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Abstract
Purpose Although glioblastoma (GBM) is the most common primary brain malignancy, few tools exist to pre-operatively 
risk-stratify patients by overall survival (OS) or common genetic alterations. We developed an MRI-based radiomics model 
to identify patients with EGFR amplification, MGMT methylation, GBM subtype, and OS greater than 12 months.
Methods We retrospectively identified 235 patients with pathologically confirmed GBMs from the Cancer Genome Atlas 
(88; TCGA) and MD Anderson Cancer Center (147; MDACC). After two neuroradiologists segmented MRI tumor volumes, 
we extracted first-order and second-order radiomic features (gray-level co-occurrence matrices). We used the Maximum 
Relevance Minimum Redundancy technique to identify the 100 most relevant features and validated models using leave-
one-out-cross-validation and validation on external datasets (i.e., TCGA). Our results were reported as the area under the 
curve (AUC).
Results The MDACC patient cohort had significantly higher OS (22 months) than the TCGA dataset (14 months). On both 
LOOCV and external validation, our radiomics models were able to identify EGFR amplification (all AUCs > 0.83), MGMT 
methylation (all AUCs > 0.85), GBM subtype (all AUCs > 0.92), and OS (AUC > 0.91 on LOOCV and 0.71 for TCGA 
validation).
Conclusions Our robust radiomics pipeline has the potential to pre-operatively discriminate common genetic alterations and 
identify patients with favorable survival.
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Introduction

Glioblastoma is one of the most common tumors in the 
Central Nervous System (CNS), accounting for nearly one-
half of malignant brain tumors [1]. For almost twenty years, 
the standard treatment for GBM has remained concomitant 
radiation and temozolomide [2–4]. This standard, along with 
several failed clinical trials, has led to only minor improve-
ments in overall survival (OS) for GBM over the past two 

decades, with a median survival of 12–15 months[3, 5, 6]. 
The failure of GBM clinical trials may reflect the complex 
genetic heterogeneity of these tumors, with several genetic 
alterations and subtypes [7]. New, targeted therapies and 
immunotherapies have great promise for improving sur-
vival in GBM[8]. One of the challenges in clinical trials in 
GBM is the development of tools to pre-operatively stratify 
patients by survival or genetic alterations.

Radiomics is a semi-automated, high-throughput method 
that correlates quantitative imaging features with outcomes, 
including tumor pathology, genetics, recurrence, or patient 
survival [9–13]. One of the promising features of radiomics 
is the ability to use common diagnostic tools, like MRI, to 
classify patients noninvasively [14–16]. For GBM specifi-
cally, several studies have shown that radiomics can iden-
tify IDH mutations, novel genetic alterations that influence 
outcomes, and long-term survivors [12, 14, 17–19]. These 
tools could allow for improved pre-operative counseling for 
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patients and families, better identification of patients who 
would benefit from tumor resection, and help guide clinical 
trials [20]. Despite this potential, only a few studies have 
evaluated radiomics in patient care settings [21, 22]. To ease 
the transition from a research tool to clinical resource, we 
propose the development of a pre-operative patient report 
card that can identify common patient genetic alterations 
and predict OS. This tool can be used both on an individual 
patient level to guide care and better stratify patients for 
clinical trials. We hypothesized that a radiomics-based tool 
could robustly evaluate overall survival, common genetic 
alterations, and genetic subtypes commonly described in the 
literature [7].

Materials and methods

Our study was approved by the University of Texas MD 
Anderson Cancer Center (MDACC) and University of Pitts-
burgh Medical Center (UPMC) institutional review boards. 
The requirement for informed consent was waived. We fol-
lowed the “STAndards for Reporting Diagnostic Accuracy 
studies” (STARD) checklist [23]. For our study, we clas-
sified patients across four domains: EGFR amplification, 
MGMT promoter methylation, molecular subgroup (classi-
cal, proneural, mesenchymal) based on Verhaak et al. [7], 
and OS. For OS, we classified patients as surviving greater 
than (OS > 12) or less than (OS < 12) 12 months. Of note, 
for molecular subgroup, we did not classify patients in the 
neural group as this group has been subsequently found to 
be a background signature and not driven by GBM pathol-
ogy [24].

