0.06 0.81
3-months postop 23 (0.91–234.5) 0.031* 0.006** < 0.005** 0.01*

FLAIR imaging volumes Preop 70.0 (0.31–305.2) 0.208 0.095 0.19 0.65
Intraop 41.4 (0.28–294.2) 0.214 0.073 0.79 0.58
Immediate postop 57.2 (1.1–327.0) 0.189 0.02* 0.05 0.48
3-months postop 28.7 (0.56–250.0) 0.018* 0.004** < 0.005** 0.04*

The median volumes and ranges for the three MRI sequences at the specific timepoints are also shown
*p < 0.05, **p < 0.01
PFS, progression-free survival; OS, overall survival; T1W-CE, T1-weighted contrast-enhanced; T2W, T2-weighted; FLAIR, fluid-attenuated 
inversion recovery

Fig. 3 Relationship of EOR (a, b) 
and additional resection (c, d) on 
PFS and OS. Log-rank analysis 
of EOR separated above and 
below the median value and its 
relationship with PFS (a) and OS 
(b). Log-rank analysis of no addi-
tional resection versus additional 
resection and its relationship with 
PFS (c) and OS (d)
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attribute the lack of statistical significance primarily to the 
median EOR of 93.6% for this cohort. Our T1W-CE-based 
EOR calculations and log-rank analysis did show a statis-
tically significant impact on both PFS (p = 0.012) and OS 
(p = 0.006).

T2W and FLAIR imaging volumes

Although much research has focused on T1W-CE tumor vol-
umes and survival in patients with HGGs, a number of more 
recent studies have also demonstrated the prognostic impor-
tance of T2W and FLAIR imaging volumes [34, 35]. In the 
1980s, Hochberg and Pruitt [36] first demonstrated via post-
mortem examinations that 80% of HGGs recurred within 
2 cm of the resection margin—where infiltrating tumor 
cells are highest in concentration. Accordingly, resection of 
hyperintense T2W/FLAIR tumor margins has been an area 
of significant interest. In 2016, Li et al. [12] examined 876 
patients with GBM who underwent complete resection and 
found through multivariate analysis that those patients with 
> 50% non-enhancing hyperintense FLAIR volume resec-
tion had significant improvement in OS. Grossman et al. 
[37] examined 103 patients with HGGs undergoing resec-
tion and found no significant association between immedi-
ate postoperative FLAIR volumes and OS. However, their 
study did show a statistically significant OS benefit when 
three-month postoperative FLAIR imaging volumes were 
below 19.3 cm3 [37].

In our log-rank analyses, lower immediate postopera-
tive T2W and FLAIR imaging volumes were significantly 
associated with longer OS (p = 0.002, p = 0.02, respectively) 
but not PFS (p = 0.054, p = 0.189, respectively). However, 
on multivariate analyses there was no statistically signifi-
cant association between PFS or OS and immediate postop-
erative T2W (p = 0.06, p = 0.81, respectively) or immediate 
postoperative FLAIR volumes (p = 0.05, p = 0.48, respec-
tively). Similar to our T1W-CE volumetric analyses, we 
did see a consistent survival benefit for smaller T2W and 
FLAIR imaging volumes, likely suggesting our study was 
inadequately powered to detect a small but appreciable sur-
vival effect.

Our data showed a significant association between 
decreased volumes on three-month postoperative T2W 
and FLAIR and longer PFS (p < 0.005, p < 0.005) and OS 
(p = 0.01, p = 0.04). Collectively, we believe these data 
strongly support the prognostic value of T2W and FLAIR 
imaging volumes at three months postoperatively—with 
patients having significantly longer PFS and OS when three-
month T2W volume is < 23.0 cm3 and three-month FLAIR 
volume is < 28.7 cm3.

Extent of resection and survival

The median calculated EOR was 93.6% (range 11–100%). 
By log-rank analysis of EOR, patients were dichotomized 
above and below the median value. Statistically significant 
associations between greater EOR and both PFS and OS 
were seen (Fig. 3a,b).

Further resection, margin positivity, and survival

Fifty-two of 101 patients (51.5%) underwent additional 
resection after the initial iMRI scan. Tumor margins sent 
for final pathological analysis were positive for HGG in 46 
patients (88.5%). In a log-rank analysis of patients who did 
or did not have additional resection, there was no observed 
improvement in either PFS (p = 0.387) or OS (p = 0.592) 
for patients undergoing additional resection after the initial 
iMRI scan (Fig. 3c,d).

Imaging sequence ratios and survival

Volumetric imaging ratios were calculated using the T1W-
CE, T2W, and FLAIR sequence imaging volumes for each 
patient. There was no observed association with PFS or OS 
for any of the imaging volume ratios at any timepoint.

Discussion

In our single-center cohort of 101 patients with HGG, we 
evaluated the relationship of imaging volumes on different 
pre- and postoperative sequences with PFS and OS, along 
with the effect of additional resection after initial iMRI on 
survival. Our median EOR and OS were 93.6% and 14.0 
months in this patient group, respectively. We identified 
that EOR and 3-month imaging volumes (i.e., T1W-CE, 
T2W, FLAIR) had the greatest association with OS. We also 
showed that additional surgical resection in 51.5% of cases 
after iMRI resulted in positive specimen in 88.5% of cases 
but did not improve survival in this patient group.

T1W imaging volumes

Numerous prior studies have shown that greater EOR and 
decreased CE-RTV (i.e., decreased intraoperative and post-
operative T1W-CE tumor volumes) are both independently 
associated with longer PFS and OS [7, 10, 14–19, 21]. In 
our log-rank analysis of T1W-CE tumor volumes, there did 
not appear to be any association with PFS or OS; however, 
there was a consistent trend at all timepoints for longer 
PFS and OS with below-the-median T1W-CE tumor vol-
umes. Although this was not entirely an expected result, we 
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Lastly, we examined the effect of additional resection after 
initial iMRI scan on survival. Half of our patients underwent 
additional resection after iMRI use, with 88.5% of speci-
mens containing tumor; however, there was no association 
of PFS or OS with undergoing additional surgical resection. 
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Limitations
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the cohort, as demonstrated in Online Resource Table 1 and 
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Conclusions
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imaging volumes may serve as significant prognosticators 
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