Study cohort

We retrospectively identified a cohort of treatment naïve, 
pathologically confirmed GBMs from the MDACC from 
2002 to 2019 and TCGA [25]. The preoperative MRI studies 
of the TCGA patients are available for public download from 
The Cancer Imaging Archive (TCIA) (http:// cance rimag 
ingar chive. net/). Patient inclusion criteria were as follows: 
histopathologic confirmation of GBM; preoperative MRI 
sequences including contrast-enhanced axial T1-weighted 
imaging (ceT1WI) and pre-contrast axial T2-weighted 
Fluid-Attenuated Inversion Recovery (FLAIR); and avail-
ability of clinical and genomic data. MDACC cohort patients 
underwent standard treatment of resection followed by Stupp 
Protocol with six weeks of concomitant Temozolomide 
and radiation therapy. For all patients, we collected EGFR 
amplification status, MGMT promoter methylation, OS, and 
molecular subtype if available.

Image registration, segmentation, 
and pre‑processing

We have previously described our image segmenting, 
processing, and radiomics pipeline [14, 15, 26]. In brief, 
registered each MRI in the same geometric space using 
the registration toolbox from 3D Slicer, an open source 
analytics platform. Then, we segmented the ceT1WI and 
FLAIR sequences for all patients. All TCGA and MDACC 
imaging studies were performed using clinical MRI scan-
ners with field strengths ranging from 1 to 3 T. Acquisition 
parameters, including slice thickness, voxel size, and slice 
gap, are reported in Supplementary Tables 1 and 2. Tumor 
segmentation was performed semi-automatically using 
3D Slicer version 4.3.1 (www. slicer. org), an open-source 
image analytics platform for image processing and seg-
mentation [27–29]. We segmented four distinct imaging 
phenotypes: edema/invasion, contrast enhancement, necro-
sis, and whole tumor volume [14]. Additionally, a region 
of contralateral hemisphere normal-appearing white mat-
ter was segmented for within-sequence normalization. All 
segmented images were reviewed by consensus by two 
board-certified neuroradiologists with 9 (R.R.C.) and 35 
(A.J.K.) years of experience.

After segmenting all scans, we used FMRIB’s Brain 
Extraction Tool (BET) (http:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi 
ki/ BET) to remove non-brain tissue. Using the ceT1WI, 
we developed a brain mask using BET that was subse-
quently applied to the FLAIR sequences, thus removing 
non-brain tissue from those images also. To account for 
scanner differences, we applied Nyul intensity normaliza-
tion algorithm to standardize the intensity scales across 
MR images of the same contrast [30].

Textural radiomic sequencing

We performed whole radiomic sequencing to extract fea-
tures from the ceT1WI and FLAIR sequences, which can 
be seen in Fig. 1.

For each phenotype and sequence, we extracted 80 first-
order features in the form of an intensity-level histogram 
and 4800 s-order features in the form of gray-level co-
occurrence matrices (GLCM). The intensity-level histo-
gram is a function showing the number of voxels with 
a specific intensity in the segmented volume. From each 
histogram, we extracted ten features, including minimum, 
maximum, mean, standard deviation, skew, kurtosis, and 
four percentiles, per phenotype per sequence [15]. As 
we extracted 10 first-order features for all 4 phenotypes 
for both FLAIR and ceT1WI, we had 80 total first-order 
features. A GLCM is a two-dimensional analysis of an 
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image’s texture, evaluating the frequency of two pixels 
with gray intensity levels occurring at specified distances 
and angular relationships. In our pipeline, we evaluated 
adjacent pixels (distance = 1) in the four angular direc-
tions of a 2D plane (i.e., a single slice). We obtained 60 
rotation-invariant features for each volume for every gray 
level and then discretized this into 5 Gy levels to increase 
the signal-to-noise ratio. This allows us to collect 300 fea-
tures per phenotype. Considering we have 4 phenotypes 
(edema/invasion; enhancing tumor; necrosis; whole tumor 
volume) and two sequences (ceT1WI and FLAIR), we 
collected 2,400 GLCM features per patient. Further, we 
averaged this entire feature set by tumor volume to create 

another, volume-independent set of 2,400 features. Lastly, 
we collected approximately 600 radiomic features using 
similar techniques from the contralateral hemisphere nor-
mal-appearing white matter for normalization. This helped 
control for different imaging hardware and software used 
across MDACC and TCGA.

Radiomic textural analysis

We used radiomic features to classify patients across four 
domains: EGFR amplification, MGMT promoter methyla-
tion, molecular subgroup, and OS. To do this, we applied 
the Maximum Relevance Minimum Redundancy technique, 
which allows for efficient selection of the most relevant and 
non-redundant/uncorrelated features.[31] We performed this 
selection using the total of 4,880 radiomic features available 
for each patient to identify the 100 most relevant features. 
We used the F-statistic to determine feature relevance and 
feature redundancy with the Pearson correlation coefficient. 
With our selected features, we built radiomic models using a 
support vector machine (SVM) classifier, a machine-learning 
technique known to reduce the potential risk of over-fitting or 
false discovery [32].

For each domain analyzed (i.e., EGFR amplification, 
MGMT methylation, molecular subgroup, OS), we analyzed 
our model with two validation approaches. First, we performed 
leave-one-out-cross-validation (LOOCV) on each task and 
reported our results. Second, we trained our model with data 
from one dataset and tested the model with the other data set. 
For each domain tested, we used the larger dataset for train-
ing and the smaller dataset for testing. For example, if more 
patients from TCGA had EGFR amplification available com-
pared to MDACC, we would build our model with TCGA and 
use MDACC for model testing.

We evaluated the performance of our model by comput-
ing receiver operating characteristic curves and reporting area 
under the curve (AUC), sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV). We 
also performed Kaplan–Meier and Multivariable Cox Regres-
sion Analysis to evaluate survival. Log Rank test and Hazard 
Ratios are reported. We used R (version 3.3.1, R Foundation 
for Statistical Computing, Vienna, Austria) for all the statisti-
cal analyses, Package mRMRe (version 2.0.5) for the feature 
selection task, and the Machine Learning package mlr (ver-
sion 2.8) to build the SVM classifier. The survival package 
(version 2.39–5) was used for Kaplan Meier and Multivariate 
Cox Regression Analysis. ROC analysis was performed using 
pROC package (version 1.8).

Fig. 1  Radiomics pipeline
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Results

Clinical characteristics of study cohort

Overall, we identified 235 pathologically confirmed GBM 
patients: 88 from TCGA and 147 from MDACC. EGFR 

amplification status was available for 84 and 37 patients in 
the TCGA and MDACC cohorts, respectively. MGMT pro-
moter methylation was available for 86 and 28 patients in 
the TCGA and MDACC cohorts, respectively. TCGA was 
used for model training and MDACC for model validation 
for EGFR amplification and MGMT promoter methylation, 
while the opposite was used for OS. Molecular subtype data 
was available for 66 patients (24 mesenchymal, 13 classi-
cal, and 29 proneural) from TCGA via cBioPortal.[33] 
The number of patients, baseline demographics, and clini-
cal characteristics of the study cohorts are summarized in 
Tables 1, 2, and 3. Generally, patients with OS > 12 months 
were younger and had higher KPS.

Performance of radiomics models for genetic 
alterations

We performed LOOCV and external validation for predict-
ing EGFR amplification and MGMT promoter methylation 
status; and LOOCV for molecular subgroup analysis as 
this data was only available for the TCGA dataset (Fig. 2). 
Descriptions of these features can be found in Supple-
mentary Table 3. LOOCV across the TCGA and MDACC 
cohorts had high AUC for identifying EGFR amplification 
(n = 121; AUC 83.5%, sensitivity 70.3%, specificity 86.0%, 
PPV 72.1%, NPV 84.9%; Fig. 2A and Tables 4, 5). When 
validating the TCGA model on the hold-out MDACC cohort, 

Table 1  TCGA patient demographic table

Comparison of the demographic and clinical characteristics of the 
patients according to OS, EGFR and MGMT
*Patient TCGA-12–1601 had no age, sex and KPS

Patients with 
OS < 12 months 
(n = 39)

Patients with 
OS ≥ 12 months 
(n = 42)

P-value

Age (years) 65.4 ± 11.3 54.6 ± 14.2  < 0.001
Sex (male/female) 24 (62%) /15 

(39%)
27(64%) /15 (36%) 0.80

KPS (≥ 80/ < 80) 21 (70%) /9 (30%) 34 (94%) /2 (6%) 0.01
Age (years) 60.9 ± 12.2 59.1 ± 15.2 0.56
Sex (male/female) 28 (80%) / 7 (20%) 24 (50%) / 24 

(50%)
 < 0.01

KPS (≥ 80/ < 80) 18 (69%) / 8 (31%) 39 (91%) / 4 (9%) 0.04
Age (years) 57.1 ± 15.7 62.6 ± 10.8 0.06
Sex (male/female) 24 (51%) / 23 

(49%)
28 (74%) / 10 

(26%)
0.03

KPS (≥ 80/ < 80) 34 (83%) / 7 (17%) 25 (83%) / 5 (17%) 0.96

Table 2  TCGA patient demographic table: comparison of the demographic and clinical characteristics of the patients according to GBM sub-
group

Mesenchymal GBM (n = 24) Proneural GBM (n = 29) Classical GBM (n = 13) P-value

Age (≥ 60/ < 60) 13 (54%) / 11 (46%) 12 (41%) / 17 (59%) 9 (69%) / 4 (31%) 0.30
Sex (male/female) 14 (58%) / 10 (42%) 18 (62%) / 11 (38%) 8 (62%) / 5 (39%) 0.98

Table 3  MDACC patient demographic table: comparison of the demographic and clinical characteristics of the MDACC patients according to 
OS, EGFR and MGMT 

Patients with OS < 12 months (n = 29) Patients with OS ≥ 12 months (n = 108) P-value

Age (years) 66.6 ± 7.1 55.7 ± 13.2  < 0.001
Sex (male/female) 20 (69%) / 9 (31%) 63 (58%) / 45 (42%) 0.30
KPS (≥ 80/ < 80) 23 (79%) / 6 (21%) 88 (82%) / 20 (19%) 0.79

Patients with EGFR Amplification (n = 21) Patients without EGFR Amplification (n = 16)

Age (years) 58.3 ± 10.1 58.4 ± 11.8 0.98
Sex (male/female) 14 (67%) / 7 (33%) 10 (63%) / 6 (38%) 0.79
KPS (≥ 80/ < 80) 14 (67%) / 7 (33%) 9(56%) / 7 (44%) 0.52

Patients with methylated MGMT (n = 13) Patients with unmethylated MGMT (n = 15)

Age (years) 51.4 ± 15.2 55.6 ± 11.6 0.42
Sex (male/female) 8 (62%) / 5 (39%) 10 (67%) / 5 (33%) 0.77
KPS (≥ 80/ < 80) 9(69%) / 4 (31%) 9 (60%) / 6 (40%) 0.71
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the model performed similarly well (n = 37; AUC 83.6%, 
sensitivity 85.7%, specificity 75.0%, PPV 81.8%, NPV 
80.0%;).

We used a similar set of radiomic features for the MGMT 
model that can be found in Supplementary Table 4. LOOCV 
of MGMT promoter methylation performed well (n = 114; 

Fig. 2  Model performance for 
predicting EGFR amplification 
(A), MGMT methylation (B), 
and molecular subgroup (C). 
For EGFR Amplification and 
MGMT Methylation prediction, 
we reported performance in 
two ways. First, we performed 
LOOCV on both cohorts. 
Second, we developed a predic-
tion model with the cohort with 
the largest number of patients 
and validated this model with 
the other cohort. For exam-
ple, more patients had EGFR 
amplification recorded in TCGA 
study (84) than the MDACC 
(37) cohort. As a result, we 
performed LOOCV on both 
cohorts to describe performance 
(Left). We then built a model 
using TCGA patients and vali-
dated it on the MDACC cohort 
(Right). D shows the three-way 
confusion matrix for molecular 
subgroups
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AUC 85.9%, sensitivity 67.9%, specificity 91.8%, PPV 
76.7%, NPV 87.9%; Fig. 2B). Our validation model trained 
on the TCGA dataset predicted MGMT promoter methyla-
tion status in the MDACC cohort (n = 28; AUC 91.80%, sen-
sitivity 84.6%, specificity 93.3%, PPV 91.7%, NPV 87.5%).

Lastly, we determined the molecular subgroup in the 
TGCA set with a three-way classifier and LOOCV predictive 
modeling for each subgroup against the other two (Fig. 2C). 
Our model exhibited high performance for predicting the 
mesenchymal group (n = 24; green line; AUC 95.7%, speci-
ficity 85.7%, sensitivity 95.8%), proneural group (n = 29; 
AUC 93.1%, specificity 89.2%, sensitivity 93.1%), and clas-
sical group (n = 13; red line; AUC 92.5%, specificity 94.3%, 
sensitivity 84.6%). Figure 2D shows a three-way confusion 
matrix demonstrating with overall accuracy of 84.9%. Sup-
plementary Table 5 lists the radiomic features used in the 
model identifying subgroups.

Radiomic features for predicting OS

OS, age, and KPS were available for 81 patients in TCGA 
and 137 in MDACC. The median survival time of the 

MDACC cohort (22  months) was substantially longer 
than that of the TCGA cohort (14  months; p < 0.001; 
Supplementary Fig. 1). For both the TCGA and MDACC 
datasets, we identified the top 100 radiomic features 
differing between patients with an OS > 12 months and 
OS < 12 months (Supplementary Table 6). LOOCV in the 
TCGA cohort (N = 81; AUC 93.3%, sensitivity 97.6%, 
specificity 76.9%, PPV 82.0%, NPV 96.8%; Fig. 3A/B) and 
MDACC cohort (N = 137; AUC 91.6%, sensitivity 90.7%, 
specificity 82.8%, PPV 95.2%, NPV 70.6%; Fig. 3C/D) 
performed well. Moreover, our radiomic features sig-
nificantly predicted survival in TCGA (p < 0.001) and 
MDACC (p < 0.001) cohorts in a multivariate model with 
age (TCGA p = 0.05, MDACC p < 0.01) and KPS (TCGA 
p < 0.01, MDACC p = 0.92). Lastly, we built an OS predic-
tion model built from MDACC patients and validated on 
the TCGA dataset that demonstrates the robustness of our 
approach (N = 81, AUC 70.5%, sensitivity 66.7%, speci-
ficity 69.2%, PPV 70.0%, NPV 65.9%; Fig. 3E; cognate 
Kaplan–Meier plot p = 0.02; Fig. 3F).

Radiogenomic probability map and clinical report 
cards for predicting personalized patient profiles

To demonstrate clinical applicability and benefit for indi-
vidual patients, we developed personalized probability 
maps for key molecular events and survival (Fig. 4). As 
depicted, this radiomics analysis paradigm uses the analy-
sis pipeline performed above, with routine patient MRI 
scans as input, to concisely predict EGFR amplification, 
MGMT promoter methylation, GBM subtype, and OS pre-
operatively. Figure 4 shows the report card for 3 sample 
patients, as well as whether the predictions were correct.

Table 4  Model prediction 
performance based on 
development validation cohorts

For EGFR amplification and MGMT methylation, performance increased during external validation com-
pared to LOOCV, demonstrating the robustness of our approach. For the OS model, the MDACC cohort 
had a significantly higher OS (22 months) compared to the TCGA cohort (14 months)

Prediction Development cohort (n) Validation (n) AUC (%)

EGFR amplification TCGA + MDACC (121) LOOCV 83.5
TCGA (84) MDACC (37) 83.6

MGMT promoter methylation TCGA + MDACC (114) LOOCV 85.9
TCGA (86) MDACC (28) 91.8

GBM subgroup
 Mesenchymal TCGA (24) LOOCV 95.7
 Proneural TCGA (13) LOOCV 93.1
 Classical TCGA (29) LOOCV 92.5

Overall survival > or < 12 months TCGA (81) LOOCV 93.3
MDACC (137) LOOCV 91.6
MDACC (137) TCGA (81) 70.5

Table 5  Multivariate cox models with radiomic sequencing, age, and 
KPS

Cohort Variable HR ( 95% CI) p-value

TCGA Radiomic sequencing 0.1 (0.1- 0.2)  < 0.001
Age 1.6 (1.0–2.5) 0.04
KPS 0.3 (0.2–0.7)  < 0.001

MDACC Radiomic sequencing 0.4 (0.2–0.6)  < 0.001
Age 1.9 (1.3–2.8)  < 0.01
KPS 1.0 (0.6–1.6) 0.92
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Discussion

In this study, we developed a robust radiomics pipe-
line that predicted OS and common genetic alterations 
in a multi-institutional dataset using pre-operative MRI 
scans. Our models successfully identified patients with 

MGMT methylation (AUC > 0.86), EGFR amplification 
(AUC > 0.83), and GBM subtype (AUC > 0.93). MGMT 
promoter methylation is an important prognostic epigenetic 
alteration that confers resistance to DNA-alkylating agents 
(e.g., temozolomide), the standard-of-care chemotherapy 
for GBM [4]. EGFR amplification is a common genetic 

Fig. 3  Model performance for 
predicting OS in the TCGA 
dataset (A/B) and MDACC 
(C/D) using LOOCV for both 
datasets. We validated our 
approach through building a 
survival model with MDACC 
patients (median OS 22 months) 
and validating on the TCGA 
dataset (medial OS 14 months; 
E/F)
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alteration associated with more aggressive tumor behavior 
and is a potentially targetable genetic alteration [34]. While 
previous groups have identified MGMT methylation [35], 
other genetic alterations, including EGFR amplification and 
GBM subtype are less well validated. While Le et al. previ-
ously reported predictive accuracies for 70.9%, 73.3%, and 
88.4% for classical, mesenchymal, and proneural subtypes 
respectively, here, our models improved upon this with accu-
racies of 92.4%, 95.7%, and 93.1% for classical, mesenchy-
mal, and proneural subtypes [36]. Our ability to identify 
several alterations highlights the ability of an MRI-based 
radiomics model to pre-operatively risk-stratify patients.

One of the strengths of our modeling approach is its 
stability and generalizability. We took steps, including 
normalizing each MRI with normal-appearing white mat-
ter from the contralateral hemisphere and creating volume-
independent radiomic features, allowing our approach to 
retain performance across multiple institutions and MRI 

vendors. Our model accuracy improved for EGFR amplifi-
cation and MGMT methylation during the external valida-
tion compared to LOOCV. Similarly, for OS, although the 
MDACC had a significantly different OS than the TCGA 
dataset, the external validation retained robust perfor-
mance (AUC 70.5). In an ideal clinical setting, radiomic 
survival models could be tuned to the survival patterns of 
the hospital, therefore mimicking the LOOCV approach 
where the AUC was > 0.91. Generalizable approaches, 
validated across multiple institutions, are key to the suc-
cessful deployment of radiomics in a clinical environment.

Another strength of our approach is our high model 
accuracy. While other groups have developed radiomic 
models in the past, several are limited by lower perfor-
mance[17, 18, 37, 38] or a lack of external validation [35, 
39]. Our model performance, in excess of an AUC of 0.83 
for most tests, likely reflects our pipeline that generates 

Fig. 4  Radiogenomic prob-
ability maps and clinical report 
cards for three representative 
patients. This figure presents 
a summary of the radiomics-
based prediction of the genomic 
hallmarks of GBM and survival 
for three representative patients. 
The top row demonstrates the 
segmented patients brain MRIs. 
The center row shows the radi-
omic probability map (as sur-
rogate for radiomic sequencing 
output) for key genomic mark-
ers and survival. The bottom 
row shows the clinical report 
card summarizing the predicted 
probabilities for EGFR ampli-
fication, MGMT methylation, 
GBM subtype, and OS. A check 
mark or “X” indicates whether 
the respective prediction was 
correct or incorrect, respectively
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thousands of first and second-order radiomic features and 
robust statistical approaches to identify salient features.

We also introduced the concept of a patient report card 
that highlights the likelihood of certain genetic alterations 
and chances for higher OS. This report card can be devel-
oped pre-operatively using non-invasive tools like MRI and 
common clinical information. This type of tool could be 
deployed in clinical settings to help patients better under-
stand their disease course and help pre-operatively balance 
risks versus rewards for surgery. A patient report card could 
also help identify genetic targets for future neo-adjuvant 
chemotherapy or better balance patients in clinical trials. 
Further work is needed to deploy this tool in real-world 
clinical settings.

While our approach has significant potential to enhance 
GBM clinical care, several limitations exist. Most impor-
tantly, many machine learning programs suffer significant 
performance declines when deployed in real-world settings 
[40]. The deployment of any radiomics model in clinical 
practice should be evaluated rigorously. Additionally, while 
our methods for feature extraction are semi-automated, 
manually segmenting MRIs requires manual effort and may 
differ between providers performing segmentation.

Conclusion

In conclusion, we developed a robust radiomics pipeline that 
pre-operatively predicted EGFR amplification, MGMT meth-
ylation, GBM subtype, and OS. Our models retain robust 
performance when validated in external datasets, highlight-
ing our generalizable approach. Future studies should evalu-
ate deploying radiomics models in clinical practice.
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